Textual Sentiment, Option Information and Stock Return Predictability

Cathy Yi-Hsuan Chen
Matthias R. Fengler
Wolfgang Karl Härdle
Yanchu Liu

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin University of St. Gallen, Switzerland
 Lingnan College, Sun Yat-sen University, China http://lvb.wiwi.hu-berlin.de http://www.mathstat.unisg.ch/ http://www.lingnan.sysu.edu.cn

Sentiment moves stock markets

\checkmark Growing evidence shows that textual sentiment provides incremental information about future stock returns.

Confirmed at index levels as well as single-stock levels.
\square Antweiler \& Frank (2004), Tetlock (2007), Tetlock (2011), Hillert et al. (2014), Zhang et al. (2016), among others.

What about sentiment and options markets?

\square Han (2008): aggregate sentiment proxies (Investors Intelligence survey, CFTC reported long-short futures, Sharpe's (2002) index valuation errors) predict risk neutral skewness of index options.
\square Prediction power cannot be explained by "rational" option pricing models.

Options market and stock market

\square Dennis and Mayhew (2002), Xing et al. (2010): option data characeristics (skew, implied volatility) predict stock returns

Hypothesis:
private information about stocks can be best exploited via the option market because it's easier to leverage and short-sell.

Therefore options market may lead stock markets in terms of price discovery.

Given sentiment predicts both stock returns and option data, is there still room for the private information hypothesis in option markets?

Maybe it's all just a common sentiment factor that get's internalized at different speed in the different markets.

Requires a joint study of
Textual Sentiment, Option Information and Stock Return Predictability

This research

\square Extend Han's (2008) ideas:

- Study reaction of standard of single-stock options to news
- Use language processing tools for sentiment construction
\square Investigate influence of option market variables in presence of news sentiment (Xing et al.'s hypothesis)
\square Study source of option markets predictability: Inside information? Internalized investor sentiment? Both?

Current literature

B_{t} is sentiment, $O C_{t}$ an option market variable, R_{t} a stock return

This work

B_{t} is sentiment, $O C_{t}$ an option market variable, R_{t} a stock return

This work

B_{t} is sentiment, $O C_{t}$ an option market variable, R_{t} a stock return

Findings

\square Our sentiment proxies predict single-stock option market variables

- Both firm-specific sentiment and aggregate sentiment
- Aggregate negative sentiment is a strong predictor
\square Sentiment proxies predict single stock returns
\square Asymmetry of informational relevance of news:
- Overnight information more relevant than trading day information
- Possibly due to a different thematic coverage and more complex topics.

Findings

\square Option market variables remain relevant predictors of stock returns in presence of sentiment

- Aggregate sentiment is a relevant factor for single stock returns
- Option market variables where sentiment is partialled out remain significant predictors.

Outline

1. Motivation \checkmark
2. Data collection
3. Text analytics
4. Sentiment projection
5. Topic model
6. Panel regressions
7. Summary

Sentiment extraction from news data

There is a lot of news...

Dimensions of news

\square Source of news

- Official channels: government, federal reserve bank/central bank, financial institutions
- Internet: blogs, social media, message boards
\square Type of news
- Scheduled vs. non-scheduled
- Expected vs. unexpected
- Event-specific vs. continuous news flows

Data

Sentiment variables: distilled from Nasdaq articles
\square Terms of Service permit web scraping
\square Currently > 580k articles between October 2009 and January 2017
■ Data available at \|IRDC
\square Analysis is on data from 2012-2015

Number of articles per trading day

Black: \# articles on a trading day; grey: \# articles on weekend, holiday

Hourly distribution

In total we process
$\square 119,680$ articles, out of which 6,600 articles (i.e., 5.51%) are posted on non-trading days (excluded)
\square Out of 113,080 articles 50.26\% are posted during trading hours and 49.74\% during overnights.

Extracting sentiment from text

Sentiment analysis

Strategies:
\square Lexica projection : positive, neutral and negative
\square Machine learning : text classification

Based on:
\square Financial Sentiment Dictionary (LM) Loughran and McDonald (JF, 2011)

- Financial Phrase Bank (LM) Malo et al. (2014)

Unsupervised projection

Figure: Example of Text Numerisization
\square Many texts are numerisized via lexical projection
\square Goal: Accurate values for positive and negative sentiment

Lexicon-based sentiment

Consider sentence i in some document, positive sentiment Pos $_{i}$, positive lexicon entries $W_{j}(j=1, \ldots, J)$ and count frequency of those entries w_{j} :

$$
\operatorname{Pos}_{i}=n_{i}^{-1} \sum_{j=1}^{J} \mathbf{I}\left(W_{j} \in L\right) w_{j}
$$

with n_{i} : number of words in document i (e.g. sentence)
Equivalent calculation of negative sentiment Neg_{i}

Sentence-level polarity

For sentence i, we compute the sentence-level polarity by:

$$
\text { Pol }_{i}=\left\{\begin{aligned}
1, & \text { if } \mathrm{Pos}_{i}>\mathrm{Neg}_{i} \\
0, & \text { if } \mathrm{Pos}_{i}=\mathrm{Neg}_{i} \\
-1, & \text { if } \mathrm{Pos}_{i}<\mathrm{Neg}_{i}
\end{aligned}\right.
$$

Then, at the document level, we calculate,

$$
\begin{aligned}
& F P=n^{-1} \sum_{i=1}^{n} \mathbf{l}\left(P o l_{i}=1\right) \\
& F N=n^{-1} \sum_{i=1}^{n} \mathbf{l}\left(P o l_{i}=-1\right)
\end{aligned}
$$

where n is the number of sentences in the document.

Supervised projection

\checkmark Training data: Financial Phrase Bank of Malo et al. (2014)

- Sentence-level annotation of financial news
- Manual annotation of 5,000 sentences by 16 annotators incorporates human knowledge
- Example: "profit" with different semantic orientations
- Neutral in "profit was 1 million"
- Positive in "profit increased from last year"

Regularized linear models (RLM)

\square Training data $\left(X_{1}, y_{1}\right) \ldots\left(X_{n}, y_{n}\right)$ with $X_{i} \in \mathbb{R}^{p}$ and $y_{i} \in\{-1,1\}$
\square Linear scoring function $s(X)=\beta^{\top} X$ with $\beta \in \mathbb{R}^{p}$

Regularized training error:

$$
\begin{equation*}
n^{-1} \sum_{i=1}^{n} \underbrace{L\left\{y_{i}, s(X)\right\}}_{\text {Loss Function }}+\underbrace{\underbrace{R(\beta)}}_{\text {Regularization Term }} \tag{1}
\end{equation*}
$$

with hyperparameter $\lambda \geq 0$

RLM estimation

\square Optimize via Stochastic Gradient Descent More

- 5-fold cross validation More
\square Oversampling More
\square Choice of: $L(\cdot), R(\cdot), \lambda, X$ (n-gram range, features) ...
\square Three categories: one vs. all sub-models

Model accuracy - polarity

Supervised Learning
\square Chosen model: Hinge loss, L1 norm, $\lambda=0.0001, \ldots$
\square Mean accuracy (oversampling): 0.80
\square Mean accuracy (normal sample): 0.82

Lexicon-based
\square Mean accuracy BL: 0.58
\square Mean accuracy LM: 0.64

So, we adopt the supervised learning methodology hereafter.

Sentence-level and document-level polarity

After training: Each document i is split up into its sentences j and the corresponding score is calculated.

Yields a predictor for the polarity of sentence j, Pol $_{j}$:
For each document, these scores are aggregated to

$$
\begin{aligned}
& F P=n^{-1} \sum_{j=1}^{n} \mathbf{l}\left(P o l_{j}=1\right) \\
& F N=n^{-1} \sum_{j=1}^{n} \mathbf{l}\left(P o l_{j}=-1\right)
\end{aligned}
$$

where n is the number of sentences in the document.

Bullishness

$$
\begin{equation*}
B=\log \left\{\frac{1+n^{-1} \sum_{j=1}^{n} \mathbf{I}\left(\text { Pol }_{j}=1\right)}{1+n^{-1} \sum_{j=1}^{n} \mathbf{I}\left(\text { Pol }_{j}=-1\right)}\right\} \tag{2}
\end{equation*}
$$

by Antweiler and Frank (JF, 2004) with $j=1, \ldots, n$ sentences in document.
$\checkmark B_{i, t}$ accounts for bullishness of company i on day t
\square Consider $B N_{i, t}=-\mathbf{I}\left(B_{i, t}<0\right) B_{i, t}$

trading $B_{i d x}$

SM bullishness index in trading hours

overnight $B_{i d x}^{o n}$

SM bullishness index in overnight hours

trading $B N_{i d x}$

overnight $B N_{i d x}^{o n}$

SM negative bullishness index in overnight hours

How do trading-day/overnight articles differ?

\square Overnight information is more informative than trading-day information. Why?
\square Uncover the thematic coverage of the alternate news archives using a statistical topic model

Latent Dirichlet Allocation

LDA is a topic model suggested by Blei, Ng and Jordan (2003).
Structure:
\square Documents are random mixtures over latent topics.
\square A topic is a distribution over a fixed vocabulary (generated before the documents).
\checkmark A document may feature several topics.

LDA: overnight archive

				Topics and most frequent words			
	1	2	3	4	5	6	7
Topics	Dividends	Inv. stratg.	Earnings	Equities	Asset mgmt	Econ. Outlook	Charts
	dividend ex	stock reasons	earnings estimates	tale tape	fund income	stocks buy	average moving
	date	focus	follow	continue	municipal	oil	day
	scheduled	great	history	higher	nuveen	higher	cross
	corporation	investors	indicator	shares	dividend	week	bullish
	september	choice	reaction	focus	ex	best	notable
	june	value	sensitive	estimates	scheduled	news	makes
Top 15 words	march	jumps	revenues	march	date	data	critical
	november	session	beat	surge	high	lower	breaks
	august	growth	beats	strong	new	ahead	key
	trust	momentum	season	value	eaton	watch	level
	february	rises	surprise	great	vance	today	crosses
	december	right	revenue	growth	trust	china	alert
	july	adds	strong	falls	quality	dividend	crossove
	october	moves	misses	holdings	ii	growth	dow

LDA: overnight archive, ctd.

Topics and most frequent words

3	4	5	6	7	8	9	10
Earnings	Equities	Asset mgmt	Econ. Outlook	Charts	Anal. Roundup	Sectors	Market
earnings	tale	fund	stocks	average	analyst	update	market
stimates	tape	income	buy	moving	blog	sector	report
follow	continue	municipal	oil	day	growth	energy	pre
history	higher	nuveen	higher	cross	new	health	nasdaq
indicator	shares	dividend	week	bullish	data	care	index
reaction	focus	ex	best	notable	beat	financial	close
sensitive	estimates	scheduled	news	makes	shares	consumer	active
revenues	march	date	data	critical	energy	ung	composite
beat	surge	high	lower	breaks	high	uso	closes
beats	strong	new	ahead	key	week	technology	points
season	value	eaton	watch	level	miss	close	qqq
surprise	great	vance	today	crosses	loss	closing	aapl
revenue	growth	trust	china	alert	roundup	oil	bac
strong	falls	quality	dividend	crossover	revenues	partners	xiv
misses	holdings	ii	growth	dow	estimates	dis	tvix

LDA: trading-day archive

Topics and most frequent words

LDA: trading-day archive, ctd.

3	4	5	6	7	8	9	10
Funds etf	Option trades options	Charts	Sectors update	Dividends stock	Equities stocks	Earnings 2 indicator	Share types shares
detected	trading	moving	sector	reminder	buy	earnings	cross
big	using	day	energy	market	new	follow	yield
inflow	week	cross	financial	preferred	strong	history	series
inflows	interesting	bullish	technology	today	oil	reaction	mark
outflow	earn	notable	consumer	series	mid	sensitive	preferred
outflows	commit	critical	health	news	sell	corp	dma
notable	buy	makes	care	ex	etfs	corporation	dividend
large	annualized	breaks	mid	cumulative	european	company	today
noteworthy	available	key	market	dividend	adrs	international	mid
alert	begin	crosses	afternoon	interesting	day	group	cumulative
experiences	purchase	level	day	corp	news	systems	ex
ishares	october	crossover	laggards	roundup	market	technology	higher
etfs	january	alert	oil	redeemable	gains	holdings	afternoon
spdr	november	option	morning	non	higher	technologies	reminder

Option markets' reaction to sentiment

\square Fixed-effect panel regression with IV

$$
\begin{equation*}
O C_{i t}=\alpha+\gamma_{i}+\beta_{1} B_{i t}+\beta_{2}^{\top} X_{i t}+\varepsilon_{i t} \tag{3}
\end{equation*}
$$

$\square O C_{i t} \in\left\{\right.$ Skew $_{i t}$, IVol $_{i t}$, OTM $\left._{i t}\right\}$: option characteristic
$\square X_{i t}$: the vector of control variables More Information

Endogeneity

\square Sentiment for single stocks and reaction in options market could be due to a common cause.
\square Need to assert that NASDAQ news/articles are the only source of news.
\square Idea:

- Use lagged $B_{i, t-1}, B_{i d x, t-1}, B N_{i d x, t-1}$ as instruments

Cs and sentiment in trading hours

Table: Significance codes $\square 0.01 \square 0.05 \square 0.1 \square 0.01 \square 0.05 \square 0.1$

- IV regressions with constant, fixed effects, and FF1-5 factors
\square instrument: $B_{i, t-1}$
\square Blue (negative sign);Red (positive sign)

Cs and sentiment in trading hours

Table: Significance codes $\square 0.01 \square 0.05 \square 0.1 \square 0.01 \square 0.05 \square 0.1$
\square IV regressions with constant, fixed effects, and FF1-5 factors
\square instrument: $B_{i, t-1}, B_{i d x, t-1}, B N_{i d x, t-1}$
\square Blue (negative sign);Red (positive sign)

Option markets' reaction: summary

\square Standard endogeneity tests (Durbin, Hausman-Wu) reject that $B_{i t}$ is exogenous
\square Skew, IDol and OTM react to investor sentiment
\square Higher B results in a flatter Skew, lower OTM and IVOI
\square Higher $B_{i d x}$ results in a flatter Skew, lower OTM and IVOI
\square Higher $B N_{i d x}$ results in a steeper Skew, higher OTM and IVOI

Stock return predictability: Option variables v.s. sentiment index

Pooled OLS regressions

$$
\begin{aligned}
R_{i, t+1}=\alpha+\beta_{1} O C_{i t} & +\beta_{2} B_{i, t}+\beta_{3} B_{i d x, t}+\beta_{4} B N_{i d x, t} \\
& +\beta_{5} B_{i, t}^{o n}+\beta_{6} B_{i d x, t}^{o n}+\beta_{7} B N_{i d x, t}^{o n}+\beta_{8}^{\top} X_{i t}+\varepsilon_{i t}
\end{aligned}
$$

\square King et al. (JFQA, 2010) only use $O C_{i t}$
\square Incremental predictability from sentiment index

Stock return predictability: Option variables

Skew OTN. IDol

$$
R_{i, t+1}
$$

$$
R_{i, t+1}
$$

$$
R_{i, t+1}
$$

Table: Significance codes $\square 0.01 \square 0.05 \square 0.1 \square 0.01 \square 0.05 \square 0.1$
\square Includes FF1-5, lagged return, idiosyncratic and market volatility
\square Blue (negative sign);Red (positive sign)

Stock return predictability: Option variables and sentiment

Table: Significance codes $\square 0.01 \square 0.05 \square 0.1 \square 0.01 \square 0.05 \square 0.1$
\square Includes FF1-5, lagged return, idiosyncratic and market volatility
\square Blue (negative sign);Red (positive sign)

Stock return predictability ctd

\square Confirms Xing et al. (JFQA, 2010)'s results on the predictability of Skew
\square Stock-specific sentiment insignificant
\square Negative aggregate trading and overnight sentiment carry significant predictive content in presence of options market variables
\square Aggregate overnight sentiment is a good predictor too.

Decompose option variables: Sentiment-related v.s. non-public part

Extract sentiment component from option market variables.
\square Regress OC on sentiment and controls to get residuals:

$$
O C_{i, t}=\alpha+\theta^{\top} \mathbf{B}_{t}+\beta^{\top} X_{i, t}+\epsilon_{O C, t}^{i}
$$

$\square\left\{\right.$ Skew $_{i, t}$, Put $\left._{i, t}, I V_{i, t}\right\} \in O C_{i, t}$. $\mathbf{B}_{t}=\left(B_{i, t}, B_{i d x, t}, B N_{i d x, t}, B_{i, t}^{o n}, B_{i d x, t}^{o n} B N_{i d x, t}^{o n}\right)^{\top}$.
$\bullet \epsilon_{O C, t}^{i}$: residual term as a proxy for non-public information embedded in options data

Use residuals in the regression:

Pooled OLS regressions

$$
\begin{aligned}
R_{i, t+1}=\alpha+\beta_{1} \epsilon_{O C, t}^{i} & +\beta_{2} B_{i, t}+\beta_{3} B_{i d x, t}+\beta_{4} B N_{i d x, t} \\
& +\beta_{5} B_{i, t}^{o n}+\beta_{6} B_{i d x, t}^{o n}+\beta_{7} B N_{i d x, t}^{o n}+\beta_{8}^{\top} X_{i t}+\varepsilon_{i t}
\end{aligned}
$$

Stock return predictability: Option variables and sentiment

Table: Significance codes $\square 0.01 \square 0.05 \square 0.1 \square 0.01 \square 0.05 \square 0.1$
\square Includes FF1-5, lagged return, idiosyncratic and market volatility
\square Blue (negative sign);Red (positive sign)

Source of the predictability ctd

\square Sentiment-adjusted OCs remain significant
\square Thus some information embedded in options markets data contains information other than sentiment
\square Sentiment indices remain significant.
\checkmark Stock-specific bullishness not important.

Market consensus and stock returns

\square data yield a cross section of firm-level sentiment measures
\square observations are varying over time
\square how does dispersion of sentiment affect stock returns?

- low dispersion: cross-sectionally unequivocal sentiment
- high dispersion: cross-sectionally differing sentiment
\square implications unclear:
- Miller (1977): dispersion could lead be negatively related to returns if pessismists stay out of the market due to short sale constraints
- Varian (1985); Cujean and Hasler (2016): investors demand compensation, e.g. due to adverse selection.
\square mesasure dispersion by cross-sectional standard deviation and include in predictive regressions

Cross-section of B_{i}

Stock return predictability: Option variables and sentiment

Table: Significance codes $\square 0.01 \square 0.05 \square 0.1 \square 0.01 \square 0.05 \square 0.1$
\square Includes FF1-5, lagged return, idiosyncratic and market volatility
\square Blue (negative sign);Red (positive sign)

Market consensus and stock returns

\square sentiment dispersion commands a high positive risk premium in the presence of market/ idiosyncratic volatility
\square indeed sentiment dispersion and market volatility are only weakly correlated
\square investors demand compensation for holding assets when sentiment is dispersed
\square lends support to Varian (1985) / Cujean and Hasler (2016) among others

Trading

\checkmark Xing et al. (2010) show OC based trading strategies yield positive returns.
\square Do OC stratgies after partialling out sentiment do better?
\square Strategy:

- Group data of 97 firms into deciles according to OC / OC residuals
- create long-short portfolios on the extreme deciles.

	Trading strategies					
	Skew residual			Skew		
	Long-Short	$F F_{5}$	FF_{3}	Long-Short	$F F_{5}$	FF_{3}
Daily Return (in bp)	14.42	14.74	14.77	14.18	14.61	14.58
P value	0.002	0.002	0.002	0.004	0.004	0.004
Ann. Return	0.43	0.45	0.45	0.43	0.44	0.44
Daily Vol. (in bp)	86.25			92.79		
Ann. Vol.	0.14			0.15		
Daily Sharpe Ratio	0.17			0.15		
Ann. Sharpe Ratio	3.18			2.91		
	$I V$ residual			IV		
	Long-Short	$F F_{5}$	FF_{3}	Long-Short	$F F_{5}$	$F F_{3}$
Daily Return (in bp)	12.41	12.54	12.57	6.79	7.14	7.26
P value	0.009	0.010	0.010	0.181	0.121	0.141
Ann. Return	0.36	0.37	0.37	0.19	0.20	0.20
Daily Vol. (in bp)	88.67			99.28		
Ann. Vol.	0.14			0.16		
Daily Sharpe Ratio	0.14			0.07		
Ann. Sharpe Ratio	2.59			1.18		
	Put residual			Put		
	Long-Short	$F F_{5}$	FF_{3}	Long-Short	$F F_{5}$	FF_{3}
Daily Return (in bp)	7.43	7.86	7.70	6.52	6.92	6.87
P value	0.098	0.090	0.098	0.178	0.118	0.140
Ann. Return	0.20	0.22	0.21	0.18	0.19	0.19
Daily Vol. (in bp)	85.66			94.18		
Ann. Vol.	0.14			0.15		
Daily Sharpe Ratio	0.09			0.07		
Ann. Sharpe Ratio	1.51			1.19		

Summary

\square We connect investor sentiment distilled from public news with equity and equity options markets
\square Options markets react to firm-level sentiment and aggregate sentiment
\checkmark Relevance of inside information in option data after partialling out sentiment information from option data.
\square Negative bullishness indices are important regressors in predictive regressions.
\square Market consensus carries a positive risk premium.
\square OC residual-based trading strategies slightly outperform pure OC based strategies.
\square Results robust to lexicon projection techniques.

Textual Sentiment, Option Information and Stock Return Predictability

Cathy Yi-Hsuan Chen
Matthias R. Fengler
Wolfgang Karl Härdle
Yanchu Liu

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin University of St. Gallen, Switzerland
 Lingnan College, Sun Yat-sen University, China http://lvb.wiwi.hu-berlin.de http://www.mathstat.unisg.ch/ http://www.lingnan.sysu.edu.cn

Bibliography

Bibliography

Antweiler, W. and Frank, M. Z.
Is All That Talk Just Noise?
J. Finance, 2004
(Dennis, P. and S. Mayhew. Risk-Neutral Skewness: Evidence from Stock Options J. Financial Quant. Anal., 2002

Fama, E. and K. French.
A Five-Factor Asset Pricing Model
J. Financial Econom., 2015

围 Garman, M. and Klass, M.
On the Estimation of Security Price Volatilities from Historical Data J. Bus., 1980

圊 Han, B.
Investor Sentiment and Option Prices
Rev. Financial Stud., 2008
[- Härdle, W. K. and Lee, Y. J. and Schäfer D. and Yeh Y. R.
Variable Selection and Oversampling in the Use of Smooth Support
Vector Machines for Predicting the Default Risk of Companies
J. Forecast., 2009

围 Hu, M. and Liu, B.
Mining and Summarizing Customer Reviews 10th ACM SIGKDD, 2004
R Loughran, T. and McDonald, B.
When is a liability not a liability?
J. Finance, 2011

圊 Malo，Pekka and Sinha，Ankur and Korhonen，Pekka and Wallenius， Jyrki and Takala，Pyry
Good debt or bad debt
J．Assoc．Inf．Sci．Technol．， 2014
雷 Wilson，T．and Wiebe，J．and Hoffmann，P．
Recognizing Contextual Polarity in Phrase－Level Sentiment Analysis HLT－EMNLP， 2005
國 Xing，Y．，X．Zhang and R．Zhao．
What does the Individual Option Volatility Smirk Tell Us about
Future Equity Returns
J．Financial Quant．Anal．， 2010
囯 Zhang，J．，Chen C．Y．，Härdle，W．K．and Bommes，E．
Distillation of News into Analysis of Stock Reactions
J．Bus．Econom．Statist．， 2016

Appendix

Correlation - Positive Sentiment

Figure: Monthly correlation between positive sentiment: BL and LM , BL and MPQA, LM and MPQA. Source: Zhang et al. (2016)

Correlation - Negative Sentiment

Figure: Monthly correlation between negative sentiment: BL and LM, BL and MPQA, LM and MPQA. Source: Zhang et al. (2016) Back

Tagging Example - BL

... McDonald's has an obesity problem that continues to get worse. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007 . And while more offerings might seem like a good thing, large menus result in slower service and more flare-ups between franchisees and the corporation. Bloated menus raise inventory costs for smaller franchisees and lead to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller concern for the company overall. ...

3 positive words and 5 negative words
Q TXTMcDbm
Article source

Tagging Example - LM

... McDonald's has an obesity problem that continues to get worse. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007. And while more offerings might seem like a good thing, large menus result in slower service and more flare-ups between franchisees and the corporation. Bloated menus raise inventory costs for smaller franchisees and lead to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller concern for the company overall. ...

1 positive word and 4 negative words
a TXTMcDIm

Web Scraping

\square Databases to buy?
\square Automatically extract information from web pages
\square Transform unstructured data (HTML) to structured data
\square Use HTML tree structure to parse web page
\square Legal issues

- Websites protected by copyright law
- Prohibition of web scraping possible
- Comply to Terms of Service (TOS)

Natural Language Processing (NLP)

\square Text is unstructured data with implicit structure

- Text, sentences, words, characters
- Nouns, verbs, adjectives, ..
- Grammar
\square Transform implicit text structure into explicit structure
\square Reduce text variation for further analysis
\checkmark Python Natural Language Toolkit (NLTK)
\square a TXTnlp

Tokenization

\checkmark String
''McDonald's has its work cut out for it. Not only are sales falling in the U.S., but the company is now experiencing problems abroad.''
\square Sentences
''McDonald's has its work cut out for it.'',
''Not only are sales falling in the U.S., but the company is now experiencing problems abroad.''
\square Words

```
''McDonald'', '''s'', ''has'', ''its'', ''work'', ''cut'',
''out', ...
```


Negation Handling

\square "not good" $=$ " good"
\square Reverse polarity of word if negation word is nearby
\square Negation words
"n't", "not", "never", "no", "neither", "nor", "none"

Part of Speech Tagging (POS)

\square Grammatical tagging of words

- dogs - noun, plural (NNS)
- saw - verb, past tense (VBD) or noun, singular (NS)
\square Penn Treebank POS tags
\square Stochastic model or rule-based

Appendix

Lemmatization

\square Determine canonical form of word

- dogs - dog
- saw (verb) - see and saw (noun) - saw
\square Reduces dimension of text
\square Takes POS into account
- Porter stemmer: saw (verb and noun) - saw

Loss Functions for Classification

\square Logistic: Logit

$$
\begin{equation*}
L\{y, s(X)\}=\log (2)^{-1} \log [1+\exp \{-s(X) y\}] \tag{4}
\end{equation*}
$$

\square Hinge: Support Vector Machines

$$
\begin{equation*}
L\{y, s(X)\}=\max \{0,1-s(X) y\} \tag{5}
\end{equation*}
$$

Regularization Term

\checkmark L2 norm

$$
\begin{equation*}
R(\beta)=2^{-1} \sum_{i=1}^{p} \beta_{i}^{2} \tag{6}
\end{equation*}
$$

\square L1 norm

$$
\begin{equation*}
R(\beta)=\sum_{i=1}^{p}\left|\beta_{i}\right| \tag{7}
\end{equation*}
$$

Appendix

RLM Example

Sentence 1: "The profit of Apple increased." Sentence 2: "The profit of the company decreased."

$$
y=(1,-1) \quad(8) \quad X=\begin{gather*}
\text { the } \tag{9}\\
\text { profit } \\
\text { of } \\
\text { Apple } \\
\text { increased } \\
\text { company } \\
\text { decreased }
\end{gather*}\left(\begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
1 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)
$$

k-fold Cross Validation (CV)

\checkmark Partition data into k complementary subsets
\square No loss of information as in conventional validation
\square Stratified CV: equally distributed response variable in each fold

Figure: 3-fold Cross Validation

Oversampling

\checkmark Härdle (2009) Trade-off between Type I and Type 2 error in classification Emror types
\square Balance size of neutral sentences and ones with polarity in sample
\square Duplicate sentences within folds of stratified cross validation until the sample is balanced

Classification Error Rates

\square Type I error rate $=\mathrm{FP} /(\mathrm{FP}+\mathrm{TP})$
\square Type II error rate $=\mathrm{FN} /(\mathrm{FN}+\mathrm{TP})$
\square Total error rate $=(\mathrm{FN}+\mathrm{FP}) /(\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN})$
with TP as true positive, TN as true negative, FP as false positive and FN as false negative.

Back

Stochastic Gradient Descent (SGD)

\checkmark Approximately minimize loss function

$$
\begin{equation*}
L(\theta)=\sum_{i=1}^{n} L_{i}(\theta) \tag{10}
\end{equation*}
$$

\square Iteratively update

$$
\begin{equation*}
\theta_{i}=\theta_{i-1}-\eta \frac{\partial L_{i}(\theta)}{\partial \theta} \tag{11}
\end{equation*}
$$

SGD Algorithm

1. Choose learning rate η
2. Shuffle data
3. For $i=1, \ldots, n$, do:

$$
\theta_{i}=\theta_{i-1}-\eta \frac{\partial L_{i}(\theta)}{\partial \theta}
$$

Repeat 2 and 3 until approximate minimum obtained.

SGD Example

$X \sim \mathrm{~N}(\mu, \sigma)$ and x_{1}, \ldots, x_{n} as randomly drawn sample

$$
\min _{\theta} n^{-1} \sum_{i=1}^{n}\left(\theta-x_{i}\right)^{2}
$$

Update step

$$
\theta_{i}=\theta_{i-1}-2 \eta\left(\theta_{i-1}-x_{i}\right)
$$

Optimal gain

Set $2 \eta=1 / i$ and obtain $\theta_{n}=\bar{x}$ with \bar{x} as sample mean.

SGD Example ctd

Evaluation Supervised Learning

	Pred			
True	-1	0	1	Total
-1	$\mathbf{1 , 9 9 2}$	289	254	2,535
0	96	$\mathbf{2 , 1 3 4}$	305	2,535
1	105	469	$\mathbf{1 , 9 6 1}$	2,535
Total	2,193	2,892	2,520	7,605
Precision	0.91	0.74	0.78	
Recall	0.78	0.84	0.77	

Table: Confusion Matrix - Supervised Learning with Oversampling Sentiment and Options

Evaluation Unsupervised Learning

Pred True	-1	0	1	Total
-1	213	289	12	514
0	200	2,187	148	2,535
1	111	772	285	1,168
Total	524	3,248	445	4,217
Precision	0.41	0.67	0.64	
Recall	0.41	0.86	0.24	

Table: Confusion Matrix - Lexicon Projection
Sentiment and Options

LDA - details

Assumed process of generating a document:

1. Choose number of words N (randomly, deterministically).
2. Draw a distribution over K topics:

$$
\theta \sim \operatorname{Dir}(\alpha)
$$

3. For each of the N words w_{n} :
3.1 Choose a topic from $z_{n} \sim M(\theta)$
3.2 Choose a word from $p\left(w_{n} \mid z_{n}, \beta\right)$, a multinomial probability conditional on topic z_{n} parametrized by

$$
\beta=\left[\beta_{i j}\right]=p\left(w^{j}=1 \mid z^{i}=1\right)
$$

Graphical representation of the LDA

Source: Blei et al. (2003)

Inference

\square The estimation problem is to find the hidden topic structure over the set of documents given observed words.
\square Need to approximate the posterior distribution, i.e., the conditional distribution of topics, topic proportions, and topic assignments given observed words.
\square Posterior computation is achieved by Gibbs sampling, see Blei et al. (2012) for details.

Appendix

A plot of Skew

Figure: Skew of Apple Inc. in the sample period

Control Variables

Ret $_{i t}$	- Stock i's contemporous return
Volu $_{i t}$	- Stock i's trading volume
OC	- option characteristics of stock i
VIX $_{t}$	- CBOE VIX More Information
and Fama-French 5 factors (Fama and French (JFE, 2015))	

More Information

Fama-French 5 factors

FF1 - the Mkt factor: excess return on the market index
FF2 - the SMB factor: (Small Minus Big) the average return on the nine small-stock portfolios minus that on the nine big-stock portfolios.
FF3 - the HML factor: (High Minus Low) the average return on the two value-stock portfolios minus that on the two growth-stock portfolios

Fama-French 5 factors ctd

FF4 - the RMW factor: (Robust Minus Weak) the average return on the two robust operating profitability portfolios minus that on the two weak operating profitability portfolios
FF5 - the CMA factor: (Conservative Minus Aggressive) the average return on the two conservative investment portfolios minus that on the two aggressive investment portfolios

VIX

\square Implied volatility
\square Measures market expectation of S\&P 500
\square Calculated by Chicago Board Options Exchange (CBOE)
\square Measures 30-day expected volatility
\square Calculated with put and call options with more than 23 days and less than 37 days to expiration

Variables Definitions

\square Skew: difference between volume-weighted average of implied volatilities (IVs) of OTMP and ATMC:

$$
S K E W_{i t}=I V_{i t}^{O T M P}-I V_{i t}^{A T M C}
$$

Example
\square OTMP: a put with moneyness between 0.8 and 0.95
\square ATMC: a call with moneyness between 0.95 and 1.05
\square Moneyness: ratio of the strike price to the stock price
\square Use delta as moneyness

Variables Definitions ctd

$\square \mathrm{IVol}$: volume-weighted average of IVs of all the ATM options
\square OTM: volume-weighted average of prices of OTM put options (moneyness between 0.8 and 0.95) relative to stock price
$\square B$: degree of bullishness defined in (4), positive (negative) value implies positive (negative) sentiment
$\square B N=-\mathbf{I}(B<0) B$, indicating negative sentiment

