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Abstract

In this paper we propose a family of least-squares based testing procedures that look to
detect general forms of fractional integration at the long-run and/or the cyclical compo-
nent of a time series, and which are asymptotically equivalent to Lagrange Multiplier tests.
Our setting extends Robinson’s (1994) results to allow for short memory in a regression
framework and generalises the procedures in Agiakloglou and Newbold (1994), Tanaka
(1999) and Breitung and Hassler (2002) by allowing for single or multiple fractional unit
roots at any frequency in [0, π]. Our testing procedure can be easily implemented in
practical settings and is flexible enough to account for a broad family of long- and short-
memory specifications, including ARMA and/or GARCH-type dynamics among others.
Furthermore, these tests have power against different types of alternative hypotheses and
enable inference to be conducted under critical values drawn from a standard Chi-squared
distribution, irrespective of the long-memory parameters.
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1 Introduction

Modelling and forecasting macroeconomic and financial variables is at the forefront of the
applied time-series econometric literature. These series are usually characterised by strongly
persistent correlation structures over long intervals of time. In this paper, we propose several
time domain test statistics to detect general forms of fractional integration. Our approach
follows the Lagrange-multiplier (LM) framework studied in Robinson (1991, 1994), Agiakloglou
and Newbold (1994), Tanaka (1999), Breitung and Hassler (2002) and Nielsen (2004, 2005). In
particular, we propose a family of tests (which are asymptotically equivalent to standard LM
tests for fractional integration) in the linear regression model Yt =

Pn
s=1 φsXst (Yt)+ut, where Yt

is directly determined under the null hypothesis and the regressorsXst (Yt) are straightforwardly
computed by linearly filtering Yt. This approach can be easily implemented in practical settings
and is flexible enough to account for a broad family of long- and short-memory specifications.
Furthermore, these tests also have power against different types of alternative hypotheses, and
allow inference to be conducted under critical values which are drawn from a standard Chi-
squared distribution, independently of the long-memory parameters.
The tests we discuss are formally intended to detect general long memory patterns embedded

in the autoregressive filter

∆γ (L; δ) ≡
nY
i=1

ξγi (L; δi) (1)

where δ = (δ1, ..., δn)
0, δ ∈Rn, n ≥ 1, is a vector of possible non-integer values that control

the extent of time dependence at any of the frequencies in γ = (γ1, ..., γn)
0 , with 0 ≤ γ1 <

γ2 < ... < γn ≤ π. These frequencies characterise the long-run and/or the seasonal (cyclical)
nature of the data. The polynomials ξγi (L; δi) are defined as ξγ1 (L; δ1) = (1− L)δ1 , if γ1 = 0;
ξγn (L; δn) = (1 + L)δn , if γn = π; and ξγi (L; δi) = (1 − 2 cos γiL + L2)δi , if γi ∈ (0, π),
where the latter frequencies are also known in the literature as Gegenbauer frequencies; (see,
for instance, Gray, Zhang and Woodword, 1989, p.237). Finally, L denotes the conventional
back-shift operator.
The filter in (1), also considered in Robinson (1994), generates theoretical autocovariances

that decay hyperbolically and sinusoidally, an empirical feature that is manifested in a number
of periodic time series. Serial dependence may be present at the long-run (γ1 = 0), and/or
at any of the remaining (cyclical) frequencies involved. Hence, particular cases include the
well-known fractional integration model, as well as pure cyclical and seasonal models which are
routinely applied to economic and non-economic variables. For instance, cyclical models have
been used to explain interest rate dynamics (Ramachandran and Beaumont, 2001), industrial
production (Dalla and Hidalgo, 2005), and nominal exchange rates (Smallwood and Norrbin,
2006), among others. Recent studies focusing on non-economic variables have analysed, for
instance, atmospheric levels of CO2 (Woodward, Cheng and Gray, 1998), wind speed (Bouette
et al., 2006), or power demand (Soares and Souza, 2006). The extant literature on seasonal
and non-seasonal models embedded in this general framework (both integrated and fractionally
integrated) is overwhelming; see, for instance, Porter-Hudak (1990) for empirical applications
of seasonal long-memory models on monetary aggregates, and Gil-Alana and Robinson (2001)
and Gil-Alana (2005) for studies on consumption and income data, and inflation, respectively.
Our setting extends Robinson’s (1994) results to allow for short memory in a regression

framework and thus also generalises the procedures in Agiakloglou and Newbold (1994), Tanaka
(1999) and Breitung and Hassler (2002) by allowing for single or multiple fractional integration
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at any frequency in [0, π]. Furthermore, we allow for different types of errors in the data generat-
ing process (DGP) which include martingale difference sequences and weakly correlated errors,
thus allowing for ARMA and/or time varying volatility patterns. As in the frequency-domain
case, the tests do not require formal knowledge of the true values of the long-memory vector
δ. These are mainly intended for formally pretesting hypotheses about the extent of cyclical
and non-cyclical persistence, and to construct confidence sets that include the true values of
the long-memory coefficients with a certain asymptotic coverage level. This is valuable for
descriptive inference and provides reliable values for initiating optimisation routines important
for estimation procedures such as (quasi) maximum likelihood procedures.
The remaining of the paper is organised as follows. Section 2 introduces the testing pro-

cedures and discusses their asymptotic distributions, section 3 analyses the finite-sample per-
formance of the tests by means of Monte Carlo experimentation and section 4 summarises the
main conclusions. Finally, the mathematical proofs of the main statements are collected in a
technical appendix.
In what follows, ‘⇒’ and ‘ p→’ denote weak convergence and convergence in probability,

respectively, as the sample size is allowed to diverge. The variable I(·) is an indicator function
that takes value equal to one if the condition in the subscript is fulfilled and zero otherwise.
Finally, vectors and matrices are represented in bold letters.

2 Testing procedures

In the general case considered in (1), we will say that the observable xt is generated by aGeneral
Fractionally Integrated (GFI) process of order δ, denoted as xt ∼GFI(δ) , i.e., ∆γ (L; δ)xt = εt,
where the properties of εt will be discussed below. The study of particular cases is straightfor-
ward by imposing restrictions on (1). The pure trend or zero-frequency model is obtained for
n = 1 and γ1 = 0. A seasonal filter arises for seasonal frequencies γi, see e.g., Hassler (1994).
Pure cyclical models are captured for 0 < γ1 < · · · < γn < π. If n = 1, the latter case is often
said to result in a GARMA model, whereas n > 1 leads to so-called n-factor GARMA models;
see Woodward et al. (1998), and Ramachandran and Beaumont (2001) for a discussion of the
statistical properties of these models. The generalisations (for instance, allowing for stationary
short-run dynamics) can encompass both ARMA and ARFIMA models as particular cases.
The main interest of this paper lies in testing whether δ = d, with d ∈Rn being specified

a priori, against the alternative for which the order of integration is d+ θ, with θ 6= 0. Thus,
the hypothesis of interest is stated as

H0 : δ = d or H0 : θ = 0,

against the alternative hypothesis H1 : δ 6= d, or H1 : θ 6= 0.
We start our theoretical analysis by introducing and discussing the initial set of assumptions,

as well as general notational issues and several fundamental definitions used throughout the
text.

Assumptions:
A.1) The observable data {xt} is generated from ∆γ (L;d)xt = εt, t = 1, ..., T, with ∆γ (L;d)
defined in (1) , and d being a possibly non-integer vector in Rn, n ≥ 1.
A.2) The innovation process {εt,Gt}∞−∞ , Gt = σ (εj : j ≤ t) , forms a martingale difference
sequence (MDS) and verifies E (ε2t ) = σ2 < ∞, E (ε2t |Gt−1) > 0 almost surely, with one of the
following restrictions holding true:
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A.2.1) {εt} is independent and identically distributed and E(|ε4t |1+r) uniformly bounded for
some r > 0.
A.2.2) {εt} is strictly stationary and ergodic with

∞X
l1=−∞

∞X
l2=−∞

...
∞X

l7=−∞
|κε (0, l1, ..., l7)| <∞,

where κε (0, l1, ..., l7) is the eight-order joint cumulant of {εt} .
In our analysis, we consider the general case of (1) under the null hypothesis given by

xt ∼GFI(d) . Simpler specifications (e.g., pure seasonal models) arise considering restricted
versions of ∆γ (L;d)xt, for which our conclusions extend straightforwardly. Owing to nonsta-
tionarity, it is customary in the literature related to fractional integration to assume xtI(t≤0) = 0,
either explicitly (e.g., Tanaka, 1999; Demetrescu, Kuzin and Hassler, 2008), or indirectly (e.g.,
Nielsen, 2004, 2005), since this restriction ensures that the observable process is well-defined
in the mean-square sense regardless of the values of d; see Marinucci and Robinson (1999) and
Robinson (2005) for further details. We note that, under the null hypothesis, this restriction is
not formally necessary to derive the asymptotic distribution of the Lagrange Multiplier (LM)
test statistics studied in this paper, although it would conveniently simplify the theoretical
characterisation of the power function under the alternative hypothesis.1 Assumption A.2.1
can be weakened by requiring that, conditional on the σ-field of events Gt, moments up to the
fourth-order (and suitable cross-products of elements of εt) equal the corresponding uncondi-
tional moments, so that essentially {εt} is only required to behave as an i.i.d process up to
the fourth-order moment. The main purpose of A.2.2 is to allow for (unknown) time-varying
conditional volatility patterns in {εt} . For instance, GARCH-type and Stochastic Volatility
models are permitted, among other forms of conditional heteroskedasticity, under restrictions
that limit the extent of temporal dependence. As in Gonçalves and Kilian (2007) and Deme-
trescu et al. (2008), this holds by requiring the absolute summability of the eight-order joint
cumulants.
In our analysis we will further relax Assumption A.2, by also allowing for stationary AR(p)

dynamics in the generating process, which may appear jointly with time-varying volatility
patterns. Therefore, we consider as an alternative to assumption A.2 the following:

A.20) The innovation process satisfies a (L) εt = vt, where a (L) = 1−
Pp

j ajL
j, p ≥ 0, such

that a (z) has all its roots outside the unit circle and {vt,Gt} , is a strictly stationary and ergodic
MDS satisfying the restrictions in either Assumption A.2.1 or A.2.2.

The proofs under Assumption A.20 are formally discussed for the case in which the autore-
gressive order p is known. For practical purposes, the short-run dynamics may be characterised
by a stationary and invertible linear process εt =

P∞
j=0 bjvt−j such that the AR(p) model, for

some large enough p <∞, approaches the underlying AR representation reasonably well. Since
the actual performance of this approximation, when the underlying correlation structure in the
short-run component is unknown, is ultimately an empirical question we shall study in detail
the effects on the finite-sample properties of the regression-based tests in the Monte Carlo
section.
Next, we formally introduce the definitions of the main processes and variables that char-

acterise the test procedures in our study.
1Other initialisations are also possible; see Tanaka (1999) and references therein. We thank an anonymous

referee for valuable comments on the truncation restriction used in this paper.
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Definition 2.1. For all j ≥ 1 and any γ ∈ [0, π] , define the non-stochastic weighting process
ωj (γ) as,

ωj (γ) =

⎧⎨⎩
1/j, if γ = 0
2j−1 cos (jγ) , if γ ∈ (0, π)
(−1)j /j, if γ = π

.

More generally, given γ =(γ1, ..., γn)
0 , γs ∈ [0, π] , define ωj (γ) = (ωj (γ1) , ..., ωj (γn))

0 .

Definition 2.2. Given the observable process {xt, t = 1, ..., T} as defined in A.1, and a vector
δ ∈Rn, define the filtered series εδt = ∆γ (L; δ)xt, where, if δ = d, then ∆γ (L;d)xt = εt and
thus εdt = εt. For any frequency γs ∈ [0, π] , define the following stochastic processes:

ε∗γs,t−1 =
t−1X
j=1

ωj (γs) εδ,t−j and ε∗∗γs,t−1 =
∞X
j=1

ωj (γs) εδ,t−j.

Definition 2.3. Given γ =(γ1, ..., γn)
0 , define the n-dimensional vectors

ε∗γ,t−1 =
³
ε∗γ1,t−1, ..., ε

∗
γn,t−1

´0
=

t−1X
j=1

ωj (γ) εδ,t−j;

ε∗∗γ,t−1 =
³
ε∗∗γ1,t−1, ..., ε

∗∗
γn,t−1

´0
=

∞X
j=1

ωj (γ) εδ,t−j.

Some comments on these definitions follow. The process ωj (γs) , 1 ≤ s ≤ n, in Definition 2.1
is related to the asymptotic expansions of the polynomials log ξγs (L; δs) which characterise the
score vector under the null hypothesis and, therefore, plays a major role in the construction of
LM test statistics; see the next section for details. Similarly, Definitions 2.2. and 2.3 introduce
two key variables for this context: the sample-based (or observable) vector-series ε∗γ,t−1, and its
asymptotic (or theoretical) counterpart ε∗∗γ,t−1, which are determined by weighting the filtered
series εδt. As formally shown in the technical appendix, constructing the test statistics by using
the observable information does not impact on the asymptotic distribution.

2.1 The Lagrange Multiplier Test

In this section, we present an LM procedure for testing fractional integration under assumptions
A.1 and A.2, which will be useful in order to better understand the regression framework
presented below. We construct a Gaussian likelihood function, as though the innovations were
normally distributed, but note that this is not required in order to ensure the validity of the
asymptotic results.
Hence, consider δ = d+ θ, with i-th element δi = di + θi and recall that εδt = ∆γ (L; δ)xt.

The Gaussian log-likelihood function for (δ0, σ2)0, given γ =(γ1, ..., γn)
0 and conditional on the

set of observable information xT = {xt, t = 1, ..., T} is

L(δ, σ2|xT ) = −
T

2
log(2πσ2)− 1

2σ2

TX
t=1

(εδt)
2 (2)
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and the respective gradient of (2) evaluated under H0 : θ = 0 is

∂L(δ, σ2|xT )
∂θ

¯̄̄̄
θ=0

= − 1
σ2

TX
t=1

εt

µ
∂εδt
∂θ

¶¯̄̄̄
θ=0

.

Note that if γ1 = 0, i.e. the zero frequency is considered, then the partial derivative of εδt on
θ1 is

∂εδt
∂θ1

= log (1− L) (1− L)θ1 (1− L)d1
hYn

i=2
ξγi (L; δi)

i
xt

which reduces to log (1− L)∆γ (L;d)xt = log (1− L) εt when the score vector is evaluated at
θ = 0. Similarly, the partial derivatives with respect to θs, s = 2, ..., n− 1, for γs ∈ (0, π) and
θn for γn = π, when evaluated under the null hypothesis are given, respectively as,

∂εδt
∂θs

¯̄̄̄
H0:θ=0

= log
¡
1− 2 cos γsL+ L2

¢
εt, and

∂εδt
∂θn

¯̄̄̄
H0:θ=0

= log (1 + L) εt.

Following Chung (1996), Gradshteyn and Ryzhik (2000, sect. 1.514), and Breitung and Has-
sler (2002), the elements that characterise the score vector under the null hypothesis can be
expanded as:

log
¡
Fγk

¢
εt = −

∞X
j=1

ωj (γk) εt−j,

where Fγ1 = 1 − L, Fγl = ξγl (L; 1) , l = 2, ..., n − 1, Fγn = 1 + L and ωj (γk) is as given in
Definition 2.1. Using Definitions 2.2 and 2.3, it follows that,

∂L(δ, σ2|xT )
∂θ

¯̄̄̄
H0:θ=0

=
1

σ2

TX
t=1

εt

Ã ∞X
j=1

ωjεt−j

!
≡ 1

σ2

TX
t=1

εt
¡
ε∗∗γ,t−1

¢
for which the final sample version is,

∂L(δ, σ2|xT )
∂θ

¯̄̄̄
H0:θ=0

=
1

σ2

TX
t=2

εt

Ã
t−1X
j=1

ωjεt−j

!
≡ 1

σ2

TX
t=2

εt
¡
ε∗γ,t−1

¢
.

Under the null hypothesis and given the restrictions provided in Assumption A.2, εt is
uncorrelated with ε∗γ,t−1 and ε

∗
γ,t−1 is (asymptotically) covariance stationary, and so is the score

vector. The Fisher information matrix, estimated as the outer product of gradients, is given by
the inverse of

1

σ4
1

T

TX
t=2

ε2t
¡
ε∗γ,t−1ε

0∗
γ,t−1

¢
which converges in probability to a finite, invertible covariance matrix under Assumptions A.1
and A.2. Therefore, a suitable test statistic for H0 : θ = 0 under the Lagrange Multiplier
principle can be devised. This is formally stated next in Theorem 2.1.

Theorem 2.1. Let {xt, t = 1, ..., T} be an observable process such that Assumptions A.1 and
A.2 hold true. Given some arbitrary d ∈ Rn, define the test statistic

LMT =

Ã
TX
t=2

εdtε
∗
γ,t−1

!0 " TX
t=2

ε2dtε
∗
γ,t−1ε

0∗
γ,t−1

#−1Ã TX
t=2

εdtε
∗
γ,t−1

!
(3)
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with
©
εdt, ε

∗
γ,t−1

ªT
t=1

determined based on d according to Definitions 2.1-2.3. Then, under the
null hypothesis H0 : δ = d or equivalently, H0 : θ = 0, it follows as T →∞ that,

LMT ⇒ χ2(n),

where χ2(n) stands for a Chi-squared distribution with n degrees of freedom.

Proof. See Appendix B.

Theorem 2.1 generalises the LM test proposed by Tanaka (1999) considering single or mul-
tiple fractional integration at any frequency in [0, π] , and with innovations which are not nec-
essarily independent but simply MDS. Hence, the testing procedure suggested is robust against
(conditional) heteroskedasticity of unknown form provided that the regularity conditions are
observed. Under the i.i.d assumption in A.2.1, the asymptotic variance of the score vector is
given by σ2Γγ, Γγ ≡

P∞
j=1ωj (γ)ω

0
j (γ) , which equals σ

2π2/6 for the restricted case γ1 = 0 and
n = 1 analysed in Tanaka (1999); see Appendix A for further details. The variance parameter
σ2 can be estimated consistently as bσ2T =PT

t=2 ε
2
dt/T, where the non-stochastic matrix Γγ can

be determined by the close-form representations given in Appendix A, or by simple numerical
approximation.

Remark 2.1: For theoretical purposes we have considered that the vector of frequencies γ is
known. This allows us to discuss the asymptotic distribution of the LM test under fractional
integration at any frequency, or combination of frequencies, in [0, π]. For empirical purposes,
this restriction holds naturally for the zero-frequency case as well as for pure seasonal models,
as γ is predetermined, but it may prove restrictive when analysing cyclical models by means
of Gegenbauer polynomials. This limitation also extends to the frequency-domain test studied
in Robinson (1994) and, as a result, both methods would require consistent estimates of the
unknown frequencies in the most general context. Different estimation methods have been
proposed in the literature; see, among others, Yajima (1996), Giriatis, Hidalgo, and Robinson
(2001), Hidalgo and Soulier (2004), Dalla and Hidalgo (2005), and Hidalgo (2007). However,
the formal proof for consistency is limited to the case |d| < 1/2 and remains to be shown for
the most general case treated in this paper, which motivates an interesting topic for further
research. In any case, the estimation bias that may arise when inferring γ in small samples,
may imply further biases when using the estimated values in subsequent testing.

Remark 2.2: The LM test previously described in Theorem 2.1 may also be obtained under
short-run dynamics in the errors, i.e., the more general assumption A.20; see, for instance,
Robinson (1994) and Tanaka (1999, pp. 563-565). The results in Tanaka (1999) regarding the
handling of short-run dynamics, although relating to the zero frequency only, are interesting
and illustrative of the difficulties involved in the correction of autocorrelation in the residuals.
Tanaka (1999, p.564), in reference to ARMA errors, shows that the computation of the vari-
ance/covariance matrix necessary to robustify the test becomes more involved as the orders of
the autoregressive and moving average components become larger. This characteristic of the
time domain Lagrange Multiplier tests makes the regression based test procedures described
next an appealing approach from an empirical point of view.
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2.2 Regression-based tests for fractional integration

As an alternative to the approach discussed in the previous section, we propose a testing
procedure that belongs to the linear regression context which is asymptotically equivalent to the
LMT test statistic. The regression-based approach was pioneered by Agiakloglou and Newbold
(1994) for the context of fractional integration at the zero frequency and further developed in
Breitung and Hassler (2002), Hassler and Breitung (2006), and Demetrescu et al. (2008) for the
same context. Regression-based tests are particularly useful for the empirically relevant case in
which data exhibit weak correlation. Hence, we discuss the testing principle and the asymptotic
distribution of the relevant tests under the more general assumption A.20. The results for the
restricted case studied in Assumption A.2 follow straightforwardly. The following proposition
states the general testing strategy in the regression framework.

Proposition 2.1. Given {xt, t = 1, ..., T} under Assumptions A.1 and A.20, the null hypothesis
H0 : θ = 0, i.e., xt ∼GFI(d) , d ∈ Rn, can be tested against the alternative H1 : xt ∼GFI(d+ θ),
θ 6= 0, through a test for the joint significance of the regression coefficients {φs}ns=1 (i.e.,
H0 : φ1 = ... = φn = 0), in the following augmented least-squares auxiliary regression:

εdt =
nX

s=1

φlε
∗
γs,t−1 +

pX
i=1

ζ iεd,t−i + etp, t = p + 1 , ...,T (4)

where
n
εdt, ε

∗
γs,t−1

oT
t=2

is determined based on d according to Definitions 2.1-2.3, and p repre-

sents the order of augmentation considered.

The statistical properties of the LS estimates of φ = (φ1, ..., φn)
0 under the null differ from

those under the alternative hypothesis, which provides us with the basis to statistically identify
the order of integration of the data. Note that, by sharp contrast to the LMT test, the problem
of short-run dynamics can easily be handled in the regression context by means of augmentation,
as in the case of the well-known Dickey-Fuller (DF) test. Theorem 2.2 shows the limit results for
the estimated coefficients in the auxiliary regression (4) under the set of restrictions considered,
and Theorem 2.3 discusses the asymptotic distribution of a suitable test statistic.

Theorem 2.2. Denote β =
¡
φ1, .., φn, ζ1, ..., ζp

¢0
and let βT be the (n+p) estimated vector

of parameters in the pth order augmented auxiliary regression εdt = β0X∗tp + etp, with X∗tp =¡
ε0∗γ,t−1, εd,t−1, ..., εd,t−p

¢0
. Let the (n+p) vector µ0 = (0, ..., 0, a1, ..., ap)

0 , with the ai parameters
corresponding to the autoregressive coefficients in (1−

Pp
i=1 aiL) εt = vt. Then, under the null

hypothesis and Assumptions A.1 and A.20, as T→∞,

√
T (βT − µ0)⇒ N

³
0,
¡
Ω∗∗p

¢−1
Λp

¡
Ω∗∗p

¢−1´
with Ω∗∗p ≡ E

¡
X∗∗tpX

0∗∗
tp

¢
and Λp ≡ E

¡
v2tX

∗∗
tpX

0∗∗
tp

¢
, where X∗∗tp =

¡
ε0∗∗γ,t−1, εd,t−1, ..., εd,t−p

¢0
.

Proof. See Appendix B.

Remark 2.3: Consider A.1 and the more restrictive condition A.2 which sets p = 0. Let
φT be the estimated vector of parameters from an auxiliary regression with no augmentation,
εdt = φ0ε∗γ,t−1 + et, t = 2, ..., T . Then, under the null hypothesis H0 : θ = 0, and as T→∞,

√
TφT ⇒ N (0,Vγ) ,
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where Vγ =
¡
1
σ4

¢
Γ−1γ Λε,γΓ

−1
γ , with Γγ ≡

P∞
j=1ωj (γ)ω

0
j (γ) defined previously, and Λε,γ =

E
¡
ε2tε

∗∗
γ,t−1ε

0∗∗
γ,t−1

¢
; for details, see Hassler, Rodrigues and Rubia (2008).

Owing to asymptotic normality, and since the null hypothesis only implies linear restrictions
on the parameters involved, we can easily test H0 : θ = 0 by means of a test statistic based
on the Wald representation which tests for H0 : φ = 0 in the auxiliary regression. Note that,
although we use the functional form of a Wald-type test, our testing procedure is an LM or
score test because it builds directly on the gradient of the likelihood function. Theorem 2.3
discusses its asymptotic distribution in the general case.

Theorem 2.3. Let R be an n × (n + p) matrix such that [R]ij = 1 for all i = j and zero
otherwise. Consider the Wald-type test statistic on the estimates of the augmented auxiliary
regression, i.e.,

Υ
(n)
Wp =

h√
TRβT

i0 h
RbVTR

0i−1 h√
TRβT

i
(5)

with bVT being the sample estimation of the covariance matrix of βT such that

bVT =

Ã
1

T

TX
t=p+1

X∗tpX
∗0
tp

!−1Ã
1

T

TX
t=p+1

be2tpX∗tpX∗0tp
!Ã

1

T

TX
t=p+1

X∗tpX
∗0
tp

!−1
,

where betp denotes the estimated residuals from (4). Under the same conditions of Theorem 2.2,
Υ
(n)
Wp is asymptotically equivalent to LMT , i.e., Υ

(n)
Wp ⇒ χ2(n).

Proof. See Appendix B.

Corollary 2.1. Consider the restricted joint hypothesis θ =θ1n, for some scalar θ 6= 0, and
where 1n is a vector of ones in Rn. This is the case, for instance, when analysing the suitability
of so-called (seasonal) rigid models, which assume homogeneity in the order of fractional inte-
gration across the set of frequencies involved; see Porter-Hudak (1990) and Hassler (1994). The

auxiliary regression in this case is given as εdt = φ̄
³Xn

s=1
ε∗γs,t−1

´
+

pX
i=1

ζiεd,t−i + ut, and the

relevant test statistic, say Ῡ(n), analyses the significance of the φ̄ parameter. This test statistic,
which is a squared t-statistic, is asymptotically distributed as χ2(1), since only one restriction is
implied.

Corollary 2.2. If {vt} in assumption A.20 is i.i.d with finite fourth-order moment, E
¡
v2tX

∗∗
tpX

∗∗0
tp

¢
is

proportional to E
¡
X∗∗tpX

∗∗0
tp

¢
. Hence, the null hypothesis H0 : φ = 0 can easily be tested by us-

ing alternative test statistics which can be constructed under the Lagrange Multiplier and the
Likelihood Ratio principles, and which are asymptotically equivalent to LMT . As discussed pre-
viously, in the context of this paper all these tests are necessarily LM tests regardless of their
functional form. Let Υ(n)

LR,p = T (logSR − logSu) and Υ
(n)
LM,p = T (SR − Su) /SR, where SR and

Su denote the squared sum of restricted and unrestricted residuals, respectively. Then, under
the null, and as T→∞, Υ

(n)
LR,p ⇒ χ2(n) and Υ

(n)
LM,p ⇒ χ2(n).

Proof : For proof of corollaries 2.1 and 2.2, see Appendix B.

Remark 2.4. The regression-based tests discussed (either with augmentation under short-run
dynamics, or no-augmentation under the MDS assumption) are asymptotically equivalent to
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the time-domain LM test in Section 2.1, to the frequency-domain test in Robinson (1994), and
to the general maximum likelihood-based tests in Nielsen (2004). The LM regression-based
test in Breitung and Hassler (2002), focusing on the fractionally integrated model, ∆γ (L;d) =

(1− L)d, arises for n = 1 at frequency zero as a particular case in our context. It is worth
mentioning that, as remarked in Nielsen (2004), the experimental simulations in Tanaka (1999),
and Breitung and Hassler (2002), show that in finite samples the time domain test procedures
tend to be superior to the frequency domain tests, both in size and power behaviour, hence a
similar performance is likely to be observed in a more general setting as well.

Remark 2.5. The tests presented above are robust against conditional heteroskedasticity of
unknown form. This is achieved by using a consistent estimate of the asymptotic covariance
matrix Vγ based on a version of the Eicker-White estimator. If the data are believed to be
generated under assumptions A.1 and A.2.1 then Vγ = Γ−1γ , and subsequently used directly.

Remark 2.6. As discussed in Breitung and Hassler (2002), the auxiliary regression centered
on the zero-frequency, εdt = φ1ε

∗
0,t−1 + et, is reminiscent of the Dickey-Fuller regression and

the Wald-test in Dolado, Gonzalo and Mayoral (2002). Nevertheless, meaningful differences
arise since in the DF test the regressor is I(0) under the alternative, whereas ε∗0,t−1 is FI(d+ θ)
owing to the different types of weights used in constructing these variables. Similarly, for pure
seasonal models, the general auxiliary regression in Proposition 2.1 is evocative of the Hylle-
berg, Engle, Granger and Yoo (1990) [HEGY] test regression, in the sense that the regressors
ε∗γs,t−1 are weighted linear combinations of lags of εdt related to a specific (seasonal) frequency.
Further differences arise in this case, because regressors in the HEGY context are ensured to
be asymptotically orthogonal by construction, whereas the LM-based regressors are not. This
feature advises against testing partial hypothesis (i.e., subsets of m parameters) based on the
estimates of the general model (i.e., after estimating a regression with n > m parameters), as
the covariance matrix is not (block) diagonal.

Remark 2.7. GFI models are particularly difficult to estimate in practical settings owing to
their strong non-linear nature. Proposition 2.1 provides a valuable tool to construct confidence
sets that include the true value, d ∈ Rn, with (1− α)% asymptotic nominal probability. These
sets could be used to obtain reliable starting values for optimisation routines aiming to estimate
d, such as the (quasi)-maximum likelihood methods discussed in Chung (1996) and Nielsen
(2004). Confidence sets can be obtained from a grid-search on Θ, a compact subset of Rn, by
using the results in Proposition 2.1. For instance, denote Υ(n)

W,δ as the value of the test statistic

in Theorem 2.3 when evaluated at any δ ∈ Θ, and let DTα =
n
δ : Pr

h
χ2(n) ≤ Υ

(n)
W,δ

i
≤ 1− α

o
,

i.e., the subset of Θ containing all the vectors for which the null hypothesis cannot be rejected
at the (1− α)% asymptotic nominal confidence level. If DTα is in the interior of Θ, then the
probability of d being in the closure of DTα is at least (1− α)%. The grid-search process is
computationally feasible because the dimension parameter n is not large in empirical models,
and because the order of integration in observable data usually assumes values in a small
range. For rigid models, a confidence interval of the form

£
dαT,l, d

α
T,u

¤
can easily be constructed

from Corollary 2.1, given D̄Tα =
n
δ : Pr

h
χ2(1) ≤ Ῡ

(n)
δ

i
≤ 1− α

o
, by setting dαT,l = inf D̄Tα and

dαT,u = sup D̄Tα.

Remark 2.8 Demetrescu et al. (2008) analyse the performance of several procedures to deter-
mine the order of augmentation, p, of the test regression in finite samples and conclude in favour
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of the rule of thumb proposed by Schwert (1989) which shows relatively good performance in
finite-samples. This rule sets p =

£
c(T/100)1/4

¤
, where c is a positive constant and [·] denotes

the integer value of the argument.

Remark 2.9. Throughout our analysis, we have focused on the model ∆γ (L;d) (xt − µt) = εt,
by allowing for different dynamics in εt, and restricting µt = 0 for simplicity of analysis. As
commented in Breitung and Hassler (2002), the simplest way to deal with non-zero deterministic
patterns, µt 6= 0, is to detrend xt prior to computing the relevant test statistics. This does not
affect the limit distribution of the relevant statistics; see the discussion in Robinson (1994).

Remark 2.10. The theoretical derivation of the local power functions under the alternative is
a nontrivial problem due to the multiple hypothesis context. For restricted cases, it becomes
more tractable, and it can be shown, following for instance Tanaka (1999) and Demetrescu et
al. (2008) under the additional restriction xtI(t≤0) = 0, that the test procedures will converge
to a noncentral Chi-squared distribution under local alternatives for which θi = O

¡
T−1/2

¢
.

Since for applied purposes the behaviour of the power function in finite-samples is particularly
relevant, we shall address this issue carefully next in the Monte Carlo section.

3 Finite-sample analysis

In this section, we address the empirical properties of the regression-based test statistic in
finite samples. The zero-frequency fractionally integrated process, ∆γ (L;d) = (1− L)d , has
received considerable attention in the literature; see for instance, Breitung and Hassler (2002),
and Nielsen (2004), among others. These show the good finite-sample performance of LM tests,
both in absolute terms and in relation to alternative frequency domain-based procedures. We
therefore analyse cyclical and seasonal models aiming to contribute to better understand the
properties of LM tests in the general context.
The applied literature on cyclical or seasonal fractionally integrated models has focused

on both economic and non-economic variables. Empirical datasets are characterised by quite
different features. The number of observations available for financial and many geophysical
variables is relatively large, and often includes several thousand observations, whereas the
length of macroeconomic variables is much more limited.2 Data recorded on a high-frequency
basis typically exhibit persistent short-run dynamics, whereas aggregated data tend to display
considerably weaker forms of serial dependence. We consider the possibility of different types
of short-run dynamics as well as different sample sizes to analyse the empirical size and power.
In particular, we focus on samples of length T ∈ {100, 250, 500} . For data sets involving a large
number of observations, as some of those analysed in the literature, the asymptotic theory is
expected to provide a good approximation.
In the first experiment we consider a simple pure cyclical model,

(1− 2 cos γsL+ L2)d+θxt = εt

in order to analyse the empirical size and power properties of Υ(1)
W , which is asymptotically

distributed as χ2(1), when testing H0 : d = 1 with true values given by d = 1 and θ ∈ [−0.3, 0.3] .
2The dataset in Bouette et al. (2006), relating to hourly average wind speeds measured between 1951 and

2003, includes over 16,000 observations, Soares and Souza (2006) consider two years of hourly electricity demand
and Gil-Alana (2005) studies US monthly inflation in a dateset with more than 1000 observations.
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We consider 5000 replications and εt ∼ iidN (0, 1). Since the Gegenbauer frequency γs is a
‘free’ parameter, we set γs = sπ/10, with s = 1, ..., 9. The rejection frequencies for a nominal
significance level of 5% and sample sizes of T = 100 and T = 250 are shown in Table 1.

[Insert Table 1 around here]

The test shows approximately correct size and good power performance even in small sam-
ples. For θ = 0, only minor differences in the empirical size of the tests, following no particular
pattern, arise across the γs frequencies considered. For non-zero values of θ, we observe sev-
eral interesting features in the empirical power functions. First, given γs and T , power tends
to exhibit a symmetric U-shaped figure around the π/2 frequency, which is more evident for
small values of |θ|. This suggests that, the larger the difference |γs − π/2| with γs ∈ (0, π) , the
more powerful the testing procedure becomes. The dependence of power on the particular fre-
quency the test is related to is not surprising, since the variance of the regressor (and hence, the
signal-to-noise ratio and, ultimately, the power of the test) depends on the specific frequency,
γs, considered and, more generally, on γ; see appendix A for further technical details. Fur-
thermore, if we compare these results to those in Breitung and Hassler (2002, Table 1, p.176)
for the zero-frequency case, the power observed at the long-run frequency is approximately of
the same order as that for γs = π/2. This suggests that, everything else equal, fractionally
integrated dynamics is generally easier to detect at the cyclical than at the zero-frequency. A
similar feature appears when dealing with γs = π (not reported here) for which power is similar
to that of γs = π/2.3 Dealing with the non-zero frequency also has other benefits in terms of
power. For fixed T and γs, the power functions tend to be symmetric around θ = 0, since only
the size of θ − 0, and not its sign, seems to drive the probability of rejection. This does not
seem to be the case for the zero-frequency case analysed in Breitung and Hassler (2002), where
the LM test is likely to reject more easily if θ < 0. Finally, power is largely enhanced even for a
small sample of T = 250, and virtually reaches 100% for all tests when T = 500, thus showing
the consistency of the testing procedure in cases of small samples.
As a second experiment, we consider a more general two-factor cyclical model given by,

(1− 2 cos γ1L+ L2)d1+θ1(1− 2 cos γ2L+ L2)d2+θ2xt = εt.

We address the ability of the unrestricted joint test Υ(2)
W , asymptotically distributed as χ2(2),

as well as that of the restricted joint test Ῡ(2) discussed in Corollary 2.1 and asymptotically
distributed as χ2(1), to detect fractionally integrated dynamics. As before, we set d1 = d2 = 1,

and θ1, θ2 ∈ [−0.3, 0.3] , considering 5000 replications and εt ∼ iidN (0, 1). The joint test Υ(2)W

is expected to reject the null hypothesis if fractional integration is present in, at least, one of
the frequencies involved. The restricted joint test Ῡ(2) should be more efficient than Υ

(2)
W when

the restriction θ1 = θ2 is true, but it is expected to exhibit less comparative power to reject the
false null otherwise.
In view of the previous experiment, we expect the power function to depend on the value

of γ = (γ1, γ2)
0 . We set γ1 = 0.15 ≈ π/20, based on the estimated frequency of the business

cycle by the NBER, and consider what seems to be the most unfavourable frequency for the
tests when dealing with frequencies in (0, π), given by γ2 = π/2, which also corresponds to one

3Note that the asymptotic variance is proportional to ψ (γ) , see appendix A. This is a positive, symmetric
and non-continuous function in [0, π] that takes the minimum value ψ (γ) = π2/6 for γ ∈ {0, π/2, π} , and the
maximum value given by limγ→0+ψ (γ) =limγ→π−ψ (γ) = 2π

2/3.We can therefore expect a discontinuity in the
power function for the case γ = 0 + � or γ = π− � even for an arbitrarily small � > 0.
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of the harmonics of quarterly and monthly seasonality. For frequencies γ ∈ (0, π) away from
π/2, further simulations (not reported here) show much better statistical performance both in
terms of size and power. The rejection frequencies for a nominal significance level of 5% and
sample length T = 100 are shown in Table 2.

[Insert Table 2 around here]

Several interesting features emerge from this experiment in relation to the joint test statistics
Ῡ(2) and Υ

(2)
W . We observe that the restricted test is more powerful than the latter when the

restriction θ1 = θ2 is true, but is also considerably less efficient in the general context θ1 6= θ2,
particularly for small values of |θ|. Both tests tend to reject the (false) null more easily when
fractional integration is present at frequency 0.15, i.e., at the frequency for which the magnitude
|γs − π/2 | is larger. For instance, if d1 = 1 − 0.1 and d2 = 1, the power of Ῡ(2) and Υ

(2)
W is

approximately 39.8% and 48.7%, respectively. In contrast, for d1 = 1 and d2 = 1 − 0.1, the
power is only 8.2% and 16.1%. When both θ1 and θ2 move away from the origin, the power
of the joint tests, particularly that of Υ(2)

W , increases significantly. We note that the power of
Υ
(2)
W seems to be symmetric for the set of frequencies considered, whereas the restricted joint

test Ῡ(2) tends to reject more easily when θ1 > 0 and θ2 < 0 when compared to the converse
case. For instance, the power of Ῡ(2) for θ1 = 0.3 and θ2 = −0.3 is almost 100%, and around
25% for θ1 = −0.3 and θ2 = 0.3. By contrast, the power of the unrestricted test Υ

(2)
W in any of

these cases is almost 100%. As in the case of the one-factor model, considering larger samples,
T ∈ {250, 500} leads to considerable improvement of the statistical properties of all the tests.
We do not present these results to save space but can be provided upon request.
Finally, the last set of experiments also considers the two-factor filter ∆γ (L; δ) = (1 −

2 cos γ1L + L2)d1+θ1(1 − 2 cos γ2L + L2)d2+θ2, but now allowing for stationary and invertible
ARMA patterns in the error term, i.e., we analyse the performance of the augmentation-based
test statistics when the DGP is,

∆γ (L; δ)xt = εt and (1− aL) εt = (1− bL) vt,

under the restriction |a| < 1 and |b| < 1. We first focus on ARMA(1,1) dynamics and, as
in Demetrescu et al. (2008), set a = 0.5 and b = −0.5. The ARMA(1,1) model is particu-
larly relevant because short-run dynamics in empirical applications are usually characterised
parsimoniously through this specification. Additionally, we analyse in more detail the effects
of persistence through an AR(1) with parameter a ∈ {0.5, 0.75, 0.9} and b = 0 in the above
specification. Since for empirical purposes the underlying structure of the short-run component
is typically unknown, we explore the effects on the tests when the number of lags to be included
in the auxiliary regression are determined according to Schwert’s rule, p =

£
4(T/100)1/4

¤
, as

this showed the best performance in the empirical analysis in Demetrescu et al. (2008). The
rejection frequencies for the joint tests given ARMA(1,1) patterns for T ∈ {100, 500} are shown
in Table 3, whereas Tables 4 and 5 report the respective empirical results for AR(1) errors for
the given values of the autoregressive coefficient a.

[Insert Table 3 around here]

We first discuss the results for the ARMA(1,1) dynamics. The general conclusions that
arise for the weakly-dependent case are similar to those observed for the i.i.d case, although
we observe several quantitative changes. Augmentation enables correction of the empirical
size for all tests, and only small undersizing effects are observed in our simulations. However,
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and as shown in previous literature, ensuring correct empirical size against general ARMA
dynamics through augmentation in small samples, such as T = 100, occurs usually at the cost
of potentially large power reductions when compared to the i.i.d. case. This pervasive effect
has been widely documented in the unit root literature, where the augmented Dickey-Fuller
regression is perhaps the most widely used in applied settings. In fact, the power of the joint
tests shows figures similar in magnitude to those observed in Demetrescu et al. (2008) for the
zero frequency fractionally integrated case. By contrast to the unit root case, importantly,
power improves considerably faster at frequencies away from zero. For instance, for the ARMA
model considered, the power of Υ(2)

Wp is not larger than 39% in the range θ = (−0, 3, 0.3)
0 when

only 100 observations are available. For a larger sample of T = 500, all else equal, power
increases up to 98%. Similarly, the joint restricted test Ῡ(2)

p has a peak of approximately 30%
for T = 100 when θ1 = θ2 = −0.3, which increases significantly to 99% when T = 500.

[Insert Tables 4 and 5 around here]

Similar results can be observed when analysing the effects of persistence in residuals. Al-
though the empirical size is approximately correct in all cases, as the autoregressive root ap-
proaches one in a small sample with 100 observations, power reductions with respect to the i.i.d.
case are far more evident. For small values of |θ| it becomes difficult to reject the false null,
and even for some configurations which include relatively large values of θ when a = 0.9. As in
the previous case, the power of the tests considerably improves as the number of observations
increases. Therefore, for the test Υ(2)

Wp, given the samples typically available for many empirical
applications, augmenting the regression proves a valid tool to ensure empirical sizes close to
the asymptotic nominal level and good power properties.

4 Conclusion

In this paper, we analyse time domain regression-based tests that allow testing for fractionally
integrated patterns against integer or fractional integration in general models. The tests in-
volving single or multiple parameters can be computed from simple least-squares regressions,
and are asymptotically equivalent to the frequency-domain LM tests of Robinson (1994) and
the likelihood-based tests in Nielsen (2004), for which the relevant critical values are obtained
from a Chi-square distribution with as many degrees of freedom as the number of restrictions
being tested, and independent of the order of integration. Augmented versions of these tests
are asymptotically robust against weakly-dependent errors following unknown patterns under
quite general conditions, and exhibit good statistical performance in samples of moderate size.
This makes the general regression-based LM testing strategy discussed in this paper a valuable
tool when addressing preliminary data analysis in which parsimonious yet potentially restrictive
hypothesis related to the order of integration of the data is formally validated or refuted.

Appendix A: Asymptotic covariance matrix in the i.i.d
case

In this appendix we present the limit expressions which characterise the asymptotic variances
and covariances of the score vector under i.i.d observations.
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Definition A.1. For any γ ∈ [0, π] , let ψ (γ) = limT→∞
XT

j=1
ω2j (γ) . Following Gradshteyn

and Ryzhik (2000, sect. 1.443), it follows that ψ (γ) = π2/6, if γ ∈ {0, π} , and ψ (γ) =
2 (π2/3− πγ + γ2) , otherwise. Similarly, given γk, γm ∈ [0, π], γk 6= γm, let ψ (γk, γm) =

limT→∞
XT

j=1
ωj (γk)ωj (γm) . Note that |ψ (γk, γm) | <∞, in particular, we have

ψ (γk, γm) =

⎧⎨⎩ −ψ (γm) /2 if γk = 0, γm = π
(ψ (γm)− γ2m) /2 if γk = 0, γm ∈ (0, π)
−ψ (γm) /4− γm (π/2− γm) if γk = π, γm ∈ (0, π)

,

and, if γk,γm ∈ (0, π) , then

ψ (γk, γm) =
2π2

3
− π (γk + γm + |γk − γm|) +

£
(γk + γm)

2 + (|γk − γm|)2
¤

2
= ψ (0, |γk − γm|) + ψ (0, γk + γm) .

Definition A.2. Given γ = (γ1, ..., γn)
0 , with 0 ≤ γ1 < γ2 < ... < γn ≤ π, denote Γγ =

limT→∞
PT

j=1ωj (γ)ωj (γ)
0 , i.e.,

Γγ =

⎛⎜⎜⎜⎝
ψ (γ1) ψ (γ1, γ2) ... ψ (γ1, γn)

ψ (γ2, γ1) ψ (γ2) ... ψ (γ2, γn)
....

...
. . . .

...
ψ (γn, γ1) ψ (γn, γ2) ... ψ (γn)

⎞⎟⎟⎟⎠ ,

with Γγ < ∞ being a symmetric positive definite matrix. Under the i.i.d restriction, the
asymptotic variance of the score vector is proportional to Γγ ; see Appendix B for further details.

Appendix B: Technical Proofs

Before proceeding, consider the following additional notation. For an (n × 1) vector A, ||A||
denotes the Euclidean vector norm, such that ||A||2 = A0A. For an (n × m) matrix A, ||A||
denotes the Euclidean matrix norm, ||A||2 = tr (A0A) . The constant K is used throughout the
proofs to refer to some generic strictly positive constant which does not depend on the sample
size. The notation, ⇒, p→, ms→, → denotes weak convergence, convergence in probability, mean
square convergence and convergence of a series of real numbers, respectively. The conventional
notation o (1) (op (1)) is used to represent a series of numbers (random numbers) converging
to zero (in probability), while O (1) (Op (1)) denotes a series of numbers (random numbers)
that are bounded (in probability). As in the main text, I(·) is an indicator function, and
vectors and matrices are denoted through bold letters. Finally, since γ is used to refer to the
vector of frequencies that characterise the filter ∆γ (L; δ), we shall use the short-hand notation
ωj ≡ ωj (γ) as there is no risk of confusion.
Next, we provide some preliminary Lemmae necessary for the proofs of the theorems pre-

sented in the text.

Lemma B.1. Consider assumptions A.1 and A.2, and let εt = ∆γ (L;d)xt and γ ≡ (γ1, .., γn)0.
Consider the random vectors, ε∗γ,t−1 and ε

∗∗
γ,t−1 as given in Definition 2.3, ε

∗∗
γ,t−1−ε∗γ,t−1 = ϑγ,t,
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Ω∗∗t = ε∗∗γ,t−1ε
0∗∗
γ,t−1, and Ω

∗
t = ε∗γ,t−1ε

0∗
γ,t−1. Then, for any arbitrary constants α > 0, β > 1/2, it

follows as T→∞ that,

i) ϑγ,t = Op

¡
t−1/2

¢
, and E||εtϑγ,t||2 = O (t−1) + o (t−2) ,

ii) ||T−α
PT

t=2 εtϑγ,t|| = op (1) and ||T−α
PT

t=2ϑγ,t|| = op (1) ,

iii) ||T−β
PT

t=2 (Ω
∗∗
t −Ω∗t ) || = op (1) ,

iv) ||T−β
PT

t=2 ε
2
t (Ω

∗∗
t −Ω∗t ) || = op (1) .

Proof of Lemma B.1.
For part i), let γ ∈ [0, π] and denote ϑγ,t =

P∞
j=t ωj (γ) εt−j. Since ωj (γ) = O (1/j) , it follows

that E
£
(ϑγ,t)

2¤ = O
³P∞

j=t 1/j
2
´
= O (t−1) and, therefore,

√
tϑγ,t = Op (1) . Hence, ε∗∗γ,t−1 −

ε∗γ,t−1 ≡ ϑγ,t = Op

¡
t−1/2

¢
. Also, E||εtϑγ,t||2 =

nX
s=1

∞P
j=t,l=t

ωj (γs)ωl (γs)E (ε
2
t εt−jεt−l) , where,

from stationarity, E (ε2tεt−jεt−l) = κε (0, j, l, 0) + σ4I(j=l) and, since κε (0, j, l, 0) = o
³

1
|j| |l|

´
necessarily under the assumption of absolute summability, then

∞X
j=t,l=t

ωj (γs)ωl (γs)E
¡
ε2t εt−jεt−l

¢
= σ4

∞X
j=t

ω2j (γs) + o

Ã ∞X
j=t,l=t

1

j2l2

!

= O

Ã ∞X
j=t

1/j2

!
+ o

Ã ∞X
j=t

1

j2

!
o

Ã ∞X
l=t

1

l2

!
and therefore E||εtϑγ,t||2 = O (t−1)+o (t−2) as required. Note that, under assumptionA.2.1 and
κε (0, j, l, 0) = 0 the required result simplifies trivially to E||εtϑγ,t||2 = O (t−1) . For part ii),
since E (εtεsεt−jεs−l) = 0 for all t 6= s owing to the MDS property of εt, we have

E

°°°°° 1Tα

TX
t=2

εtϑγ,t

°°°°°
2

≤ 1

T 2α

TX
t=2

E||εtϑγ,t||2 + o (1)

=
1

T 2α

Ã
TX
t=2

£
O
¡
t−1
¢
+ o

¡
t−2
¢¤!

+ o (1)

= O

µ
log T

T 2α

¶
+ o

¡
T−2α

¢
+ o (1) = o (1)

for any α > 0 under Assumptions A.1 and A.2, by using (i). From Markov’s inequality,°°°°° 1Tα

TX
t=2

εt
¡
ε∗∗γ,t−1 − ε∗γ,t−1

¢°°°°° = Op

³p
log T/Tα

´
= op (1) .

Similarly,

E

°°°°° 1Tα

TX
t=2

ϑγ,t

°°°°°
2

≤ 1

T 2α

nX
s=1

TX
t=2

∞X
j=t,l=t

ωj (γs)ωl (γs)E (εt−jεt−l) + o (1)

=
nX

s=1

Ã
1

T 2α

TX
t=2

∞X
j=t

ω2j (γs)E
¡
ε2t−j

¢!
+ o (1)

= O

µ
log T

T 2α

¶
.

16



For part iii), first note that

Ω∗∗t −Ω∗t =

Ã ∞X
j,l=t

ωjω
0
lεt−jεt−l

!
+

Ã
t−1X
j=1

∞X
l=t

ωjω
0
lεt−jεt−l

!
+

Ã ∞X
j=t

t−1X
l=1

ωjω
0
lεt−jεt−l

!
= D1t +D2t +D3t,

where these terms have been defined implicitly. For the first component, note that D1t =
ϑγ,tϑ

0
γ,t. Then, from the triangle and Cauchy-Schwarz matrix inequalities and theMDS property

of εt it follows that

E

°°°°° 1Tα

TX
t=2

ϑγ,tϑ
0
γ,t

°°°°° ≤ 1

Tα

TX
t=2

E
°°ϑγ,tϑ0γ,t°° ≤ 1

Tα

TX
t=2

E kϑγ,tk2

≤
nX
i=1

Ã
1

Tα

TX
t=2

∞X
j=t

ω2j (γi)E
¡
ε2t−j

¢!
+ o (1)

= O

µ
log T

Tα

¶
,

and, hence, ||T−α
PT

t=2D1t|| = op (1) for any α > 0. Similarly,D2t =
Pt−1

j=1 ωjεt−j (
P∞

l=tωlεt−l)
0
=

ε∗γ,t−1ϑ
0
γ,t. Therefore, for any β > 1/2, it follows by triangle and Cauchy-Schwarz inequalities

joint with the properties of the matrix norm that

E

°°°°° 1T β

TX
t=2

D2t

°°°°° ≤ 1

T β

TX
t=2

E
°°ε∗γ,t−1ϑ0γ,t°° ≤ 1

T β

TX
t=2

q
E
°°ε∗γ,t−1°°2qE kϑγ,tk2

= O

µ
T 1/2

T β

¶
= op (1)

because E
°°ε∗γ,t−1°°2 ≤ E

°°ε∗∗γ,t−1°°2 = O (1) and E kϑγ,tk2 = O (1/t) , as discussed in (i)

above. Finally, D3t =
³P∞

j=tωjεt−j
´ ¡Pt−1

l=1 ωlεt−l
¢0
= D0

2t = ϑγ,tε
0∗
γ,t−1, and consequently°°°T−βPT

t=2D3t

°°° = Op

³
T 1/2

Tβ

´
, which renders the required result. For part iv), note that

ε2t (Ω
∗∗
t −Ω∗t ) = ε2t (D1t +D2t +D

0
2t) , and the required result then holds as in previous lem-

mae. First, ε2tD1t = (εtϑγ,t) (ϑγ,tεt)
0 , and hence, by the triangle and Cauchy-Schwarz in-

equalities E
°°° 1
Tα

PT
t=2 ε

2
t ϑγ,tϑ

0
γ,t

°°° ≤ 1
T

PT
t=2E kεtϑγ,tk

2 = o (1) for any α > 0 from (i). Also,

ε2tD2t =
¡
εtε

∗
γ,t−1

¢
(ϑγ,tεt)

0 , so for any β > 1/2 we have

E

°°°°° 1T β

TX
t=2

ε2t D2t

°°°°° ≤ 1

T β

TX
t=2

q
E
°°εtε∗γ,t−1°°2qE kεtϑγ,tk2

≤ 1

T β

TX
t=2

q
E
°°εtε∗∗γ,t−1°°2qE kεtϑγ,tk2

= O

µ
T 1/2

T β

¶
= o (1) .

Since obviously
°°°T−βPT

t=2 ε
2
tD

0
2t

°°° = Op

³
T 1/2

Tβ

´
= op (1) , this completes the proof.¥
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Lemma B.2. Let Λεγ = E
¡
ε2tε

∗∗
γ,t−1ε

0∗∗
γ,t−1

¢
. Then, under the null hypothesis and Assump-

tions A.1 and A.2, as T →∞, 1√
T

³PT
t=2 εdtε

∗
γ,t−1

´
⇒ N (0,Λεγ) , with Λεγ = σ4Γγ +P

j,l≥1ωjω
0
l κε (0, j, l, 0) , and ε

∗
γ,t−1 generated from εdt = ∆γ (L;d) xt.

Proof of Lemma B.2.
Under the null hypothesis, εdt = εt, from which

PT
t=2 εdtε

∗∗
γ,t−1 =

PT
t=2

³P∞
j=1ωjεt−jεt

´
=PT

t=2Zt, say, where E (Zt|Gt−1) = 0, so {Zt,Gt} is a vector MDS with unconditional and
conditional covariance matrices

E (ZtZ
0
t) =

∞X
j=1

∞X
l=1

ωjω
0
l E

¡
ε2t εt−jεt−l

¢
≡ Λεγ,

E (ZtZ
0
t|Gt−1) =

∞X
j,l=1

ωjω
0
lεt−jεt−lE

¡
ε2t |Gt−1

¢
.

It is interesting to briefly comment the conditions upon whichΛεγ is well-defined. Owing to sta-
tionarity, E (ε2t εt−jεt−l) = κε (0, j, l, 0)+σ

4I(j=l), and thusΛεγ = σ4Γγ+
P

j,l≥1ωjω
0
l κε (0, j, l, 0) .

The first component is bounded and positive definite, as discussed in Appendix A. Since ωj

is not absolute summable, the second component requires additional summability conditions
making κε (0, j, l, 0) negligible as j, l → ∞. Under i.i.d errors, κε (0, j, l, 0) = 0 for all l, j,
and hence Λεγ = σ4Γγ is bounded and bounded away from zero. Under the more general
MDS assumption, the absolute summability of the fourth-order cumulants ensures Λεγ < ∞,
and as a result the asymptotic covariance matrix is characterized by the pattern of conditional
heteroskedasticity. Since Λεγ − σ4Γγ is obviously semipositive definite, Λεγ is bounded and
bounded away from zero.
We now prove the required result by using the central limit theory for vector MDS. For

any λ ∈ Rn such that λ0λ =1 define zt = λ0Zt. Then, we require (C1) T−1
PT

t=2 z2t −
E (z2t )

p→ 0, and (C2) max2≤t≤T |zt/
√
T | p→ 0, (cf. Davidson, 1994, Thm 24.3). Note that

T−1
PT

t=2 (z
2
t −E (z2t )) = λ0STλ,where ST = T−1

PT
t=2 (ZtZ

0
t −Λεγ) owing to theMDS property

of Zt, and then (C1) is verified if ST = op (1) by Slutsky’s theorem. It is worth noting thatP∞
l=0 |ωl (γi)ωl

¡
γj
¢
| < ∞ for any γi, γj ∈ [0, π] by Cauchy-Schwarz inequality, so ε∗∗γ,t−1 is

defined through a Gt-measurable transformation of a strictly stationary and ergodic process
under Assumptions A.1 and A.2. Therefore, Zt is a strictly stationary and ergodic MDS (cf.
White, 2001, Thm. 3.35) and so is zt.
Under Assumption A.2.1, T−1

PT
t=2 [E (ZtZ

0
t)− E (ZtZ

0
t|Gt−1)]

p→ 0, because {Zt,Gt} is a
stationary and ergodic MDS. Furthermore, since E (|εt|4) < K < ∞ for all t, and E (ZtZ

0
t) =

σ4Γγ, then T−1
PT

t=2E (ZtZ
0
t)

p→ σ4Γγ from stationarity. Alternatively, under Assumption
A.2.2, for any γi, γj ∈ [0, π], and the set of indices lh ≥ 1, h = 1, ..., 4, define ς ij (l1, l2, l3, l4) =
ωl1 (γi)ωl2 (γi)ωl3

¡
γj
¢
ωl4

¡
γj
¢
and let E||ST −Λε,γ||2 =

Pn
i,j=1 Eij,T , whose characteristic ele-

ment is given by

Eij,T = E

Ã
1

T

TX
t=2

ε2tε
∗∗
γi,t−1ε

∗∗
γj ,t−1 − [Λεγ]ij

!2

= T−1
∞X

l1,...,l4=1

ς ij (l1, ..., l4)

(
T−1

TX
t=2

TX
s=2

Cov
¡
εt−l1εt−l2ε

2
t ,εs−l3εs−l4ε

2
s

¢)
+ o (1) .
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The covariances on the right-hand side do not depend on any of the elements of γ. Furthermore,
under the assumption of stationarity, they can be written as the sum of products of cumulants
of εt of order eight and lower (cf. Brillinger, 1981, Thm. 2.3.2), which eventually rule the
asymptotic behavior of Eij,T . First, we examine the case i = j = 1, for which we can assume
γ1 = 0 with no loss of generality for the discussion that follows. Under the restriction of
absolute summability, T |E11,T | is uniformly bounded by

∞X
τ=−∞

∞X
l1,...,l4=1

|ς11 (l1, ..., l4)| |κε (0, l1 − l4, l1, l1, τ − l3 + l1, τ − l4 + l1, τ + l1, τ + l1)|

with τ ≡ t− s; see Gonçalves and Kilian (2007) and Proposition 2 in Demetrescu et al. (2008).

By Lemma 10 in the latter paper, and noting that ς11 (l1, ..., l4) = O
³

1
l1×...×l4

´
, this term can

be shown to be uniformly bounded as well. Then, for the generic term Eij,T , i, j ≥ 1, and
noting that |ωj (γ) | is uniformly bounded in [0, π] by 2/j, it follows for any pair γi, γj ∈ [0, π]
that |ς ij (l1, ..., l4)| ≤

Q4
h=1 |2l−1h | ≤ 8 |ς11 (l1, ..., l4)| , from which obviously T |Eij,T | ≤

8T |E11,T | < K <∞, independently of T or the particular frequencies involved. Consequently,
E||ST − Λε,γ||2 = O (T−1) = o (1) and T−1

PT
t=2 ε

2
tε
∗∗
γ,t−1ε

0∗∗
γ,t−1

ms→ Λεγ. Since mean-square
convergence implies convergence in probability, (C1) holds under Assumptions A.1 and A.2 as
required. At this point it is worth recalling that

°°°T−1PT
t=2 ε

2
t

¡
ε∗∗γ,t−1 − ε∗γ,t−1

¢°°° = op (1) from

Lemma B.1 iii), so it follows by the Asymptotic Equivalence Lemma [AEL] (cf. White, 2001,
Lemma 4.7) and under the null hypothesis that T−1

PT
t=2 ε

2
dtε

∗
γ,t−1ε

0∗
γ,t−1

p→ Λεγ.
To address (C2) recall that under Assumptions A.1 and A.2, {Zt, zt} is strictly stationary

and ergodic, and uniformly bounded and bounded away from zero under the L2-norms, so the
Lindeberg condition in (C2) is trivially satisfied (cf. Davidson, 2000, Thm. 6.2.3). There-
fore, the Central Limit Theorem (CLT) for MDS jointly with the Cramér-Wold device (cf.
Davidson, 1994, Thm. 25.6) allows us to conclude under the null hypothesis and as T → ∞
that T−1/2

PT
t=2 ε

2
tε
∗∗
γ,t−1 ⇒ N (0,Λεγ) . To complete the proof, recall from Lemma B.1 ii)

that
°°°T−1/2PT

t=2 ε
2
tϑγ,tϑ

0
γ,t

°°° = op (1) , so by the AEL it follows that, T−1/2
PT

t=2 ε
2
tε
∗
γ,t−1 ⇒

N (0,Λεγ) as required.¥

Lemma B.3. Define the k-th order autocovariance E
¡
ε∗∗γ,t−1ε

0∗∗
γ,t−1−k

¢
= Λεγ (k) , k > 0, and

let bet be the estimated residuals from an auxiliary regression as in (4) with no augmentation.
Then, under Assumptions A.1 and A.2, the null hypothesis, and as T→∞ it follows that:
i)
P∞

k=0Λ
τ
εγ (k) <∞, for τ ≥ 1;

ii) T−1
PT

t=2 ε
∗
γ,t−1ε

0∗
γ,t−1

p→ σ2Γγ;

iii) T−1
PT

t=2 be2tε∗γ,t−1ε0∗γ,t−1 p→ Λεγ, with Λεγ ≡ E
¡
ε2tε

∗∗
γ,t−1ε

0∗∗
γ,t−1

¢
.

Proof of Lemma B.3.
In i), the asymptotic k-th order autocovariance matrix, k ≥ 0, is given by

E
¡
ε∗∗γ,t−1ε

0∗∗
γ,t−1−k,

¢
=

∞X
j,l=1

ωjω
0
lE (εt−jεt−k−l) = σ2

∞X
j=1

ωjω
0
j+k ≡ Λεγ (k) <∞

with Λεγ (0) = Λεγ. More specifically,

Λεγ (k) = o

Ã ∞X
j=1

1

j (j + k)

!
= o

Ã
1

k

Ã ∞X
j=1

1

j
− 1

j + k

!!
= o

µ
log k

k

¶
,
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and, as a result,
©
Λτ

εγ (k)
ª∞
k=0

is summable for any τ ≥ 1. For part ii), let again Ω∗∗t =

ε∗∗γ,t−1ε
0∗∗
γ,t−1 and Ω∗t = ε∗γ,t−1ε

0∗
γ,t−1, with Ω

∗∗
T and Ω

∗
T being their respective sample means.

Clearly, E
³
Ω
∗∗
T

´
= σ2Γγ, whereas Ω

∗
T is asymptotically unbiased, since

E
³
Ω
∗
T

´
= σ2

TX
j=1

ωjω
0
j − σ2T−1

TX
j=2

j
£
ωjω

0
j

¤
+ σ2T−1

TX
j=2

ωjω
0
j

= σ2
TX
j=1

ωjω
0
j − o (1) +O

¡
T−1

¢
→ σ2Γγ .

We can show that Ω
∗∗
T

ms→ σ2Γγ using a similar approach as in Lemma B.2., from which Ω
∗
T

p→
σ2Γγ by Lemma B.1 iii) and the AEL. In particular, note that we can write

TE

⎛⎝" 1
T

TX
t=2

Ω∗∗t − σ2Γγ

#
ij

⎞⎠2

=
∞X

l1,...,l4=1

ς ij (l1, ..., l4)

× 1
T

TX
t=2

TX
s=2

Cov ([εt−l1εt−l2] , [εs−l3εs−l4]) + o (1) .

Following Lemma A.2 in Gonçalves and Kilian (2004) and Lemma 8 in Demetrescu et al. (2008),
this term is uniformly bounded by Bij + 2

P∞
k=−∞

£
Λ2

εγ (k)
¤
ij
, with Λεγ (k) defined in (i) and

Bij =
∞X

t=−∞

∞X
l1,...,l4=0

|ς ij (l1, ..., l4)| |κε (0, l2 − l1, t+ l3 − l1, t+ l4 − l1) |.

By considering again γ1 = 0with no loss of generality, we note that |ς ij (l1, ..., l4)| ≤ 8 |ς11 (l1, ..., l4)|
and, since

P∞
k=−∞Λ2

εγ (k) <∞ from stationarity and from (i)of this Lemma, then for any pair
γi, γj ∈ [0, π] , Bij + 2

P∞
k=−∞

£
Λ2

εγ (k)
¤
ij

< ∞ as a corollary of Lemma 8 in Demetrescu

et al. (2008). Hence, E||Ω∗∗T − σ2Γγ ||2 = O (T−1) and therefore Ω
∗∗
T

ms→ σ2Γγ. But since
from Lemma B.1 iv) ||T−1

PT
t=2 (Ω

∗∗
t −Ω∗t ) || = op (1) , the AEL allows us to conclude that

T−1
PT

t=2 ε
∗
γ,t−1ε

0∗
γ,t−1

p→ σ2Γγ, as required, with convergence in probability being implied by
the stronger convergence in the mean square sense.
In iii), the null hypothesis implies φ = 0 and et = εt in the auxiliary regression, therebybe2t − ε2t =

³Pn
s=1 φs,Tε

∗∗
γs,t−1

´2
=
¡
ε0∗∗γ,t−1φT

¢ ¡
φ0Tε

∗∗
γ,t−1

¢
. Hence,°°°°° 1T

TX
t=2

ε∗∗γ,t−1
¡be2t − ε2t

¢
ε0∗∗γ,t−1

°°°°° =

°°°°° 1T
TX
t=2

Ω∗∗t φTφ
0
TΩ

∗∗
t

°°°°° ≤ 1

T

TX
t=2

kΩ∗∗t φTφ
0
TΩ

∗∗
t k

≤ 1

T

TX
t=2

||Ω∗∗t || ||φTφ
0
T || ||Ω∗∗t ||

by the triangle inequality first and finally by the Cauchy-Schwarz inequality. The estimated
parameter vectorφT is

√
T -consistent (see proof of Theorem 2.2 below), so kφTφ

0
Tk = Op (T

−1) .
Since from Assumptions A.1 and A.2

E kΩ∗∗t k
2 ≤

nX
i,j=1

∞X
l1,...,l4=1

|ς ij (l1, ..., l4)| |E (εt−l1εt−l2εt−l3εt−l4)|
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is uniformly bounded, it follows that°°°°° 1T
TX
t=2

¡
ε∗∗γ,t−1ε

0∗∗
γ,t−1

¢ ¡be2t − ε2t
¢°°°°° = Op

Ã
1

T

TX
t=2

O
¡
T−1

¢!
= Op

¡
T−1

¢
as T → ∞. Finally, as for Lemma B.1 iv), we can readily show that°°°T−1PT

t=2

¡
ϑγ,t−1ϑ

0
γ,t−1

¢
(be2t − ε2t )

°°° = op (1) , so the AEL renders the required result. ¥

Proof of Theorem 2.1.
The proof of Theorem 2.1 is now obvious in view of the results in Lemmas B.1-B.3, and holds
straightforwardly by the CMT. In particular,

LMT =

Ã
1√
T

TX
t=2

εdtε
∗
γ,t−1

!0 "
1

T

TX
t=2

ε2dtε
∗
γ,t−1ε

0∗
γ,t−1

#−1Ã
1√
T

TX
t=2

εdtε
∗
γ,t−1

!
= A0

T

£
B−1T

¤
AT , say.

Under the null hypothesis, εdt = εt, so under Assumptions A.1 and A.2, as T → ∞, AT ⇒
N (0,Λεγ) and BT

p→ Λεγ according to Lemma B.1 i) and iv), Lemmas B.2, B.3 and the AEL.
The required convergence then follows by the CMT from which LMT ⇒ N0

nNn, where Nn is a
n-dimensional standard normal distribution and, hence, LMT ⇒ χ2(n). ¥

Corollaries.
For proof of Corollary 2.1, notice that the score of the log-likelihood function when θ =θ1n,

with 1n being a vector of ones in Rn, is given by

∂L(δ, σ2|xT )
∂θ

¯̄̄̄
H0:θ=0

= − 1
σ2

TX
t=1

εt

Ã
log [1− L] +

n−1X
i=2

log
£
ξγi (L; 1)

¤
+ log [1 + L]

!
εt

=
1

σ2

TX
t=1

εt

nX
s=1

Ã ∞X
j=1

ωj (γs) εt−j

!
≡ 1

σ2

TX
t=1

εt

Ã
nX

s=1

ε∗∗γs,t−1

!

which suggests that H0 : θ = 0 can be tested by analyzing the statistical significance of the φ̄

parameter in the auxiliary regression εdt = φ̄

Ã
nX

s=1

ε∗γs,t−1

!
+ ut. Since

nX
s=1

ε∗γs,t−1 = 10nε
∗
γ,t−1

is a linear transformation of the regressors in the basic auxiliary regression, we have that
φ̄T =

¡
10nΩ̄

∗
T1n

¢−1 ¡
10n
£
εtε

∗
γ,t−1

¤¢
and, hence, it follows from Theorem 2.1 and the CMT that√

Tφ̄T ⇒ N (0,10nVγ1n) as T →∞. ¥

Corollary 2.2 holds from the asymptotic normality in Theorem 2.2 owing to the fact that
Λp is proportional to Ω∗∗p under the restrictions considered; see Theorems 4.32 and 4.37, and
comments in White (2001).

Lemma B.4. Let {bj}j≥0 be the coefficients in the Wold representation, εt =
P∞

j=0 bjvt−j under
Assumption A.20. Let ϕj (γ) be the j-th element in the serial convolution of {ωj+1 (γ)}j≥0 and
{bj}j≥0 for any γ ∈ [0, π] . Then, ϕj (γ) = ω1 (γ) , if j=0, and ϕj (γ) is O (ωj (γ)) otherwise.
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Proof of Lemma B.4.
Recall that, for all γ ∈ [0, π] , |ωj (γ) | ≤ 2/j, and hence ωj (γ) = O (1/j) . The serial convolution
of {bj}j≥0 and {ωj+1}j≥0 determines coefficients as a function of the γ frequency which are given
by ϕj (γ) =

Pj
k=0 bkωj−k+1 (γ) , where ϕj (γ) ≤ |ϕj (γ) | ≤ 2

Pj
k=0

j
j−k+1 |bk|, with

³
j

j−k+1

´
≤ k

for all 1 ≤ k ≤ j, so ϕj (γ) ≤ |b0|
³
2j
j+1

´
+ 2

Pk
j=1 j|bk|. Since for any stationary AR(p) modelPk

j=1 j|bk| < ∞, the coefficient |ϕj (γ) | is bounded by a constant as j → ∞, and hence
ϕj (γ) = O (1/j) , which leads us to the desired result.
As a result,

©
ϕj (γ)

ª
belongs to the same space of square-summable coefficient series as

{ωj (γ)} does, so the results discussed under MDS errors follow under Assumption A.20 in most
cases by simply modifying the limit variances. Also, note that since γ is taken from [0, π] , this
lemma trivially generalizes the results in Demetrescu et al. (2008), discussed for γ = 0, to any
other frequency. ¥

Lemma B.5. Considering Assumption A.20, the asymptotic and observable processes under
the null hypothesis are now given by ε∗∗γ,t−1 =

P∞
j=0ϕjvt−j−1, ε

∗
γ,t−1 =

Pt−1
j=0ϕjvt−j−1, respec-

tively, with ϕj ≡
¡
ϕj (γ1) , ..., ϕj (γn)

¢0
, and

©
ϕj (·)

ª
j≥0 given in Lemma B.4. Then, as T is

allowed to diverge, Lemma B.1 still holds under Assumption A.20 with trivial modifications, i.e.,:
i) ϑγ,t = Op

¡
t−1/2

¢
and E||vtϑγ,t|| = O (t−1) + o (t−2) , ii) ||T−α

PT
t=p+1 vtϑγ,t|| = op (1) and

||T−α
PT

t=p+1ϑγ,t|| = op (1) , iii) ||T−β
PT

t=p+1

¡
ε∗∗γ,t−1ε

0∗∗
γ,t−1 − ε∗γ,t−1ε0∗γ,t−1

¢
|| = op (1) ,

iv) ||T−β
PT

t=p+1 v
2
t

¡
ε∗∗γ,t−1ε

0∗∗
γ,t−1 − ε∗γ,t−1ε0∗γ,t−1

¢
|| = op (1) , for any α > 0, β > 1/2.

Proof of Lemma B.5. This Lemma holds directly from Lemma B.1 and Lemma B.4.

Lemma B.6. Let Xtp = (εd,t−1, ..., εd,t−p)
0 be the p-dimensional vector of lagged values of

the dependent variable, and define the n + p dimensional vectors X∗tp =
¡
ε∗0γ,t−1,X

0
tp

¢0
, X∗∗tp =¡

ε∗∗0γ,t−1,X
0
tp

¢0
. Define Ω∗∗p = E

¡
X∗∗tpX

0∗∗
tp

¢
, and let Ω

∗
p = T−1

PT
t=2X

∗
tpX

0∗
tp. Then, i) Ω

∗∗
p is

bounded and bounded away from zero, and ii) ||Ω∗p −Ω∗∗p || = op (1) .

Proof of Lemma B.6.
For part i), note that Ω∗∗p can be partitioned as

Ω∗∗p ≡
µ
[Σεγ]n×n [Σ0

εX ]n×p
[ΣεX ]p×n [ΣX ]p×p

¶
,

where Σεγ = σ4
P∞

j=1ϕjϕ
0
j is positive definite and bounded because

©
ϕj (γ)

ª
is square-

summable. Similarly, ΣX = σ2
P∞

j=1 bjb
0
j, with bj = (bj−1, ..., bj−p)

0 and bl = 0 for all
l < 0, is finite and positive definite owing to absolute summability of the coefficients in the
Wold’s representation of any stationary AR(p) process. From the Cauchy-Schwarz inequality,
||ΣεX || ≤ ||Σεγ||1/2 ||ΣX ||1/2 <∞, from which ||Ω∗∗p || <∞. Finally, Ω∗∗p is singular if and only if
the elements ofX∗∗tp are linearly dependent, which obviously is not the case, so det(Ω

∗∗
p ) > δ > 0.

Part ii) holds if (a) ||Σ̄∗εγ −Σε,γ|| = op (1) , (b) ||Σ̄∗X −ΣX || = op (1) , and (c) ||Σ̄∗εX −ΣεX || =
op (1) , given the respective sample estimators, e.g., Σ̄∗εγ = (T − p)−1

PT
t=p+1 ε

∗
γ,t−1ε

∗0
γ,t−1. The

proof of (a) follows from Lemmas B.4 and B.5 and identically as in Lemma B.3. The proof of
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(b) follows as in Theorem 2.2 in Gonçalves and Kilian (2004). Finally, for part (c), consider

A1tT =
∞X
j=0

bjϕj+i−1 (γk)
£
v2t−j−i − σ2

¤
,

A2tT =
TX
l=0

TX
j=0

j 6=l−i+1

blϕj (γk) vt−j−1vt−l−i

and let E||Σ̄∗∗εX −ΣεX ||2 =
Pp

i

Pn
k

PT
t,s=p+1E [(A1tT +A2tT ) (A1sT +A2sT )] . Notice that

T−2
TX

t=p+1

TX
s=p+1

E (A1tTA1sT ) =
1

T

∞X
j=−∞

∞X
l=−∞

bjϕj (γ) blϕl (γk)×(
1

T

TX
t=p+1

TX
s=p+1

Cov
¡
v2t−j−i−1, v

2
s−l−i−1

¢)

by setting bj = ϕl (γk) = 0 for all j, l < 0. Under the restriction of stationarity and absolutely
summable cumulants, the term in curly brackets is uniformly bounded in t, s and T for any
1 ≤ i ≤ p < ∞. Hence, given some constant K < ∞, it follows by the Cauchy-Schwarz
inequality that

T−2
TX

t=p+1

TX
s=p+1

E (A1tA1s) ≤
K

T

Ã ∞X
j=0

bjϕj (γ)

!2
≤ K

T

Ã ∞X
j=0

b2j

!Ã ∞X
j=0

ϕ2j+i (γ)

!
= O

¡
T−1

¢
.

Similarly, under Assumption A.20, we can show that the remaining term,

T−2
TX

t=p+1

TX
s=p+1

E (A2tTA2sT ) + T−2
TX

t=p+1

TX
s=p+1

E (A1sTA2tT +A1tTA2sT ) = O
¡
T−1

¢
from which ||Σ̄∗∗εX −ΣεX || = Op

¡
T−1/2

¢
= op (1) by Markov’s inequality. Finally, as in Lemma

B.2, we can show

||Σ̄∗∗εX − Σ̄∗εX || = Op

Ã
T−1

TX
t=p+1

(Ω∗∗t −Ω∗t )
!
= Op

¡
T−1/2

¢
= op (1) ,

and then the AEL renders the required result.¥

Lemma B.7. Let Λp = E
¡
v2tX

∗∗
tpX

0∗∗
tp

¢
be defined through the partitionµ £

Λb
εγ

¤
n×n [Λ0

εX ]n×p
[ΛεX ]p×n [ΛX ]p×p

¶
and let etp and betp be the residuals, and the estimated residuals, respectively, from the augmented
auxiliary regression (4). Then, under then null hypothesis and Assumption A.20, as T→∞ :
i) Λp <∞, and det(Λp) > δ > 0;
ii) T−1/2

PT
t=p+1 etpX

∗
tp ⇒ N (0,Λp) ;
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iii) T−1
PT

t=p+1 be2tp ¡X∗tpX0∗
tp

¢ p→ Λp.

Proof of Lemma B.7.
For part i), Λb

εγ = Σεγ +
P

j,l≥1
£
ϕjϕ

0
l

¤
κv (0, j, l, 0) , with Σεγ = σ4

P∞
j=1ϕjϕ

0
j defined in

Lemma B.6. From Lemma B.4 and Assumption A.20, the same statistical considerations as in
Lemma B.2 apply on Λb

εγ, and as a result this is a finite, positive definite covariance matrix.
Similarly, we can show as in Theorem 2.2 in Gonçalves and Kilian (2007) thatΛX <∞, whereas
from the Cauchy-Schwarz inequality ΛεX < ∞, from which Λp < ∞. As in Lemma B.6, Λp

is invertible, and so det(Λp) > δ > 0. For part ii), under the null hypothesis etp = vt, and
vt−1 = (vt−1, ..., vt−p)

0 , we have

TX
t=p+1

etp

µ
ε∗∗γ,t−1
Xtp

¶
=

TX
t=p+1

∞X
j=0

µ
ϕjvt−j−1vt
bjvt−j−1vt

¶
=

TX
t=p+1

µ
Zεt

ZXt

¶
, say.

Clearly, {Zεt,Gt} and {ZXt,Gt} , Gt = σ (vj : j ≤ t) , are square-integrable MDS under As-
sumption A.20, with E (ZεtZ

0
εt) = Λb

εγ, E (ZXtZ
0
Xt) = ΛX , and E (ZεtZ

0
Xt) = Λ0

εX . We can
use the CLT for MDS as in Lemma B.2 to show asymptotic normality of the normalized
sums of (Z0εt,Z

0
Xt)

0. In particular, note that (C1) holds if a) ||Λ̄b
εγ,T − Λb

εγ|| = op (1) , b)

||Λ̄X,T −ΛX || = op (1) , and c) ||Λ̄εX,T −ΛεX || = op (1) , where again the first terms denote the
sample estimates based on the filtered process. The proof of a) follows along the same lines as in
Lemma B.2 owing to Lemma B.4, and the proof of b) follows as in Theorem 3.1 in Gonçalves and
Killian (2004). To check c), note that for 1 ≤ i ≤ p, and 1 ≤ k ≤ n, the characteristic element of
TE||Λ̄εX,T −ΛεX ||2 can be written as T−1

PT
t=p+1

PT
s=p+1Cov

¡
εd,t−iεγk,t−1v

2
t , εd,s−iεγk,s−1v

2
s

¢
,

i.e.,

T−1
∞X

l1,...,l4=−∞
bl1bl3ϕl2 (γk)ϕl4 (γk)

TX
t=p+1

TX
s=p+1

Cov
¡
vt−i−l1−1vt−l2−1v

2
t , vs−i−l3−1vs−l4−1v

2
s

¢
with bl = ϕl (γk) = 0 for all l < 0. First, consider the case related to the smallest frequency,
corresponding to k = 1, for which we can assume again γ1 = 0 with no loss of generality.
As discussed in Proposition 2 in Demetrescu et al. (2008), this term is uniformly bounded
by a constant that does not depend on t, s, T or i. Then, for any 1 ≤ k ≤ n and all 1 ≤
i ≤ p, note that |bl1bl3ϕl2 (γk)ϕl4 (γk) | ≤ 4 |bl1bl3ϕl2 (0)ϕl4 (0) | and as a result it follows that
E||Λ̄εX,T −ΛεX ||2 = O (T−1) = op (1) , thus implying

1

T − p

TX
t=p+1

v2t
¡
X∗∗tpX

0∗∗
tp

¢ ms→ Λp

as required. Finally note that, from Lemma B.4, (Z0εt,Z
0
Xt)

0 is defined by an Gt-measurable
function on {vt} , so it is a strictly stationary and ergodic MDS (cf. White, 2001, Thm. 3.35).
Furthermore, from (i) in this lemma, the process is bounded and bounded away from zero under
the L2-norms, thus (C2) holds trivially. Hence, under the null hypothesis and Assumption A.20,
as T → ∞, T−1/2

PT
t=p+1 etpX

∗∗
tp⇒N (0,Λp) . Finally, since ||T−1/2

PT
t=p+1 vt

¡
X∗∗tp −X∗tp

¢
|| =

op (1) from Lemma B.5, it follows by the AEL that T−1/2
PT

t=p+1 etpX
∗
tp⇒N (0,Λp) as required.

For part iii), consider ai,T the LS estimate of the i-th autoregressive coefficient. Then, vt−betp =Pp
i=1 (ai,T − ai) εd,t−i +

Pn
k=1 φk,T ε

∗
γk,t−1 = Op

¡
T−1/2

¢
owing to

√
T -consistency (see Theorem
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2.3 below). Therefore, v2t − be2tp = (vt − betp) (vt + betp) = Op

¡
T−1/2

¢
+Op (T

−1) , and hence°°°°°T−1
TX

t=p+1

¡
v2t − be2tp¢X∗∗tpX0∗∗

tp

°°°°° ≤ 1

T

TX
t=p+1

|v2t − be2tp| °°X∗∗tpX0∗∗
tp

°° = Op

¡
T−1/2

¢
= op (1)

which together with (ii) above implies that 1
T−p

PT
t=p+1 be2tp ¡X∗∗tpX0∗∗

tp

¢ ms→ Λp by the AEL. But
since°°°°°T−1

TX
t=p+1

¡
v2t − be2tp¢ ¡X∗∗tpX0∗∗

tp −X∗tpX0∗
tp

¢°°°°° = Op

Ã
T−1

TX
t=p+1

¡
v2t − be2tp¢ (Ω∗∗t −Ω∗t )

!

= Op

Ã
T−1

TX
t=p+1

Op

¡
T−1/2

¢
Op

³
1/
√
t
´!

= Op

¡
T−1/2

¢
= op (1)

by using Cauchy-Schwarz inequality, it follows from the AEL that

1

T − p

TX
t=p+1

be2tpX∗tpX0∗
tp = Λp + op (1)

as T →∞.¥

Proof of Theorem 2.2.
The proof of Theorem 2.2 is immediate in view of the previous results. Let β∗∗T and βT be the
OLS estimates in the corresponding augmented auxiliary regressions εdt = X0∗∗

tp β
∗∗ + etp, and

εdt = X
0∗
tpβ + etp, respectively. Since,

√
T (βT − µ0) =

Ã
1

T

TX
t=p+1

X∗tpX
∗0
tp

!−1Ã
1√
T

TX
t=p+1

etpX
∗
tp

!
then according to lemmae B.4-B.7 and the CMT, it follows under the null hypothesis and
Assumption A.20, that as T →∞,

√
T (β∗∗T − µ0) and

√
T (βT − µ0) are asymptotically equiv-

alent, with
√
T (βT − µ0)⇒ N

³
0,
¡
Ω∗∗p

¢−1
Λp

¡
Ω∗∗p

¢−1´
. ¥

Proof of Theorem 2.3.
Given normality of the estimated coefficients, Theorem 2.3 holds as a corollary of Theorem
2.2. Let R be an n × (n + p) matrix such [R]ij = 1 for all i = j and zero otherwise. Con-
sider the regression-based test statistic computed from the augmented auxiliary regression, i.e.,

Υ
(n)
Wp =

h√
TRβT

i0 h
RbVTR

0i−1 h√
TRβT

i
where bVT is the sample counterpart of the asymp-

totic covariance matrix of βT , i.e.,

bVT =

Ã
1

T

TX
t=p+1

X∗tpX
∗0
tp

!−1Ã
1

T

TX
t=p+1

be2tpX∗tpX∗0tp
!Ã

1

T

TX
t=p+1

X∗tpX
∗0
tp

!−1
where the inclusion of the squared estimated residuals, be2tp, is intended to provide robustness
against (conditional) heteroskedastic patterns of unknown form. Given the previous lemmae
and the CMT, it follows readily under the null hypothesis and as T →∞ that,

√
T (RβT ) =

√
TφT ⇒ N

³
0,R

h¡
Ω∗∗p

¢−1
Λp

¡
Ω∗∗p

¢−1i
R0
´
.
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Hence, Υ(n)
Wp converges to the distribution of a Gaussian quadratic form and, therefore,

Υ
(n)
Wp ⇒ χ2(n). ¥
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Tables and Figures

Table 1: Empirical rejection frequencies when the DGP is the simple GARMA model
(1− 2 cos γsL+ L2)1+θxt = εt, εt ∼ iidN (0, 1).

θ
γs -.3 -.2 -.1 0 .1 .2 .3

T=100
π
10

.999 .984 .540 .052 .584 .981 .999
2π
10

.999 .933 .401 .054 .445 .927 .998
3π
10

.988 .810 .302 .056 .329 .832 .982
4π
10

.946 .689 .232 .049 .267 .721 .946
5π
10

.929 .630 .210 .050 .248 .686 .932
6π
10

.955 .683 .236 .051 .269 .730 .947
7π
10

.985 .826 .311 .045 .331 .836 .985
8π
10

.998 .929 .425 .051 .452 .933 .998
9π
10

.999 .982 .536 .050 .585 .984 .999
T=250

π
10

.999 .999 .924 .043 .921 .999 .999
2π
10

.999 .999 .818 .057 .814 .999 .999
3π
10

.999 .997 .653 .050 .686 .995 .999
4π
10

.999 .979 .516 .052 .563 .980 .999
5π
10

.999 .971 .468 .051 .545 .968 .999
6π
10

.999 .980 .520 .051 .571 .978 .999
7π
10

.999 .998 .664 .045 .682 .994 .999
8π
10

.999 1.00 .811 .050 .816 .999 .999
9π
10

.999 .999 .918 .045 .913 .999 .999
Note: Empirical size is in bold.
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Table 2: Empirical rejection frequencies when the DGP is the 2-factor GARMA model
(1− 2 cos(0.15)L+ L2)1+θ1(1− 2 cos(π

2
)L+ L2)1+θ2xt = εt, εt ∼ iidN (0, 1) and T=100

Joint Restricted Test Joint Unrestricted Test
θ2 θ2

θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .999 .999 0.997 .959 .741 .362 .247 -.3 .999 .999 .999 .999 .999 .999 .999
-.2 .996 .992 .963 .834 .512 .220 .237 -.2 .994 .978 .974 .977 .990 .999 .999
-.1 .793 .731 .611 .398 .179 .098 .290 -.1 .892 .684 .502 .487 .693 .911 .985
.0 .126 .102 .082 .047 .067 .205 .480 .0 .857 .510 .161 .049 .205 .592 .893
.1 .631 .590 .583 .574 .625 .730 .853 .1 .988 .913 .741 .556 .535 .718 .898
.2 .987 .985 .982 .981 .982 .988 .993 .2 .999 .999 .992 .980 .974 .981 .991
.3 .999 .999 .999 .999 .999 .999 .999 .3 .999 .999 .999 .999 .999 .999 .999

Note: Empirical size is in bold.

Table 3: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
ARMA errors:

(1− 2 cos(0.15)L+ L2)1+θ1(1− 2 cos(π
2
)L+ L2)1+θ2xt = εt, (1− 0.5L)εt = (1 + 0.5L)vt,

vt ∼ iidN (0, 1)
T=100

Joint Restricted Test Joint Unrestricted Test
θ2 θ2

θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .300 .233 .148 .088 .067 .099 .142 -.3 .204 .142 .122 .141 .202 .315 .381
-.2 .131 .120 .089 .059 .051 .072 .127 -.2 .156 .097 .058 .069 .115 .160 .228
-.1 .063 .056 .055 .045 .041 .057 .096 -.1 .137 .075 .046 .039 .058 .094 .138
.0 .047 .043 .046 .043 .049 .062 .080 .0 .121 .076 .046 .037 .044 .063 .090
.1 .065 .059 .063 .060 .061 .075 .086 .1 .113 .079 .058 .053 .053 .062 .075
.2 .093 .087 .092 .094 .092 .104 .113 .2 .103 .077 .073 .061 .068 .075 .085
.3 .126 .127 .123 .136 .127 .130 .139 .3 .105 .094 .085 .096 .091 .100 .105

T=500
Joint Restricted Test Joint Unrestricted Test

θ2 θ2
θ1 -.3 -.2 -.1 .0 .1 .2 .3 θ1 -.3 -.2 -.1 .0 .1 .2 .3
-.3 .992 .955 .691 .225 .082 .316 .626 -.3 .981 .926 .834 .802 .862 .949 .979
-.2 .897 .794 .525 .190 .071 .228 .534 -.2 .871 .680 .463 .386 .480 .653 .815
-.1 .492 .389 .230 .093 .049 .179 .424 -.1 .570 .354 .170 .117 .177 .333 .518
.0 .150 .113 .073 .048 .067 .175 .388 .0 .264 .128 .064 .053 .092 .206 .360
.1 .087 .090 .089 .115 .159 .258 .405 .1 .126 .095 .075 .092 .134 .222 .338
.2 .239 .255 .272 .294 .345 .401 .475 .2 .192 .205 .215 .227 .272 .341 .405
.3 .437 .448 .471 .493 .530 .543 .578 .3 .371 .367 .394 .411 .446 .475 .511

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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Table 4: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
AR errors: (1− 2 cos(0.15)L+ L2)1+θ1(1− 2 cos(π

2
)L+ L2)1+θ2xt = εt, (1− 0.5L)εt = vt,

vt ∼ iidN (0, 1)
T=100

Joint Restricted Test Joint Unrestricted Test
θ2 θ2

θ1 -.3 -.2 -.1 0 0.1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .479 .336 .202 .108 .077 .104 .179 -.3 .334 .234 .191 .194 .255 .352 .467
-.2 .250 .201 .139 .078 .061 .094 .160 -.2 .229 .138 .092 .089 .140 .232 .319
-.1 .103 .087 .076 .049 .059 .093 .145 -.1 .224 .108 .055 .045 .082 .156 .249
0 .056 .047 .050 .041 .050 .079 .132 0 .232 .101 .052 .038 .058 .127 .190
.1 .062 .056 .054 .057 .062 .083 .122 .1 .226 .118 .059 .046 .061 .115 .187
.2 .104 .088 .083 .082 .088 .097 .135 .2 .210 .124 .071 .057 .076 .128 .203
.3 .139 .130 .123 .124 .126 .137 .151 .3 .181 .118 .094 .083 .110 .164 .219

T=500
Joint Restricted Test Joint Unrestricted Test

θ2 θ2
θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .999 .966 .631 .153 .142 .527 .814 -.3 .995 .945 .833 .829 .934 .984 .998
-.2 .967 .889 .564 .158 .108 .458 .766 -.2 .987 .812 .487 .397 .601 .853 .954
-.1 .641 .538 .298 .093 .088 .409 .731 -.1 .947 .656 .236 .106 .268 .604 .834
0 .205 .155 .088 .044 .118 .394 .706 0 .874 .513 .156 .044 .154 .464 .712
.1 .094 .087 .090 .123 .225 .460 .693 .1 .761 .437 .179 .101 .200 .453 .672
.2 .232 .251 .269 .295 .398 .548 .710 .2 .643 .431 .295 .247 .342 .527 .677
.3 .438 .463 .481 .521 .574 .654 .750 .3 .582 .496 .441 .441 .505 .600 .712

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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Table 5: Empirical rejection frequencies when the DGP is the 2-factor GARMA model with
AR errors: (1− 2 cos(0.15)L+ L2)1+θ1(1− 2 cos(π

2
)L+ L2)1+θ2xt = εt, (1− 0.9L)εt = vt,

vt ∼ iidN (0, 1)
T=100

Joint Restricted Test Joint Unrestricted Test
θ2 θ2

θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .085 .080 .062 .043 .040 .067 .114 -.3 .290 .143 .064 .034 .056 .105 .168
-.2 .044 .042 .046 .037 .032 .056 .100 -.2 .297 .149 .070 .035 .047 .094 .167
-.1 .037 .036 .040 .040 .041 .051 .078 -.1 .272 .125 .062 .039 .050 .107 .173
0 .047 .042 .046 .051 .049 .065 .079 0 .230 .107 .056 .043 .065 .123 .208
.1 .062 .068 .070 .072 .068 .082 .097 .1 .157 .097 .058 .056 .081 .142 .226
.2 .076 .075 .073 .084 .095 .087 .100 .2 .120 .080 .055 .069 .094 .149 .219
.3 .073 .077 .078 .078 .078 .086 .087 .3 .081 .068 .056 .059 .078 .118 .170

T=500
Joint Restricted Test Joint Unrestricted Test

θ2 θ2
θ1 -.3 -.2 -.1 0 .1 .2 .3 θ1 -.3 -.2 -.1 0 .1 .2 .3
-.3 .913 .840 .667 .295 .083 .247 .587 -.3 .995 .886 .549 .287 .391 .679 .866
-.2 .547 .474 .348 .184 .063 .173 .477 -.2 .964 .738 .340 .148 .233 .524 .764
-.1 .172 .164 .118 .072 .0400 .111 .351 -.1 .843 .511 .185 .062 .138 .405 .656
0 .063 .062 .055 .051 .053 .106 .248 0 .620 .319 .111 .051 .123 .320 .549
.1 .088 .103 .080 .085 .100 .130 .197 .1 .408 .217 .103 .066 .122 .258 .432
.2 .133 .126 .123 .123 .119 .121 .161 .2 .232 .150 .111 .090 .117 .184 .286
.3 .105 .099 .092 .090 .081 .085 .088 .3 .113 .091 .077 .076 .075 .102 .144

Note: Empirical size is in bold. All tests are augmented using Schwert’s rule.
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