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1 Background from the literature

(GENERAL FILTER given by convolution of n frac-
tional differences,

Ay (L;6) = ][ & (L)) (1)
1=1

with memory parameters
5 — (51, ceey 5/]7/)/7
and frequencies

v=nmm), 0<<m<..<m<m

These frequencies characterize the long-run and /or
the seasonal (cyclical) nature of the data.
The polynomials &, (L; d;) are defined as

&y (Li61) = (1= L), if 71 =0
01 (1 — d1)

(1— L)% =1—§L— L

o (1=0)(2-d)L°
§
where L denotes the conventional back-shift op-

erator;




Enn (Li0) = (1+ L)%, if yp =m,

(1+ L)5n = 140l — On <12_ 5”)L2

(1 6n>6<2 — o) L

and

&, (L:6;) = (1=2cos L+L2)% if v; € (0, ),

where those frequencies are also known as Gegen-
bauer frequencies, (see, for instance, Gray, Zhang

& Woodword, 1989),
©.@)
(1 —200872L+L2 ZGQ (i, 0
7=0

where G (v;,0;) is called Gegenbauer function.



[n particular, for v; = 7 /2:

0
(1 1 Lz)

(1 —2cosm/2L + L2)5’i

= |1 =™ PL)1 - 7L "

s 5@(12— i) 7 4

+5z(1—5z)é2—5z)L6im

SEASONAL FILTERS As an example for quar-
terly series (S = 4) with seasonal frequencies (on
the unit circle),

N=0,vw=2r/S=n/2, VS/241 = 4t /S =,
Hassler (1994) considers the flexible filter
0
(1— L) (1 + L2) (14 L)%

while Porter-Hudak (1990) applies a rigid version
(61 =02 =03 =),

(1—L)° (1 +L2)5(1 + L) =(1-LY.

The general filter in (1) is discussed in Woodward,
Cheng & Gray (1998).



STOCHASTIC PROCESS Consider
Ay (L;0)yr =, tE€L, (2)

and xy is a stationary and invertible (ARMA)

process. Then we know from Gray, Zhang &
Woodward (1994), H (1994) and WCG (1998):

Proposition 1 y; is stationary if and only if
all 0; < 0.5. If any o; > 0, we have long mem-
ory in that autocorrelations are not absolutely
summable. In this case the spectral density f

has poles at v; of order A ~20i
i+ A) ~ GAT A= 0.

In case of n = 1 we obtain for autocorrelations
at lag h

py(h) ~ CR*17 41 =0
py(h) ~ C cos(hy) B*17L ) 41 >0

The effect of cycles of period P = 2T can be

Y
seen from

Var(yy) =2 /O W fy(y) dvy-
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APPLICATIONS

e scasonal models have been applied e.g. by
Porter-Hudak (1990) for monetary aggregates,
and Gil-Alana & Robinson (2001) and Gil-
Alana (2005) for studies on consumption and
income data, and inflation,

e cyclical models have been used to explain in-
terest rate dynamics (Ramachandran and Beau-
mont, 2001), industrial production (Dalla and
Hidalgo, 2005), and nonimal exchange rates
(Smallwood and Norrbin, 2006), atmospheric
levels of COy (Woodward, Cheng and Gray,

1998), wind speed (Bouette et al., 2006), or
power demand (Soares and Souza, 2006)



2 Lagrange Multiplier (LM) testing

With n being specified, the null hypothesis in
Ay (Lid+0)y = a4 is

Hy:0=d c R" or Hy:60 =0,
against the alternative hypothesis
Hy:0#d or H:0+#0.

We extend Robinson (1991), Tanaka (1999), and
accomplish Robinson (1994).

Assumptions:

A.1) The observable data {y:} is generated from
Ay (Lid)y = ¢, t = 1,..,T, with Ay (L;d)
defined in (2), and d being a possibly non-
integer vector tn R", n > 1. Further, y; = 0 for
t <O0.

A.2) The innovation process {x4}>, , forms
a martingale difference sequence (MDS) with
E (5%) — 02 < o0, with one of the following
assumptions: 1) x¢ is 1id, or 2) is strictly sta-
tionary and ergodic with summable eight-order
jgoint cumulants.



Assuming a Gaussian log-likelihood function we
obtain from (2)

L(9, 02) = —Elog(ZWUQ)—%‘Q Z (A (L;0) yt)Q
1
(3)

and the respective gradient of (3) evaluated under
the null
T

OL(5, 02 L\~ ({M7 (L: 6) yt)
t
t=1

T T
t=

o0 52 50
6=0

Note that if v; = 0, 7.e. the zero frequency is con-

sidered, then the partial derivative of A~ (L; )y

on 67 is

OAy (L;0) yt
001

0=0

—log(1—L)(1—L)1(1 - L)h

n
J | RS
which reduces to
log (1 — L) Ay (L;d)yr =log (1 — L)z

when the score vector is evaluated at € = 0. Sim-
ilarly, the partial derivatives with respect to 6,
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s = 2,...n — 1, for v¢ € (0,7) and 6, for
vn, = 7, when evaluated under the null hypothe-
sis are given, respectively as,

A~ (L; 0
0 fy( 1 0) yt :1Og(1—2COS’ysL—|—L2) Xt,
668 H0:(9:O
OA~ (L; 0
”Y( 7 )yt :]Og<1—|—L>th
a@n HOZ@:O

The filters characterizing the score vector under

the null hypothesis can be expanded as (Grad-
shteyn & Ryzhik, 2000):

g () 1 — Z%%%w

where Fr, = 1—L, Fy, = 571 (L;1),7=2,...,n—
1, Fy, =1+ L and wj (7}) are given in
Definition 2.1. For all 7 > 1 and any v €

0, 7|, define the non-stochastic weighting pro-
cess wj(7y) as,

1/3, if y=0
W (’)/) — 2j_1QOS (jfy)v Zf Ve (O’ﬂ-> '
(=1} /4, ify=m
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For the whole vector wj = (w; (71), ..., w; (%z)), .

Those weights are use to construct/define:

Definition 2.2.
t—1

w3 1= wi(ys)m—y
=1

t—1
/
k %k k
X"Y,t—l — (:E%’t_l, ceny x’yn,t—l) — Zu}]xt_]
1=1
[t follows for the score function under the null
T t—1
OL(8,0°) 1
i = 52 ot | D wiTi
t=2 j=1

Hq:0=0
! T
E S
t=2

With the Fisher information matrix estimated as
outer product of gradients, the LM statistic is
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(under the null)

T T T
o D % /%
LMr = thx%t—l thx%t—lxmt—l
=2 =2 |
T

*
t=2

Proposition 2. Under A.1 and A.2
LMT = X%n)a

as ' — oo.

REMARK 1 The asymptotic covariance matrix of
the score vector is given by

O
o’ Z ijg- = 02F7 ,
7=1

for which we have worked out explicit formulae.
REMARK 2 We assume the frequencies of in-
terest v to be known. Different estimators (as-
suming n to be known!) have been proposed in
the literature; Yajima (1996), Giriatis, Hidalgo,
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and Robinson (2001), Hidalgo and Soulier (2004),
Dalla and Hidalgo (2005), and Hidalgo (2007).
Formal proofs of consistency are limited to the
case |d| < 1/2.

REMARK 3 The results by Tanaka (1999) at the
zero frequency only, are interesting and illustra-
tive of the difficulties involved with the correction
for autocorrelation in the differenced data.

3 Regression-based tests

To handle short-run autocorrelation we adopt the
approach proposed by Breitung & Hassler (2002)
and elaborated by Demetrescu, Kuzin & Hassler

(2008).

A.3) The differences under the null satisfy
a(L)xy = vy, where a(L) = 1 — Z?ajl)j,
p > 0, such that a(z) has all its roots outside
the unit circle and {vt}, is strictly stationary
and ergodic MDS satisfying the restrictions in
Assumption A.2.
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Consider the following lag-augmented least-squares
regression (t=p+1,...,7T),

n p
T =Y dprd 1+ CGm—itery (4)
=1 i=1

where in practice, the unknown x¢ is replaced by

the differences und Hy: Ay (L;d) yy.

Proposition 3. Under A.1 and A.3 with
Bo=1(0,...,0,a1,...,ap)

and 3 from (5) it holds
VT (B—fo) = N(O,V),

as T — oo, where V' can be estimated consis-
tently.

Let Tgyp denote the Wald-type test statistic
testing from (4) for

G == o =0

where we consider heteroskedasticity robust vari-
ance estimation like Eicker-White.
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Proposition 4. Under A.1 and A.3
(n) 2
Twp = Xn)
as 1" — o0.

REMARK 4 (COROLLARY) Similarly, the test
could be performed in a “likelihood ratio” man-
ner, by comparing sums of squares from (un)restricted
versions of (4).

REMARK 5 (COROLLARY) Having a “rigid”
model] in mind,

0p=---=0,=0 with Hy: 6=0,

we may perform the regression

n p
Tt = ¢ Z v, 11 |+ Z GiTt—i + et h6)
(=1 i=1

and test ¢ = 0. Then, the squared t-statistic
follows X%l)'

REMARK 6 If heteroskedasticity can be excluded
a priori, we work under A.2.1), and the statistics
can be computed with “standard” variance esti-
mators.
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REMARK 7 For n = 1 and v = 0, Breitung
& Hassler (2002) stressed the analogy to Dickey-
Fuller test, although all regressors are (asymptot-
ically) stationary. Similarly, (4) is reminiscent of
the HEGY test in that each frequency is covered
by one regressor — only that here the regressors
are not asymptotically orthogonal.

REMARK 8 DKH (2008) for n = 1 and 1 = 0:
They discuss the choice of p; they obtain the lim-
iting distribution under local alternatives; they
discuss the treatment of deterministic components
—such that limiting distributions are not affected.
REMARK 9 It was proposed to construct confi-
dence sets by determining the region where H
is not rejected at a given level — one might even
consider estimating parameters by searching for
the null where the significance is weakest.

4 Finite sample performance

First experiment

(1 —2cosysL + LQ)HQyt = Ty
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Second experiment
(1—2 COS(O.15)L—|—L2)1+91 (1-2 COS(%)L—FLQ)l—i_QQyt -

Table 1: Empirical rejection frequencies when the DGP is the simple GARMA model
(1 —2cosL + L)y, = 2, @y ~ iidN(0, 1).

0
v -3 -2 -1 0 1 2 3
T=100
T 999 984 .540 .052 .584 .981 .999
2t 0999 933 .401 .054 .445 .927 .998
ST 0988 810 .302 .056 .329 .832 .982
it 046 689 232 .049 267 .721 .946
5t 0929 630 .210 .050 .248 .686 .932
ST 055 683 .236 .051 .269 .730 .947
085 .826 .311 .045 .331 .836 .985
8T 098 929 425 .051 .452 .933 .998
9T 999 982 .536 .050 .585 .984 .999
T=250
999 999 .924 .043 .921 .999 .999
2t 0999 999 818 .057 .814 .999 .999
ST0999 997 653 .050 .686 .995 .999
at 999 979 516 .052 .563 .980 .999
5t 0999 971 .468 .051 .545 .968 .999
50999 980 .520 .051 .571 .978 .999
999 998 .664 .045 .682 .994 .999
st 0999 1.00 .811 .050 .816 .999 .999
T 0999 999 918 .045 913 .999 .999
Note: Empirical size is in bold.

Table 2: Empirical rejection frequencies when the DGP is the 2-factor GARMA model
(1 —2cos(0.15)L 4+ L)'+ (1 — 2 cos(3)L + L*)"*y, = ay, x4y ~ 1idN(0,1) and T=100

Joint Restricted Test Joint Unrestricted Test
0, 0y
0, | -3 -2 -1 0 1 2 .3 0, | -3 -2 -1 0 1 2 3
-3 1.999 999 0.997 959 741 .362 .247 -3 1.999 999 .999 .999 .999 .999 .999
-21.99 .992 963 .834 .512 .220 .237 -21.994 978 974 977 .990 .999 .999
-1].793 .731 611 .398 .179 .098 .290 -1 ].892 .684 .502 487 .693 .911 .985

.0 ].126 .102 .082 .047 .067 .205 .480 .0 | .87 510 .161 .049 .205 .592 .893
1 1.631 590 .583 574 625 .730 .853 11,988 913 741 556 535 .718 .898
201987 985 982 981 982 .988 .993 21999 999 992 980 974 .981 991
31.999 999 999 999 999 .999 .999 31.999 999 999 999 999 .999 .999

Note: Empirical size is in bold.
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Table 3: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
ARMA errors:
(1 —2cos(0.15)L + L*)* (1 — 2cos(5)L + L*)"2y, =z, (1 —0.5L)z; = (14 0.5L)vy,
v; ~ iidN(0,1)

T=100
Joint Restricted Test Joint Unrestricted Test
02 62
0, | -3 -2 -1 0 .1 2 3 0, | -3 -2 -1 0 1 .2 3
-.31.300 .233 .148 .088 .067 .099 .142 -.31].204 .142 122 141 .202 .315 .381
-.2].131 120 .089 .059 .051 .072 .127 -2 | .156 .097 .058 .069 .115 .160 .228
-1 1.063 .056 .055 .045 .041 .057 .096 -1 |.137 .075 .046 .039 .058 .094 .138

.0 ].047 043 .046 .043 .049 .062 .080 0 [.121 .076 .046 .037 .044 .063 .090
1 1.065 059 .063 .060 .061 .075 .086 1] .113  .079 .058 .053 .053 .062 .075
2 1.093 .087 .092 .094 .092 .104 .113 2 1.103 .077 .073 .061 .068 .075 .085
3 ].126 .127 123 136 .127 .130 .139 3 1.105 .094 .08 .096 .091 .100 .105

T=500
Joint Restricted Test Joint Unrestricted Test
92 02
0, | -3 -2 -1 .0 .1 2 ] 0, | -3 -2 -1 .0 1 .2 3
-31.992 955 .691 .225 .082 .316 .626 -3 1.981 926 .834 .802 .862 .949 .979
-2 1.897 .794 525 190 .071 .228 .534 -2 .871 .680 .463 .386 .480 .653 .815
-1].492 389 .230 .093 .049 .179 424 -1|.570 .354 .170 .117 .177 .333 .518

.0 |.150 .113 .073 .048 .067 .175 .388 0 |.264 .128 .064 .053 .092 .206 .360
1] .087 .090 .089 .115 .159 .258 405 11126 .095 075 .092 134 .222 338
2 1.239 265 272 294 345 401 475 201192 205 215 227 272 .341 405
3| 437 448 471 493 530 543 578 3 1.371 367 394 411 446 475 511

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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Table 4: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
AR errors: (1 —2cos(0.15)L + L*)*91(1 — 2 cos(5 )L + L*)"*%y, =z, (1 —0.5L)z, = vy,
v ~ iidN(0,1)

T=100
Joint Restricted Test Joint Unrestricted Test
92 92
0, | -3 -2 -1 0 0.1 2 3 0, | -3 -2 -1 0 1 .2 3
-3 .479 336 .202 .108 .077 .104 .179 -3 1.334 234 .191 .194 .255 .352 .467
-.21.250 .201 .139 .078 .061 .094 .160 -.21.229 138 .092 .089 .140 .232 .319
-.11.103 .087 .076 .049 .059 .093 .145 -11].224 108 .055 .045 .082 .156 .249

0 | .0566 .047 .050 .041 .050 .079 .132 0 |.232 .101 .052 .038 .058 .127 .190
.1 1.062 .056 .054 .057 .062 .083 .122 d1.226 118 .059 .046 .061 .115 .187
.2 1.104 .088 .083 .082 .088 .097 .135 2 | .210 .124 071 .057 .076 .128 .203
3 1.139 .130 .123 .124 126 .137 .151 3 ].181 .118 .094 .083 .110 .164 .219

T=500
Joint Restricted Test Joint Unrestricted Test
92 92
0, | -3 -2 -1 0 .1 2 3 0, | -3 -2 -1 0 1 .2 3
-31.999 966 .631 .153 .142 .527 .814 -3 1.995 945 833 .829 .934 .984 .998
-2 1.967 .889 .564 .158 .108 .458 .766 -2 1.987 812 487 .397 .601 .853 .954
-.1].641 538 .298 .093 .088 .409 .731 -11.947 656 .236 .106 .268 .604 .834

0 | .205 .155 .088 .044 .118 .394 .706 0 | .874 513 .156 .044 .154 464 .712
1 1.094 087 .090 123 225 460 .693 A | 761 437 179 101 200 453 .672
221232 251 269  .295 398 .548 .710 21 .643 431 295 247 342 527  .677
3| 438 463 481 521 574 .654 .750 3 | .582 .496 441 441 505 .600 .712

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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Table 5: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
AR errors: (1 —2cos(0.15)L + L*)*01(1 — 2cos(5 )L + L*)"*%y, = 2, (1 —0.9L)z, = vy,
v ~ iidN(0,1)

T=100
Joint Restricted Test Joint Unrestricted Test
92 92
0, | -3 -2 -1 0 .1 2 3 0, | -3 -2 -1 0 1 .2 3
-3 1.085 .080 .062 .043 .040 .067 .114 -3 1.290 .143 .064 .034 .056 .105 .168
-.21.044 .042 .046 .037 .032 .056 .100 -2 1.297 149 .070 .035 .047 .094 .167
-.1].037 .036 .040 .040 .041 .051 .078 -1 (.272 125 .062 .039 .050 .107 .173

0 | .047 .042 .046 .051 .049 .065 .079 0 | .230 .107 .056 .043 .065 .123 .208
1 1.062 .068 .070 .072 .068 .082 .097 1 ). 157 .097 .058 .056 .081 .142 .226
2 1 .076 075 .073 .084 .095 .087 .100 2 ].120 .080 .055 .069 .094 .149 .219
3 1.073 .0r7 078 .078 .078 .086 .087 3 1.081 .068 .056 .059 .078 .118 .170

T=500
Joint Restricted Test Joint Unrestricted Test
02 92
0, | -3 -2 -1 0 1 2 .3 0, | -3 -2 -1 0 .1 2 3
-3 1.913 .840 .667 .295 .083 .247 .587 -3 1.995 .886 .549 287 .391 .679 .866
-2 | .547 474 348 184  .063 .173 477 -.21.964 .738 .340 .148 233 .524 .764
-1].172 164 .118 .072 .0400 .111 .351 -.11].843 511 .185 .062 .138 .405 .656

0 | .063 .062 .055 .051 .053 .106 .248 0 |.620 .319 .111 .051 .123 .320 .549
.11 .088 .103 .080 .085 .100 .130 .197 1 .408 217 103 .066  .122 258 .432
21133 126 123 .123 119 121 .161 2 01.232 150 111 .090 117 .184 .286
3 1.105 .099 .092 .090 .081 .085 .088 3 ].113 .091 .077 .076 .075 .102 .144

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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