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1 Background from the literature

General filter given by convolution of n frac-
tional differences,

∆γ (L; δ) :=

n∏

i=1

ξγi (L; δi) (1)

with memory parameters

δ = (δ1, ..., δn)′,
and frequencies

γ = (γ1, ..., γn)′ , 0 ≤ γ1 < γ2 < ... < γn ≤ π.

These frequencies characterize the long-run and/or
the seasonal (cyclical) nature of the data.

The polynomials ξγi (L; δi) are defined as

ξγ1 (L; δ1) = (1− L)δ1 , if γ1 = 0;

(1− L)δ1 = 1− δ1L−
δ1 (1− δ1)

2
L2

−δ1 (1− δ1) (2− δ1) L3

6
− · · ·

where L denotes the conventional back-shift op-
erator;
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ξγn (L; δn) = (1 + L)δn , if γn = π,

(1 + L)δn = 1 + δnL− δn (1− δn)

2
L2

+
δn (1− δn) (2− δn) L3

6
± · · ·

and

ξγi (L; δi) = (1−2 cos γiL+L2)δi if γi ∈ (0, π),

where those frequencies are also known as Gegen-
bauer frequencies, (see, for instance, Gray, Zhang
& Woodword, 1989),

(1− 2 cos γiL + L2)δi =

∞∑

j=0

Gj(γi, δi)L
j

where Gj(γi, δi) is called Gegenbauer function.
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In particular, for γi = π/2:
(
1 + L2

)δi
= (1− 2 cos π/2L + L2)δi

=
[
(1− eiπ/2L)(1− e−iπ/2L)

]δi

= 1 + δiL
2 − δi (1− δi)

2
L4

+
δi (1− δi) (2− δi) L6

6
± · · ·

Seasonal filters As an example for quar-
terly series (S = 4) with seasonal frequencies (on
the unit circle),

γ1 = 0 , γ2 = 2π/S = π/2 , γS/2+1 = 4π/S = π,

Hassler (1994) considers the flexible filter

(1− L)δ1
(
1 + L2

)δ2
(1 + L)δ3

while Porter-Hudak (1990) applies a rigid version
(δ1 = δ2 = δ3 = δ),

(1− L)δ
(
1 + L2

)δ
(1 + L)δ = (1− L4)δ .

The general filter in (1) is discussed in Woodward,
Cheng & Gray (1998).

4



Stochastic process Consider

∆γ (L; δ) yt = xt , t ∈ Z , (2)

and xt is a stationary and invertible (ARMA)
process. Then we know from Gray, Zhang &
Woodward (1994), H (1994) and WCG (1998):

Proposition 1 yt is stationary if and only if
all δi < 0.5. If any δi > 0, we have long mem-
ory in that autocorrelations are not absolutely
summable. In this case the spectral density fy

has poles at γi of order λ−2δi:

fy(γi + λ) ∼ Gi λ
−2δi , |λ| → 0 .

In case of n = 1 we obtain for autocorrelations
at lag h

ρy(h) ∼ C h2δ1−1 , γ1 = 0

ρy(h) ∼ C cos(hγ1) h2δ1−1 , γ1 > 0

The effect of cycles of period P = 2π
γ can be

seen from

V ar(yt) = 2

∫ π

0
fy(γ) dγ .
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Applications

• seasonal models have been applied e.g. by
Porter-Hudak (1990) for monetary aggregates,
and Gil-Alana & Robinson (2001) and Gil-
Alana (2005) for studies on consumption and
income data, and inflation,

• cyclical models have been used to explain in-
terest rate dynamics (Ramachandran and Beau-
mont, 2001), industrial production (Dalla and
Hidalgo, 2005), and nonimal exchange rates
(Smallwood and Norrbin, 2006), atmospheric
levels of CO2 (Woodward, Cheng and Gray,
1998), wind speed (Bouette et al., 2006), or
power demand (Soares and Souza, 2006)
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2 Lagrange Multiplier (LM) testing

With n being specified, the null hypothesis in
∆γ (L;d + θ) yt = xt is

H0 : δ = d ∈ Rn or H0 : θ = 0,

against the alternative hypothesis

H1 : δ 6= d or H1 : θ 6= 0.

We extend Robinson (1991), Tanaka (1999), and
accomplish Robinson (1994).

Assumptions:
A.1) The observable data {yt} is generated from
∆γ (L;d) yt = xt, t = 1, ..., T, with ∆γ (L;d)
defined in (2) , and d being a possibly non-
integer vector in Rn, n ≥ 1. Further, yt = 0 for
t ≤ 0.
A.2) The innovation process {xt}∞−∞ , forms
a martingale difference sequence (MDS) with
E

(
ε2
t

)
= σ2 < ∞, with one of the following

assumptions: 1) xt is iid, or 2) is strictly sta-
tionary and ergodic with summable eight-order
joint cumulants.
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Assuming a Gaussian log-likelihood function we
obtain from (2)

L(δ, σ2) = −T

2
log(2πσ2)− 1

2σ2

T∑

t=1

(
∆γ (L; δ) yt

)2

(3)
and the respective gradient of (3) evaluated under
the null

∂L(δ, σ2)

∂θ

∣∣∣∣∣
θ=0

= − 1

σ2

T∑

t=1

xt

(
∂∆γ (L; δ) yt

∂θ

)∣∣∣∣
θ=0

.

Note that if γ1 = 0, i.e. the zero frequency is con-
sidered, then the partial derivative of ∆γ (L; δ) yt
on θ1 is

∂∆γ (L; δ) yt

∂θ1
= log (1− L) (1− L)θ1 (1− L)d1

[∏n

i=2
ξγi (L; δi)

]
yt

which reduces to

log (1− L) ∆γ (L;d) yt = log (1− L) xt

when the score vector is evaluated at θ = 0. Sim-
ilarly, the partial derivatives with respect to θs,
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s = 2, ..., n − 1, for γs ∈ (0, π) and θn for
γn = π, when evaluated under the null hypothe-
sis are given, respectively as,

∂∆γ (L; δ) yt

∂θs

∣∣∣∣
H0:θ=0

= log
(
1− 2 cos γsL + L2

)
xt,

∂∆γ (L; δ) yt

∂θn

∣∣∣∣
H0:θ=0

= log (1 + L) xt.

The filters characterizing the score vector under
the null hypothesis can be expanded as (Grad-
shteyn & Ryzhik, 2000):

log
(Fγk

)
xt = −

∞∑

j=1

ωj (γk) xt−j,

whereFγ1 = 1−L,Fγl = ξγl (L; 1) , l = 2, ..., n−
1, Fγn = 1 + L and ωj (γk) are given in

Definition 2.1. For all j ≥ 1 and any γ ∈
[0, π] , define the non-stochastic weighting pro-
cess ωj (γ) as,

ωj (γ) =





1/j, if γ = 0

2j−1 cos (jγ) , if γ ∈ (0, π)

(−1)j /j, if γ = π

.
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For the whole vector ωj =
(
ωj (γ1) , ..., ωj (γn)

)′
.

Those weights are use to construct/define:
Definition 2.2.

x∗γs,t−1 =

t−1∑

j=1

ωj (γs) xt−j

x∗γ,t−1 =
(
x∗γ1,t−1, ..., x

∗
γn,t−1

)′
=

t−1∑

j=1

ωjxt−j.

It follows for the score function under the null

∂L(δ, σ2)

∂θ

∣∣∣∣∣
H0:θ=0

=
1

σ2

T∑

t=2

xt




t−1∑

j=1

ωjxt−j




=
1

σ2

T∑

t=2

xt

(
x∗γ,t−1

)
.

With the Fisher information matrix estimated as
outer product of gradients, the LM statistic is
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(under the null)

LMT =




T∑

t=2

xtx
∗
γ,t−1



′


T∑

t=2

x2
tx
∗
γ,t−1x

′∗
γ,t−1



−1




T∑

t=2

xtx
∗
γ,t−1


 .

Proposition 2 . Under A.1 and A.2

LMT ⇒ χ2
(n),

as T →∞.

Remark 1 The asymptotic covariance matrix of
the score vector is given by

σ2
∞∑

j=1

ωjω
′
j = σ2Γγ ,

for which we have worked out explicit formulae.
Remark 2 We assume the frequencies of in-
terest γ to be known. Different estimators (as-
suming n to be known!) have been proposed in
the literature; Yajima (1996), Giriatis, Hidalgo,
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and Robinson (2001), Hidalgo and Soulier (2004),
Dalla and Hidalgo (2005), and Hidalgo (2007).
Formal proofs of consistency are limited to the
case |d| < 1/2.
Remark 3 The results by Tanaka (1999) at the
zero frequency only, are interesting and illustra-
tive of the difficulties involved with the correction
for autocorrelation in the differenced data.

3 Regression-based tests

To handle short-run autocorrelation we adopt the
approach proposed by Breitung & Hassler (2002)
and elaborated by Demetrescu, Kuzin & Hassler
(2008).

A.3) The differences under the null satisfy
a (L) xt = vt, where a (L) = 1 − ∑p

j ajL
j,

p ≥ 0, such that a (z) has all its roots outside
the unit circle and {vt} , is strictly stationary
and ergodic MDS satisfying the restrictions in
Assumption A.2.
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Consider the following lag-augmented least-squares
regression (t = p + 1, ..., T ),

xt =

n∑

`=1

φ`x
∗
γ`,t−1 +

p∑

i=1

ζixt−i + et,p (4)

= β′X∗
t,p + et,p (5)

where in practice, the unknown xt is replaced by
the differences und H0: ∆γ (L;d) yt.

Proposition 3 . Under A.1 and A.3 with

β0 = (0, . . . , 0, a1, . . . , ap)
′

and β̂ from (5) it holds√
T (β̂ − β0) ⇒ N (0, V ),

as T → ∞, where V can be estimated consis-
tently.

Let Υ
(n)
Wp denote the Wald-type test statistic

testing from (4) for

φ1 = · · · = φn = 0

where we consider heteroskedasticity robust vari-
ance estimation like Eicker-White.
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Proposition 4 . Under A.1 and A.3

Υ
(n)
Wp ⇒ χ2

(n)

as T →∞.

Remark 4 (Corollary) Similarly, the test
could be performed in a “likelihood ratio” man-
ner, by comparing sums of squares from (un)restricted
versions of (4).
Remark 5 (Corollary) Having a “rigid”
model in mind,

θ1 = · · · = θn = θ with H0 : θ = 0 ,

we may perform the regression

xt = φ




n∑

`=1

x∗γ`,t−1


 +

p∑

i=1

ζixt−i + et,p(6)

and test φ = 0. Then, the squared t-statistic
follows χ2

(1)
.

Remark 6 If heteroskedasticity can be excluded
a priori, we work under A.2.1), and the statistics
can be computed with “standard” variance esti-
mators.
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Remark 7 For n = 1 and γ1 = 0, Breitung
& Hassler (2002) stressed the analogy to Dickey-
Fuller test, although all regressors are (asymptot-
ically) stationary. Similarly, (4) is reminiscent of
the HEGY test in that each frequency is covered
by one regressor – only that here the regressors
are not asymptotically orthogonal.
Remark 8 DKH (2008) for n = 1 and γ1 = 0:
They discuss the choice of p; they obtain the lim-
iting distribution under local alternatives; they
discuss the treatment of deterministic components
– such that limiting distributions are not affected.
Remark 9 It was proposed to construct confi-
dence sets by determining the region where H0
is not rejected at a given level – one might even
consider estimating parameters by searching for
the null where the significance is weakest.

4 Finite sample performance

First experiment

(1− 2 cos γsL + L2)1+θyt = xt
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Second experiment

(1−2 cos(0.15)L+L2)1+θ1(1−2 cos(
π

2
)L+L2)1+θ2yt = xt

Table 1: Empirical rejection frequencies when the DGP is the simple GARMA model
(1− 2 cos γsL + L2)1+θyt = xt, xt ∼ iidN (0, 1).

θ
γs -.3 -.2 -.1 0 .1 .2 .3

T=100
π
10

.999 .984 .540 .052 .584 .981 .999
2π
10

.999 .933 .401 .054 .445 .927 .998
3π
10

.988 .810 .302 .056 .329 .832 .982
4π
10

.946 .689 .232 .049 .267 .721 .946
5π
10

.929 .630 .210 .050 .248 .686 .932
6π
10

.955 .683 .236 .051 .269 .730 .947
7π
10

.985 .826 .311 .045 .331 .836 .985
8π
10

.998 .929 .425 .051 .452 .933 .998
9π
10

.999 .982 .536 .050 .585 .984 .999
T=250

π
10

.999 .999 .924 .043 .921 .999 .999
2π
10

.999 .999 .818 .057 .814 .999 .999
3π
10

.999 .997 .653 .050 .686 .995 .999
4π
10

.999 .979 .516 .052 .563 .980 .999
5π
10

.999 .971 .468 .051 .545 .968 .999
6π
10

.999 .980 .520 .051 .571 .978 .999
7π
10

.999 .998 .664 .045 .682 .994 .999
8π
10

.999 1.00 .811 .050 .816 .999 .999
9π
10

.999 .999 .918 .045 .913 .999 .999
Note: Empirical size is in bold.

Table 2: Empirical rejection frequencies when the DGP is the 2-factor GARMA model
(1− 2 cos(0.15)L + L2)1+θ1(1− 2 cos(π

2
)L + L2)1+θ2yt = xt, xt ∼ iidN (0, 1) and T=100

Joint Restricted Test Joint Unrestricted Test
θ2 θ2

θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .999 .999 0.997 .959 .741 .362 .247 -.3 .999 .999 .999 .999 .999 .999 .999
-.2 .996 .992 .963 .834 .512 .220 .237 -.2 .994 .978 .974 .977 .990 .999 .999
-.1 .793 .731 .611 .398 .179 .098 .290 -.1 .892 .684 .502 .487 .693 .911 .985
.0 .126 .102 .082 .047 .067 .205 .480 .0 .857 .510 .161 .049 .205 .592 .893
.1 .631 .590 .583 .574 .625 .730 .853 .1 .988 .913 .741 .556 .535 .718 .898
.2 .987 .985 .982 .981 .982 .988 .993 .2 .999 .999 .992 .980 .974 .981 .991
.3 .999 .999 .999 .999 .999 .999 .999 .3 .999 .999 .999 .999 .999 .999 .999

Note: Empirical size is in bold.
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Table 3: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
ARMA errors:

(1− 2 cos(0.15)L + L2)1+θ1(1− 2 cos(π
2
)L + L2)1+θ2yt = xt, (1− 0.5L)xt = (1 + 0.5L)vt,

vt ∼ iidN (0, 1)
T=100

Joint Restricted Test Joint Unrestricted Test
θ2 θ2

θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .300 .233 .148 .088 .067 .099 .142 -.3 .204 .142 .122 .141 .202 .315 .381
-.2 .131 .120 .089 .059 .051 .072 .127 -.2 .156 .097 .058 .069 .115 .160 .228
-.1 .063 .056 .055 .045 .041 .057 .096 -.1 .137 .075 .046 .039 .058 .094 .138
.0 .047 .043 .046 .043 .049 .062 .080 .0 .121 .076 .046 .037 .044 .063 .090
.1 .065 .059 .063 .060 .061 .075 .086 .1 .113 .079 .058 .053 .053 .062 .075
.2 .093 .087 .092 .094 .092 .104 .113 .2 .103 .077 .073 .061 .068 .075 .085
.3 .126 .127 .123 .136 .127 .130 .139 .3 .105 .094 .085 .096 .091 .100 .105

T=500
Joint Restricted Test Joint Unrestricted Test

θ2 θ2

θ1 -.3 -.2 -.1 .0 .1 .2 .3 θ1 -.3 -.2 -.1 .0 .1 .2 .3
-.3 .992 .955 .691 .225 .082 .316 .626 -.3 .981 .926 .834 .802 .862 .949 .979
-.2 .897 .794 .525 .190 .071 .228 .534 -.2 .871 .680 .463 .386 .480 .653 .815
-.1 .492 .389 .230 .093 .049 .179 .424 -.1 .570 .354 .170 .117 .177 .333 .518
.0 .150 .113 .073 .048 .067 .175 .388 .0 .264 .128 .064 .053 .092 .206 .360
.1 .087 .090 .089 .115 .159 .258 .405 .1 .126 .095 .075 .092 .134 .222 .338
.2 .239 .255 .272 .294 .345 .401 .475 .2 .192 .205 .215 .227 .272 .341 .405
.3 .437 .448 .471 .493 .530 .543 .578 .3 .371 .367 .394 .411 .446 .475 .511

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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Table 4: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
AR errors: (1− 2 cos(0.15)L + L2)1+θ1(1− 2 cos(π

2
)L + L2)1+θ2yt = xt, (1− 0.5L)xt = vt,

vt ∼ iidN (0, 1)
T=100

Joint Restricted Test Joint Unrestricted Test
θ2 θ2

θ1 -.3 -.2 -.1 0 0.1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .479 .336 .202 .108 .077 .104 .179 -.3 .334 .234 .191 .194 .255 .352 .467
-.2 .250 .201 .139 .078 .061 .094 .160 -.2 .229 .138 .092 .089 .140 .232 .319
-.1 .103 .087 .076 .049 .059 .093 .145 -.1 .224 .108 .055 .045 .082 .156 .249
0 .056 .047 .050 .041 .050 .079 .132 0 .232 .101 .052 .038 .058 .127 .190
.1 .062 .056 .054 .057 .062 .083 .122 .1 .226 .118 .059 .046 .061 .115 .187
.2 .104 .088 .083 .082 .088 .097 .135 .2 .210 .124 .071 .057 .076 .128 .203
.3 .139 .130 .123 .124 .126 .137 .151 .3 .181 .118 .094 .083 .110 .164 .219

T=500
Joint Restricted Test Joint Unrestricted Test

θ2 θ2

θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .999 .966 .631 .153 .142 .527 .814 -.3 .995 .945 .833 .829 .934 .984 .998
-.2 .967 .889 .564 .158 .108 .458 .766 -.2 .987 .812 .487 .397 .601 .853 .954
-.1 .641 .538 .298 .093 .088 .409 .731 -.1 .947 .656 .236 .106 .268 .604 .834
0 .205 .155 .088 .044 .118 .394 .706 0 .874 .513 .156 .044 .154 .464 .712
.1 .094 .087 .090 .123 .225 .460 .693 .1 .761 .437 .179 .101 .200 .453 .672
.2 .232 .251 .269 .295 .398 .548 .710 .2 .643 .431 .295 .247 .342 .527 .677
.3 .438 .463 .481 .521 .574 .654 .750 .3 .582 .496 .441 .441 .505 .600 .712

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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Table 5: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
AR errors: (1− 2 cos(0.15)L + L2)1+θ1(1− 2 cos(π

2
)L + L2)1+θ2yt = xt, (1− 0.9L)xt = vt,

vt ∼ iidN (0, 1)
T=100

Joint Restricted Test Joint Unrestricted Test
θ2 θ2

θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .085 .080 .062 .043 .040 .067 .114 -.3 .290 .143 .064 .034 .056 .105 .168
-.2 .044 .042 .046 .037 .032 .056 .100 -.2 .297 .149 .070 .035 .047 .094 .167
-.1 .037 .036 .040 .040 .041 .051 .078 -.1 .272 .125 .062 .039 .050 .107 .173
0 .047 .042 .046 .051 .049 .065 .079 0 .230 .107 .056 .043 .065 .123 .208
.1 .062 .068 .070 .072 .068 .082 .097 .1 .157 .097 .058 .056 .081 .142 .226
.2 .076 .075 .073 .084 .095 .087 .100 .2 .120 .080 .055 .069 .094 .149 .219
.3 .073 .077 .078 .078 .078 .086 .087 .3 .081 .068 .056 .059 .078 .118 .170

T=500
Joint Restricted Test Joint Unrestricted Test

θ2 θ2

θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .913 .840 .667 .295 .083 .247 .587 -.3 .995 .886 .549 .287 .391 .679 .866
-.2 .547 .474 .348 .184 .063 .173 .477 -.2 .964 .738 .340 .148 .233 .524 .764
-.1 .172 .164 .118 .072 .0400 .111 .351 -.1 .843 .511 .185 .062 .138 .405 .656
0 .063 .062 .055 .051 .053 .106 .248 0 .620 .319 .111 .051 .123 .320 .549
.1 .088 .103 .080 .085 .100 .130 .197 .1 .408 .217 .103 .066 .122 .258 .432
.2 .133 .126 .123 .123 .119 .121 .161 .2 .232 .150 .111 .090 .117 .184 .286
.3 .105 .099 .092 .090 .081 .085 .088 .3 .113 .091 .077 .076 .075 .102 .144

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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