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Numerical methods for optimal control – 20%
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Model predictive control – 15 %

Optimal control of ODE-systems and applications – 15%
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More information: ORCOS website: https://orcos.tuwien.ac.at/home/



Plan of the talk

1. “Coercive” problems.

2. “Affine” problems.



Generalized equations

0 ∈ G (x),

where G : X ⇒ Y , X ,Y – metric (Banach) spaces.

Examples:

1. For X = IRn, K ⊂ X – closed, f : X → IR – Fréchet-differentiable

min
x∈K

f (x) −→ 0 ∈ ∇f (x) + NK (x).

2. Robinson (1980): 0 ∈ f (x) + F (x) , with F (x) – set-valued mapping.

3. Differential variational inequalities (e.g. Pang and Steward, 2008):

ẋ(t) = g(x(t), u(t)),

0 ∈ h(x(t), u(t)) + NK (u(t)),

0 = Γ(x(0), x(T )).

x : [0,T ]→ IRn, u[0,T ]→ IRm.



minimize

∫ T

0
l(y(t), u(t))dt

ẏ(t) = g(y(t), u(t)), y(0) = y0, u(t) ∈ U t ∈ [0,T ].

Hamiltonian: H(y , p, u) = l(y , u) + pTg(y , u)

Optimality conditions:
ẏ(t) = ∂pH(y(t), p(t), u(t)), y(0) = y0,
ṗ(t) = −∂yH(y(t), p(t), u(t)), p(T ) = 0,

0 ∈ ∂uH(y(t), p(t), u(t)) + NU(u(t)),

Usual spaces: u ∈ L∞([0,T ]; IRm), x = (y , p) ∈W0
1,∞([0,T ]; IR2n).

Reformulation: Differential Generalized Equation (DGE):

ẋ = g(x , u),

0 ∈ f (x , u) + F (u),



Differential Generalized Equation (DGE):

u ∈ L∞([0,T ]; IRm), x = (y , p) ∈W0
1,∞([0,T ]; IR2n).

ẋ = g(x , u),

0 ∈ f (x , u) + F (u),

where
f (x , u) = ∂uH(y , p, u), F (u) = NU (u),

with U = {u ∈ L∞ : u(t) ∈ U}, and for u ∈ L∞

NU (u) = {w ∈ L∞ | w(t) ∈ NU(u(t)) for a.e. t ∈ [0,T ]}.

NU (u) is not the normal cone to U !

f (x , u)(t) = f (x(t), u(t)), F (u)(t) = F (u(t)).



A concept of (Lipschitz) regularity

G : X ⇒ Y , X ,Y – metric spaces.

Definition. G is strongly metrically regular (SMR) at x̄ for ȳ ∈ G (x̄) if
there are balls IBa(x̄) and IBb(ȳ), a, b > 0 such that the mapping

IBb(ȳ) 3 y → G−1(y) ∩ IBa(x̄)
is single-valued and Lipschitz continuous (with Lipschitz constant κ).

Here G−1(y) := {x : y ∈ G (x)}.

SMR means that G−1 has a Lipschitz localization:

The weaker property of “metric regularity” will not be discussed here...



A Ljusternik-Graves-type theorem (e.g. Dontchev and Rockafellar - 2013)

Theorem

Let a, b, and κ be positive scalars such that G is strongly metrically
regular at x̄ for ȳ with neighborhoods IBa(x̄) and IBb(ȳ) and constant κ.
Let µ > 0 be such that κµ < 1 and let κ′ > κ/(1− κµ). Then for every
positive α and β such that

α ≤ a/2, 2µα + 2β ≤ b and 2κ′β ≤ α

and for every function γ : X → Y satisfying

‖γ(x̄)‖ ≤ β and ‖γ(x)− γ(x ′)‖ ≤ µ‖x − x ′‖ ∀ x , x ′ ∈ IB2α(x̄),

the mapping y 7→ (γ +G )−1(y)∩ IBα(x̄) is a Lipschitz continuous function
on IBβ(ȳ) with Lipschitz constant κ′. (Hence γ + G is SMR at x̄ for ȳ .)



Qualitative consequences in the case of DGE

R. Cibulka, A. Dontchev, M. Krastanov, V.V., SIAM J. Contr. Opt., (2017(8))

Let (x̄(·), ū(·)) be a solution of the DGE

ẋ(t) = g(x(t), u(t)),

0 ∈ f (x(t), u) + F (u(t)).

Assumption (*): ∀ (t, u) ∈ cl gr ū the mapping

IRm 3 v 7→ Wt,u(v) := f (x̄(t), u) + ∂uf (x̄(t), u)(v − u) + F (v)

is SMR at u for 0.

Theorem

∃a, b, κ > 0: ∀(t, u) ∈ cl gr ū the mapping Wt,u(·) is SMR at u for 0 with
parameters a, b, κ. That is, the mapping IBb(0) 3 z 7→ W−1

t,u (z) ∩ IBa(u)
is single-valued and Lipschitz with constant κ.



Theorem

If Assumption (*) is fulfilled then the mapping

(x , u) 7→
(

ẋ − g(x , u)
f (x , u)

)
+

(
0

F (u)

)
is SMR at (x̂ , û) for 0.

Recall: u ∈ L∞([0,T ]; IRm), x = (y , p) ∈W0
1,∞([0,T ]; IR2n)

—————————————————————————————-

Other consequences:

Conditions for Lipschitz continuity of ū ...

Convergence of discrete approximations and “path-following” methods ...
(more detailed analysis in
A. Dontchev, M. Krastanov, R.T. Rockafellar, V.V., SIAM J. Contr. Optim., 2013.)

Extensions for non-differentiable Lipschitz functions f (in terms of the
strict prederivative of f ): R. Cibulka, A. Dontchev, V.V., SIAM J. Contr. Optim., 2016.



Newton-type methods

R. Cibulka, A. Dontchev, J. Preininger, T. Roubdal, V.V., Journal of Convex Analysis (2018)

X and Y – Banach spaces. Consider the equation f (x) = 0, f : X → Y
with a Fréchet-differentiable f .

Newton method: Generate {xk} such that
f (xk) + ∂f (xk)(xk+1 − xk) = 0, x0 – given.

Assumption for (quadratic) convergence: a solution x̄ exists, ∂f (x̄) is
invertible, and ‖x0 − x̂‖ is small enough.

Kantorovich version: two differences:
(i) the invertibility assumption is posed for ∂f (x0), some “checkable”
assumptions are posed. Then: a solution x̄ exists and the convergence is
quadratic.

(ii) One can modify the iterations as
f (xk) + ∂f (x0)(xk+1 − xk) = 0, x0 – given.

Then the convergence is linear: ‖xk − x̂‖ ≤ αk‖x0 − x̂‖, α ∈ (0, 1).



Further extensions:

– Bartle (1955): f (xk) + ∂f (zk)(xk+1 − xk) = 0, x0 – given. Any zk – ...

– Qi and Sun (1993): f can be only Lipschitz; take Ak ∈ ∂̂f (xk ) – the Clarke

generalized Jacobian ...



Our problem: 0 ∈ f (x) + F (x), where f : X → Y , F : X ⇒ Y ,
X ,Y – Banach spaces.

Newton-Kantorovich iterations:

f (xk) + Ak(xk+1 − xk) + F (xk+1) 3 0,

where Ak = Ak(x0, . . . , xk) ∈ L(X ,Y ), together with some
y0 ∈ f (x0) + F (x0) have the following properties:

(i) for very k the mapping

x 7→ f (x0) + Ak(x − x0) + F (x)

is SMR at x0 for y0 with a constant κ and neighborhoods IBa(x0), IBb(y0);

(ii) ‖f (x)− f (xk)− Ak(x − xk)‖ ≤ ω(‖x − xk‖) ‖x − xk‖ ∀ x ∈ IBa(x0),
where ω : [0, a]→ [0, δ], δ > 0.



Theorem

Assume that κδ < 1 and ‖y0‖ < (1− κδ) min{ aκ , b}.
Then the Newton-Kantorovich method generates a unique sequence in
IBa(x0), and it linearly converges to a solution x̄:

‖xk − x̄‖ < (κδ)ka. (1)

If limξ→0 ω(ξ) = 0, then the sequence {xk} is superlinearly convergent:
there exist sequences of positive numbers {εk} and {ηk} such that
‖xk − x̄‖ ≤ εk and εk+1 ≤ ηkεk for all sufficiently large k, and ηk → 0.

If there exists a constant L > 0 such that ω(ξ) ≤ min{δ, Lξ} for each
ξ ∈ [0, a], then the convergence of {xk} is quadratic: there exists a
sequence of positive numbers {εk} such that ‖xk − x̄‖ ≤ εk and
εk+1 ≤ αL

δ ε
2
k for all sufficiently large k.

Special cases: Ak = ∂f (x0) – Kantorovich
Ak = ∂f (xk) – Newton
Other choices of Ak – extended Bartle.
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Strong Metric Sub-Regularity (SMs-R)

(Cibulka, Dontchev, Kruger (2017(8)))

G : X ⇒ Y , X ,Y – metric spaces.

Definition. G is strongly metrically sub-regular (SMs-R) at x̄ for ȳ ∈ G (x̄)
if there are κ > 0 and balls IBa(x̄) and IBb(ȳ), a, b > 0, such that

G−1(y) ∩ IBa(x̄) ⊂ IBκ dist(y ,ȳ)(x̄) ∀ y ∈ IBb(ȳ).

This property is enough for many contexts: error analysis of
approximations; Newton method.



Newton method for 0 ∈ f (x) + F (x), where f : X → Y , F : X ⇒ Y ,
X ,Y – Banach spaces, f has Lipschith Fréchet derivative.

Newton iterations:

f (xk) + ∂f (xk)(xk+1 − xk) + F (xk+1) 3 0.

Theorem

Assume that linearized mapping x → f (x̄) + ∂f (x̄)(x − x̄) + F (x) is
SMs-R at x̄ for 0. Then there exists a neighborhood O of x̄ such that if a
sequence {xk} generated by the Newton method has a tail in O, then xk is
quadratically convergent to x̄.

Existence of such a Newton sequence is not granted!



IMPORTANT: When the general results involving SMR or SMs-R are used
for

minimize

∫ T

0
l(y(t), u(t)) d

ẏ(t) = g(y(t), u(t)), y(0) = y0, u(t) ∈ U t ∈ [0,T ],

hence for the optimality conditions
ẏ(t) = ∂pH(y(t), p(t), u(t)), y(0) = y0,
ṗ(t) = −∂yH(y(t), p(t), u(t)), p(T ) = 0,

0 ∈ ∂uH(y(t), p(t), u(t)) + NU(u(t)),

the space specifications are always u ∈ L∞([0,T ]; IRm),

x = (y , p) ∈W0
1,∞([0,T ]; IR2n).

The conditions for SMR and SMs-R involve coercivity!

This spaces are not appropriate for problems with discontinuous optimal
controls.



Affine problems

min

{∫ T

0
[g0(x(t)) + g(x(t))u(t))]dt + Φ(x(T ))

}
.

ẋ = f0(x) + u f (x), x(0) – given, u(t) ∈ U = [0, 1].

Optimality system:

0 = ẋ − f0(x) + u f (x),

0 = ṗ + pT∂x(f0(x) + u f (x)) + ∂x(g0(x) + u g(x)),

0 ∈ g(x(t)) + p(t)>f (x(t)) + NU(u(t)),

0 = p(T )− ∂Φ(x(T )).

What are the appropriate spaces?
Under what conditions we have SMR or SMs-R?
Can we apply the Newton method?



Consider the linearized problem:

minimize J(x , u)
subject to ẋ(t) = A(t)x(t) + B(t)u(t) + d(t), x(0) = x0,

u(t) ∈ U := [−1, 1],

where

J(x , u) := Φ(x(T )) +

∫ T

0

(
1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
dt.

Optimality system:

0 ∈ G (x , p, u) :=


ẋ − Ax − Bu − d

ṗ + A>p + Wx + Su
B>p + S>x + NU (u)
p(T )− ∂Φ(x(T ))

 ,

NU (u) = {w ∈ L∞ | w(t) ∈ NU(u(t)), t ∈ [0,T ]}.

Spaces:

X := W 1,1
x0
×W 1,1 × L1, Y := L1 × L1 × L∞ × Rn



Sufficient conditions for SMs-R (J. Preininger, T. Scarinci, V.V., 2017(?))

(A1) Continuous differentiability of the data; W (t) symmetric; Φ –
differentiable with Lipschitz derivative.

(A2) The functional J(x , u) is convex on the set of admissible
control-trajectory pairs.

(A3) For a given reference solution (x̂ , p̂, û) there are numbers α, τ > 0
such that at every zero s of the function

Hu(x̂(t), p̂(t), û(t)) = σ̂(t) = B(t)>p̂(t) + S(t)>x̂(t)

it holds that
|σ̂(t)| ≥ α|t − s| ∀ t ∈ [s − τ, s + τ ] ∩ [0,T ].

Theorem

∃c > 0 such that ∀y ∈ Y there exists a solution (x , p, u) ∈ X of
y ∈ G (x , p, u) and for every such (x , p, u)

‖x − x̂‖1,1 + ‖p − p̂‖1,1 + ‖u − û‖1 ≤ c‖y‖.

(W. Alt, U.Felgenhauer, M. Seidenschwanz, 2016-17)



A (surprising) consequence: (J. Preininger, T. Scarinci, V.V., 2017)

Theorem

Under conditions a bit stronger than (A1)–(A3) for the linearized problem
at the solution point (x̂ , p̂, û), the sequence of any Newton iterates
starting from any initial point (x0, p0, u0) sufficiently close to (x̂ , p̂, û)
converges quadratically to (x̂ , p̂, û).

A similar theorem under a number of more restrictive conditions - in
[U.Felgenhauer (2017)].

A numerical problem: how to solve the linear-quadratic problem

minimize Φ(x(T )) +

∫ T

0

(
1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
dt,

subject to ẋ(t) = A(t)x(t) + B(t)u(t) + d(t), x(0) = x0,
u(t) ∈ U := [−1, 1], or U := {−1, 1}



A (surprising) consequence: (J. Preininger, T. Scarinci, V.V., 2017)

Theorem

Under conditions a bit stronger than (A1)–(A3) for the linearized problem
at the solution point (x̂ , p̂, û), the sequence of any Newton iterates
starting from any initial point (x0, p0, u0) sufficiently close to (x̂ , p̂, û)
converges quadratically to (x̂ , p̂, û).

A similar theorem under a number of more restrictive conditions - in
[U.Felgenhauer (2017)].

A numerical problem: how to solve the linear-quadratic problem

minimize Φ(x(T )) +

∫ T

0

(
1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
dt,

subject to ẋ(t) = A(t)x(t) + B(t)u(t) + d(t), x(0) = x0,
u(t) ∈ U := [−1, 1], or U := {−1, 1}



A new discretization scheme

V.V., 1989

A. Pietrus, T. Scarinci, V.V. (SIAM J. CO, 2017(8))

T. Scarinci and V.V. (Comput. Optim. and Appl., 2017)



Basic idea: {ti}Ni=0 a mesh with step h on [τ,T ]. Consider wi = (ui , vi ),

ui =
1

h

∫ ti+1

ti

u(t) dt, vi =
1

h2

∫ ti+1

ti

(t − ti )u(t) dt

as discrete controls associated with u(t) ∈ {0, 1}. When u(t) ∈ {0, 1} or
u(t) ∈ [0, 1], it holds that for wi = (ui , vi )

wi ∈ Z := Aumann-

∫ 1

0

(
1
s

)
[−1, 1]ds.

Explicit representation:
-1 -0.5 0 0.5 1 1.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Z = {(α, β) : α ∈ [−1, 1], β ∈ [ϕ1(α), ϕ2(α)]} ,

where ϕ1(α) := 1
4

(
−1 + 2α + α2

)
and ϕ2(α) := 1

4

(
1 + 2α− α2

)
.



Conversely, there is a mapping Φh : ZN → {0, 1} such that
∀w := (w0, . . . ,wN−1) = ((u0, v0), . . . , (uN−1, vN−1)) ∈ ZN

ui =
1

h

∫ ti+1

ti

Φh(w)(t) dt, vi =
1

h2

∫ ti+1

ti

(t − ti )Φh(w)(t) dt.

Φh(w)(t) ∈ {0, 1} has 0, 1 or at most 2 jumps in every interval [ti , ti+1].

Then we use the 2nd order Volterra-Fliess series to approximate the
dynamics and the objective functional.

Under (A1)–(A3), for any solution wh of the discrete problem it holds that
‖Φh(wh)− û‖1 ≤ ch2.

Second order accuracy cannot be provided by any Runge-Kutta scheme!
Schemes with second order accuracy (and still “nice” discretized problem)
were not known so far.



Next numerical problem: How to solve the resulting mathematical
programming problem?

The discretized problem has the general form

min
w∈K

f (w),

where f is a linear-quadratic function (not necessarily convex) and K is
strongly convex.

The paper [V.V., P. Vuong, 2018(?)] presents linear convergence results
for the GPM and the CGM for such problems in Hilbert spaces.

More specialized methods taking into account the structure of the
constraints:

K = Z × Z . . .× Z

and of the objective function – future work.



Strong Metric Regularity of affine problems

min

{∫ T

0
[g0(x(t)) + g(x(t))u(t))]dt + Φ(x(T ))

}
.

ẋ = f0(x) + u f (x), x(0) – given, u(t) ∈ U = [0, 1].

Linearized optimality system:

0 ∈ G (x , p, u) :=


ẋ − Ax − Bu − d

ṗ + A>p + Wx + Su
B>p + S>x + NU (u)
p(T )− ∂Φ(x(T ))

 ,

NU (u) = {w ∈ L∞ | w(t) ∈ NU(u(t)), t ∈ [0,T ]}.

SMR in the spaces

X := W 1,1
x0
×W 1,1 × L1, Y := L1 × L1 × L∞ × Rn

“never” holds!!!



Strong bi-Metric Regularity of affine problems (Sbi-MR

General: G : X ⇒ Y , X ,Y – metric spaces with metric dX and dY .

Definition. G is strongly metrically regular (SMR) at x̄ for ȳ ∈ G (x̄) if
there are balls IBa(x̄) and IBb(ȳ), a, b > 0 such that the mapping

IBb(ȳ) 3 y → G−1(y) ∩ IBa(x̄)
is single-valued and Lipschitz continuous (with Lipschitz constant κ):

dX (G−1(y) ∩ IBa(x̄),G−1(y ′) ∩ IBa(x̄)) ≤ κdY (y , y ′) ∀y , y ′ ∈ IBb(ȳ).

The bi-metric modification:

M. Quincampoix and V.V., SIAM J. CO (2013)

J. Preininger, T. Scarinci, and V.V., (2018)(??)



Explanation for the two metrics

Consider dim(u) = 1, U = [−1, 1], σ̂(t) = −1
2 + t, t ∈ [0, 1].

The solution of y(t) ∈ σ̂(t) + NU(u(t)) is

u(t) = u[y ](t) := sgn(σ̂(t)− y(t)) whenever σ̂(t)− y(t) 6= 0,
û(t) = u[0](t).

When do we have (for some κ and b > 0)

‖u[y1]− u[y2]‖1 ≤ κdY (y1, y2) ∀y1, y2 : dY (yi , 0) ≤ b.

What is the metric space Y ⊂ L∞?



Here
‖u[y1]− u[y2]‖1 ≈ 2b >> κε = κ‖y1 − y2‖∞,

thus with Y = L∞ the mapping u → σ̂ + NU(u) is not SMR at û for 0!



However, for y1, y2 ∈ Y = W 1,∞ we have

‖u[y1]− u[y2]‖1 ≤
8

3
‖y1 − y2‖1,∞

whenever ‖yi‖1,∞ ≤ b := 1
4 .

Even more, for y1, y2 ∈W 1,∞

‖u[y1]− u[y2]‖1 ≤
8

3
‖y1 − y2‖∞.

Thus the Lipschitz property is with respect to the L∞-norm for y , but the
disturbances y should be close to the reference point ŷ = 0 in the larger
norm of W 1,∞.

This explains the necessity of using two norms for the disturbances.
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(X , dX ), (Y , dY ) and (Ỹ , d̃Y ) – metric spaces, with Ỹ ⊂ Y and dY ≤ d̃Y
on Ỹ .

Definition

The map G : X ⇒ Y is strongly bi-metrically regular (relative to Ỹ ⊂ Y )
at x̄ ∈ X for ȳ ∈ Ỹ with constants ς ≥ 0, a > 0 and b > 0 if
(x̄ , ȳ) ∈ graph(Φ) and the following properties are fulfilled:

1 the mapping B
Ỹ

(ȳ ; b) 3 y 7→ G−1(y) ∩ BX (x̄ ; a) is single-valued

2 for all y , y ′ ∈ B
Ỹ

(ȳ ; b),

dX (G−1(y) ∩ BX (x̄ ; a),G−1(y ′) ∩ BX (x̄ ; a)) ≤ ςdY (y , y ′).



Lyusternik-Graves-type theorem (J. Preininger, T. Scarinci, V.V., 2017(?))

Theorem

Let the metric space X be complete, let Y be a subset of a linear space
and let both metrices dY and d̃Y in Y and Ỹ ⊂ Y , respectively, be
shift-invariant. Let G : X ⇒ Y be strongly bi-metrically regular at x̄ for ȳ
with constants κ, a, b. Let µ > 0 and κ′ be such that κµ < 1 and
κ′ ≥ κ/(1− κµ). Then for every positive a′, b′, and γ such that

a′ ≤ a, b′ + γ ≤ b, κb′ ≤ (1− κµ)a′,

and for every function ϕ : X → Ỹ such that

dY (g(x̄), 0) ≤ b′, d̃Y (g(x), 0) ≤ γ ∀x ∈ BX (x̄ , a′),

and
dY (g(x), g(x ′)) ≤ µ dX (x , x ′) ∀x , x ′ ∈ BX (x̄ , a′),

the mapping B
Ỹ

(ȳ + g(x̄); b′) 3 y 7→ (g + G )−1(y) ∩ BX (x̄ , a′) is
single-valued and Lipschitz continuous with constant κ′ with respect to
the metric dY . This implies strong bi-metric regularity of g + G ...



X , Y , Ỹ – convex subsets of linear normed spaces, X – complete.

(to be) Theorem. (M. Quincampoix, T. Scarinci, V.V., 2018(?))

Let f : X → Ỹ be Fréchet differentiable at x̄ in the norm of Ỹ , and be
differentiable in a neighborhood of x̄ in the norm of Y , with uniformly
continuous (in Y ) derivative. Then the mapping G = f + F is strongly
bi-metrically regular at x̄ for ȳ if and only if the mapping
x 7→ f (x̄) + ∂f (x̄)(x − x̄) + F (x) is such.

Consequence: Sbi-MR of the affine differential variational inequality is
equivalent to that of the linearized one. (A1)–(A3) are sufficient for that.



Conclusions

1 SMR and SMs-R are key concepts of Lipschitz stability: they are
themselves stable, enable Newton-Kantorovich methods, analysis of
approximations, etc.

2 for DGEs the concepts have been developed and applied in the
“coercive” case

3 for “affine” DGEs – recent developments: Newton, new discretization,
new problems in mathematical programming

4 A lot more work needed: presence of singular arcs, extensions of the
“new discretization”, ...



Thank You!


