Dependence Structures of Financial Time Series

Martin Gartner

December 14, 2007

Inhaltsverzeichnis

Motivation

Pearson's Correlation Coefficient

Copulae

Copula-based dependence measures

Estimation and Calibration of a Copula

Empirical Results

Research Outlook

Motivation

Financial Models often require iid. random variables Models assume:

- Constant variance
- Absence of autocorrelation
- Normal Distribution

Do empirical data hold these assumptions?

Emprical Evidence of Constant Variance?

Figure: Absolute Returns

Emprical Evidence of Autocorrelation?

Figure: Autocorrelation of Return Series

Emprical Evidence of Normal Distribution?

Figure: QQ-Plots of Return Series

Univariate Solution: Alternative Distributions?

Histogram SIEMENS

Histogram BAYER

Histogram BMW

Figure: Histograms and GHP- vs. Normal Distribution

Consequences for Description of Dependence

- Multivariate Distribution need not to be elliptic!
- Pearson's Correlation is/might be wrong measure for dependence.
- Nevertheless, in Financial World Pearson's Correlation is most used measure to describe dependence structures.

Definition

Definition

Pearson's Correlation of the random variables X and Y is defined as

$$
\begin{equation*}
\rho(X, Y)=\frac{\operatorname{Cov}[X, Y]}{\sqrt{V[X] V[Y]}}, \tag{1}
\end{equation*}
$$

when $\operatorname{Cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$ holds and $\mathbb{V}[X]$ and $\mathbb{V}[Y]$ measures the variance of X and Y.

Limitations of Pearson's Correlation

Linear Transformation

$$
\begin{equation*}
\rho(X, Y)=\rho(\alpha+\beta X, \gamma+\delta Y) \tag{2}
\end{equation*}
$$

for all $\alpha, \gamma \in \mathbb{R}$ and for $\beta, \delta>0$.
Strictly monotone increasing Transformation

$$
\begin{equation*}
\rho(X, Y) \neq \rho(F(X), F(Y)) . \tag{3}
\end{equation*}
$$

for all stricltly monotone increasing functions $F: \mathbb{R} \mapsto \mathbb{R}$.

Limitations of Pearson's Correlation

Gumbel

Clayton

Student t

Figure: Simulation of random variates with correlation of 0.7

Dependence measures should be invariant!

Fallacies

- The marginal distributions and the pairwise linear correlation determines the joint distribution.
- Given the margins, one can attain for all the pairs a linear correaltion between $[-1,1]$ through adjustment of the joint distribution.
- For a portfolio consisting of a linear combination of random variables the VaR is maximal when Pearson's Correlation is maximal.

Prerequisites

- Grounded function:
$F(\mathbf{x})=F\left(x_{1}, x_{2}, \ldots, x_{j-1}, s_{j}, x_{j+1}, \ldots, x_{k}\right)=0$ if s_{j} is the lowest Element of S_{j} of the domain $S_{1} \times S_{2} \times \ldots \times S_{n}$.
- Volume of a function.
- k-increasing function: $F\left(s_{1}, s_{2}, \ldots, s_{n}\right)=1$ if s_{j} for $i=1, \ldots, n$ is greatest element of S_{j} of the domain $S_{1} \times S_{2} \times \ldots \times S_{n}$.

Definition of a Copula function

Definition

Let C be a function with domain I^{k} and let $\mathbf{U}=U_{1}, U_{2}, \ldots, U_{n}$ be standard uniform distributed random variables, then C is a Copula if

- C is grounded,
- C is k-increasing,
- $C(\mathbf{u})=u_{j}$ for $u_{1}=\cdots=u_{j-1}=u_{j+1}=\cdots=u_{n}=1$ and $u_{j} \neq 1$.

Definition of a Copula function

Hence

$$
\begin{equation*}
V_{C}\left(\left[0, u_{1}\right] \times\left[0, u_{2}\right] \times \ldots \times\left[0, u_{k}\right]\right)=C\left(u_{1}, u_{2}, \ldots, u_{k}\right)=C(\mathbf{u}) \tag{4}
\end{equation*}
$$

holds, C fulfills all features of a distribution function and

$$
\begin{equation*}
C(\mathbf{u})=C\left(u_{1}, u_{2}, \ldots, u_{k}\right)=\mathbb{P}\left[U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{k} \leq u_{k}\right] \tag{5}
\end{equation*}
$$

holds for $U_{i} \sim \mathbb{U}[0,1]$.

Sklar's Theorem

Due to probability transformation of $U \sim \mathbb{U}[0,1]$ we have $F^{-1}(U) \sim F$ the following holds:

$$
\begin{aligned}
C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right) & =C\left(u_{1}, \ldots, u_{n}\right) \\
& =\mathbb{P}\left[U_{1} \leq u_{1}, \ldots, U_{n} \leq u_{n}\right] \\
& =\mathbb{P}\left[U_{1} \leq F_{1}\left(x_{1}\right), \ldots, U_{n} \leq F_{n}\left(x_{n}\right)\right] \\
& =\mathbb{P}\left[F_{1}^{-1}\left(U_{1}\right) \leq x_{1}, \ldots, F_{n}^{-1}\left(U_{n}\right) \leq x_{n}\right] \\
& =\mathbb{P}\left[X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right] \\
& =F\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Advantages of Copula functions

A copula couples the information about the the margins and information about the dependence to a multivariate distribution function!

Invariance of Copula functions

Let α_{k} be strictly monotone increasing functions and let $G_{k}(x)$ be the distribution function of $\alpha_{k}\left(X_{k}\right)$. Due to the probability transformation

$$
\begin{aligned}
G_{k}(x) & =\mathbb{P}\left[\alpha_{k}\left(X_{k}\right) \leq x\right] \\
& =\mathbb{P}\left[X_{k} \leq \alpha_{k}^{-1}(x)\right] \\
& =F_{k}\left(\alpha_{k}^{-1}(x)\right)
\end{aligned}
$$

holds.

Invariance of Copula functions

Using Sklar's Theorem we can derive

$$
\begin{aligned}
C_{\alpha}\left(G_{1}\left(x_{1}\right), \ldots, G_{n}\left(x_{n}\right)\right) & =\mathbb{P}\left[\alpha_{1}\left(X_{1}\right) \leq x_{1}, \ldots, \alpha_{n}\left(X_{n}\right) \leq x_{n}\right] \\
& =\mathbb{P}\left[X_{1} \leq \alpha_{1}^{-1}\left(x_{1}\right), \ldots, X_{n} \leq \alpha_{n}^{-1}\left(x_{n}\right)\right] \\
& =\mathbb{C}\left(F_{1}\left(\alpha_{1}^{-1}\left(x_{1}\right)\right), \ldots, F_{n}\left(\alpha_{n}^{-1}\left(x_{n}\right)\right)\right) \\
& =\mathbb{C}\left(G_{1}\left(x_{1}\right), \ldots, G_{n}\left(x_{n}\right)\right)
\end{aligned}
$$

Hence, $C=C_{\alpha}$ and due to this Copula functions are invariant!

Fréchet-Höffding-Bounds

All Copula functions are bounded by the functions

$$
C_{l}(u, v)=\max \{u+v-1,0\} \leq C(u, v) \leq \min \{u, v\}=C_{u}(u, v) .
$$

Figure: Graph of Fréchet-Bounds

Motivation

Prerequisites

Definition
Sklar's Theorem
Properties of Copula functions
Dependence Structure
Families of Copulae

Fréchet-Höffding-Bounds

Figure: Graphs of Fréchet-Bounds

Describing Dependence

Independence

$$
F(\mathbf{X})=F_{1}\left(X_{1}\right) F_{2}\left(X_{2}\right) \cdots F_{n}\left(X_{n}\right)=C\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)
$$

Comonotonicity - Perfect positive Dependence
Strictly monotone increasing transformation of 2 random variables leads to

$$
F\left(x_{1}, x_{2}\right)=\min \left\{F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right\}=C_{u}\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right),
$$

which equals the upper Fréchet-Höffding-Bound.

Describing Dependence

Contermonotonicity - Perfect negative Dependence

Strictly monotone increasing transformation of one and strictly monotone decreasing transformation of the other random variable leads to

$$
F\left(x_{1}, x_{2}\right)=\max \left\{F_{1}\left(x_{1}\right)+F_{2}\left(x_{2}\right)-1,0\right\}=C_{l}\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right),
$$

which equals the lower Fréchet-Höffding-Bound.

Families of Copula functions

Elliptical Copulae

- Easy generation of random variates.

Archimedian Copulae

- Easy to construct Copulae through generator function.
- Archimidean Copulae can be adapted to many properties of empirical data.

Prerequisites

Definition

Examples

Gauss Copula

$$
C_{G}^{G a}(\mathbf{u})=\int_{-\infty}^{\Phi^{-1}\left(u_{1}\right)} \int_{-\infty}^{\Phi^{-1}\left(u_{2}\right)} \cdots \int_{-\infty}^{\Phi^{-1}\left(u_{n}\right)} \frac{1}{(2 \pi)^{\frac{n}{2}}|R|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \mathbf{x}^{T} R^{-1} \mathbf{x}\right) d x_{1} d x_{2} \ldots d x_{n}
$$

Student-t Copula

$$
C_{\nu, R}^{t}(\mathbf{u})=\int_{-\infty}^{t_{\nu}^{-1}\left(u_{1}\right)} \int_{-\infty}^{t_{\nu}^{-1}\left(u_{2}\right)} \ldots \int_{-\infty}^{t_{\nu}^{-1}\left(u_{n}\right)} \frac{\Gamma\left(\frac{\nu+n}{2}\right)|R|^{-\frac{1}{2}}}{\Gamma\left(\frac{\nu}{2}\right)(\nu \pi)^{\frac{n}{2}}}\left(1+\frac{1}{\nu} \mathbf{x}^{T} R^{-1} \mathbf{x}\right)^{-\frac{\nu+n}{2}} d x_{1} d x_{2} \ldots d x_{n}
$$

Gumbel Copula

$$
C\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\exp \left(-\left(\sum_{i=1}^{n}\left(-\log u_{i}\right)^{\alpha}\right)^{\frac{1}{\alpha}}\right)
$$

Clayton Copula

$$
C\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left(\sum_{i=1}^{n} u_{i}^{-\alpha}-n+1\right)^{-\frac{1}{\alpha}}
$$

Frank Copula

$$
C\left(u_{1}, u_{2}, \ldots, u_{n}\right)=-\frac{1}{\alpha} \log \left(1+\frac{\prod_{i=1}^{n}\left(\mathrm{e}^{-\alpha u_{i}}-1\right)}{\left(\mathrm{e}^{-\alpha}-1\right)^{n} \square^{1}}\right)
$$

Which properties should a dependence measure hold?

- Symmetry: $\delta(X, Y)=\delta(Y, X)$
- Normalistion: $-1 \leq \delta(X, Y) \leq 1$
- $\delta(X, Y)=1$ if X, Y are comonotonic and $\delta(X, Y)=-1$ if X, Y are contermonotonic
- If $\alpha: \mathbb{R} \mapsto \mathbb{R}$ is a strictly monotone function, then

$$
\delta(\alpha(X), Y)=\left\{\begin{aligned}
\delta(X, Y) & \text { if } \alpha \text { is increasing } \\
-\delta(X, Y) & \text { if } \alpha \text { is decreasing. }
\end{aligned}\right.
$$

- X and Y independent $\Rightarrow \delta(X, Y)=0$

Rank Correlations

Rank Correlations are based on the concept of concordance.
Definition
Let $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ be 2 samples of (X, Y).
Concordance
Concordant if $x_{i}<x_{j}$ and $y_{i}<y_{j}$ or alternatively $x_{i}>x_{j}$ and $y_{i}>y_{j}$ holds.

Disconcordance
Disconcordant if $x_{i}<x_{j}$ and $y_{i}>y_{j}$ or alternatively $x_{i}>x_{j}$ and $y_{i}<y_{j}$ holds.

Kendall's Tau

Measures concordance of 2 pairs.
Definition
$\tau(X, Y)=\mathbb{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]-\mathbb{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right]$

Copula version

$$
\begin{equation*}
\tau=1-4 \int_{0}^{1} \int_{0}^{1} \frac{\partial C(u, v)}{\partial u} \frac{\partial C(u, v)}{\partial v} d u d v \tag{6}
\end{equation*}
$$

Spearman's Rho

Measures concordance of 3 pairs.
Definition

$$
\rho_{S}=3\left(\mathbb{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{3}\right)>0\right]-\mathbb{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{3}\right)<0\right]\right)
$$

Copula version

$$
\begin{equation*}
\rho_{S}=12 \int_{0}^{1} \int_{0}^{1} C(u, v) d u d v-3 \tag{7}
\end{equation*}
$$

ρ_{S} equals Pearson's Correlation of the probability transformed random variables!

Gini's Gamma

Measure for monotone dependence.

Sample version

$$
g=\frac{1}{\left\lfloor\frac{n^{2}}{2}\right\rfloor}\left(\sum_{i=1}^{n}\left|x_{(i)}+y_{(i)}-n-1\right|-\sum_{i=1}^{n}\left|x_{(i)}-y_{(i)}\right|\right)
$$

Continious version

$$
\gamma=2 \mathbb{E}\left[\left|\frac{x_{(i)}}{n}+\frac{y_{(i)}}{n}-\frac{n+1}{n}\right|-\left|\frac{x_{(i)}}{n}-\frac{y_{(i)}}{n}\right|\right]
$$

Copula version

$$
\begin{equation*}
\gamma=4\left(\int_{0}^{1} C(u, 1-u) d u-\int_{0}^{1}(u-C(u, u))\right) \tag{8}
\end{equation*}
$$

Blomqvist's Beta

Similiar to Kendall's Tau, but based on median.
Definition

$$
\beta=\mathbb{P}[(X-\bar{x})(Y-\bar{y})>0]-\mathbb{P}[(X-\bar{x})(Y-\bar{y})<0]
$$

Copula version

$$
\begin{equation*}
\beta=4 C(0.5,0.5)-1 \tag{9}
\end{equation*}
$$

Schweizer and Wolff's Simgma

Distance between C and the product Copula (independent).
Definition

$$
\begin{equation*}
\sigma_{S W}=12 \int_{0}^{1} \int_{0}^{1}|C(u, v)-u v| d u d v \tag{10}
\end{equation*}
$$

Does not give information about sign of dependence, but can be usefull for interpretation of independence!

Tail Dependence

Do extreme realisations of 2 random variable occur togehter?
Let $X \sim F$ and $Y \sim G$.
Upper Tail Dependence

$$
\lambda_{U}=\lim _{u \rightarrow 1^{-}} \mathbb{P}\left[Y>G^{-1}(u) \mid X>F^{-1}(u)\right]
$$

Lower Tail Dependence

$$
\lambda_{L}=\lim _{u \rightarrow 0^{+}} \mathbb{P}\left[Y \leq G^{-1}(u) \mid X \leq F^{-1}(u)\right]
$$

Tail Dependence

Copula version

Upper Tail Dependence

$$
\begin{equation*}
\lambda_{U}=\lim _{u \rightarrow 1^{-}}\left(\frac{1-2 u+C(u, u)}{1-u}\right) \tag{11}
\end{equation*}
$$

Lower Tail Dependence

$$
\begin{equation*}
\lambda_{L}=\lim _{u \rightarrow 0^{+}}\left(\frac{C(u, u)}{u}\right) \tag{12}
\end{equation*}
$$

Tail Dependence

Figure: Simulation of random variates with different tail dependence

Which Copula functions fits to my data?

3 methods of Maximum-Likelihood-Estimation:

Exact Maximum Likelihood method (one stage method)

$$
I(\theta)=\sum_{t=1}^{T} \ln c\left(F_{1}\left(x_{1, t}\right), F_{2}\left(x_{2, t}\right), \ldots, F_{n}\left(x_{n, t}\right)\right)+\sum_{t=1}^{T} \sum_{j=1}^{n} \ln f_{j}\left(x_{j, t}\right)
$$

Inference Functions for Margins method (two stage method)
First step: Fit the margins

$$
I_{i}\left(\alpha_{i}\right)=\sum^{T} \ln f_{i}\left(x_{i, t}\right)
$$

Which Copula functions fits to my data?

Second step: Fit the copula

$$
I(\theta)=\sum_{t=1}^{T} \ln c\left(F_{1}\left(x_{1, t} \mid \hat{\alpha_{1}}\right), F_{2}\left(x_{2, t} \mid \hat{\alpha_{2}}\right), \ldots, F_{n}\left(x_{n, t} \mid \hat{\alpha_{n}}\right)\right)
$$

Canonical Maximum Likelihood method

$$
I(\theta)=\sum_{t=1}^{T} \ln c\left(\hat{F}_{1}\left(x_{1, t}\right), \hat{F}_{2}\left(x_{2, t}\right), \ldots, \hat{F}_{n}\left(x_{n, t}\right)\right)
$$

Criterias for model selection

Possible criterias:

- Objective function subject of Maximum-Likelihood-function
- Kolmogorov-Smirnov test
- Akaike's Information Criterion
- Bayesian Information Criterion
- Distance between fitted and empircal Copula

Replication of dependence structure

Figure: Sample data, normal simulation and copula simulation of BASF vs. BAYER

Replication of dependence structure

Reale Daten

Sim. Normalverteilung

Sim. Copula-Daten

Figure: Sample data, normal simulation and copula simulation of BMW vs. BAYER

Replication of dependence structure

Reste Osteo vs. memmatveretere Simulation

Feale Devea vic. Capula Simeltuiae

Figure: Copula simulation of BASF, Siemens and BMW

Comparison of various dependence measures

	BAS vs. BMW	SIE vs. BMW	BMW vs. BAY
ρ	0.636	0.614	0.520
τ	0.405	0.421	0.376
ρ_{S}	0.568	0.562	0.515
γ	0.458	0.464	0.418
β	0.405	0.418	0.380
$\sigma_{S W}$	0.567	0.663	0.504
λ_{U}	0.269	0.221	0.210
λ_{L}	0.264	0.221	0.210

Table: Comparison of various dependence measures

Re-Define Risk Matrix

Mean Variance Approach

Each element of the variance-covariance-matrix is defined as

$$
\rho_{i, j} \sigma_{i} \sigma_{j}
$$

Alternative Approach
Replace ρ by other dependence measure:

$$
\delta_{i, j} \sigma_{i} \sigma_{j}
$$

What are the consequences for efficient frontier?

Effects on the efficient frontier

Efficient frontier

Research Outlook

Applications in Optimization

- Use alternative risk measures.
- (C)VaR optimization based on Copula calculations of VaR.
- Choose risk aversion factor based on position of the forecasts in empirical/estimated multivariate distribution (Copula) of the instruments.
- Alternatives for Mean-Variance-Optimization based on Copula Theory?

Research Outlook

Applications in Preprocessing

- Use alternative dependence measures for clustering of inputs.
- Try to reduce number of inputs with help of Copula functions.

Application in Model Building

- Use Copula functions for describing dependencies of inputs (especially for extreme events!).
- Try to calculate long-term forecasts which fit to empirical/fitted Copula of the instruments. Choose risk factor based on long-term forecasts.

Research Outlook

Applications in Alpha Selection

- Do selected forecasts fit to empirical/estimated Copula of the instruments?
- Do selected forecasts show same dependence structures as estimated/empircal Copula of the instruments? How can such forecasts be found?

Research Outlook

Methodological Part

- Limitations of Probability Theory (addition law).
- Copula are based on Probability Theory.
- What are consequences of limitations for measuring dependencies?
- Can Information Theory help?
- Information Theory and Dependence Structures.

Thank you for your attention!

