

**Finite Mixture Modelling** 

Model Specification, Estimation & Application

Bettina Grün

Department of Statistics and Mathematics

Research Seminar, November 23 2007

# **Finite mixture models**

The finite mixture distribution is given by

$$H(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\Theta}) = \sum_{k=1}^{K} \pi_k F_k(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\vartheta}_k)$$

with

$$\sum_{k=1}^{K} \pi_k = 1 \quad \land \quad \pi_k > 0 \,\forall k$$

In the following it is assumed that the component specific density functions  $f_k$  exist and determine the mixture density h.

# **Finite mixture models**

Types of applications:

- semi-parametric tool to estimate general distribution functions
- modeling unobserved heterogeneity

Special cases:

- model-based clustering
- mixtures of regression models

# **Finite mixture models**



#### **Finite mixture models**



#### **Finite mixture models**



#### **Finite mixture models**



#### **Estimation**

- Maximum-Likelihood: Expectation-Maximization (EM) Algorithm (Dempster, Laird and Rubin, 1977)
  - General method for ML estimation in models with unobserved latent variables: The complete likelihood containing the observed and unobserved data is easier to estimate.
  - Iterates between
    - E-step, which computes the expectation of the complete likelihood, and
    - M-step, where the expected complete likelihood is maximized.

Bayesian: Gibbs sampling (Diebolt and Robert, 1994)

- Markov Chain Monte Carlo algorithm
- Applicable when the joint posterior distribution is not known explicitly, but the conditional posterior distributions of each variable/subsets of variables are known.

# Missing data

The component-label vectors  $z_n = (z_{nk})_{k=1,\dots,K}$  are treated as missing data. It holds that

- $z_{nk} \in \{0,1\}$  and
- $\sum_{k=1}^{K} z_{nk} = 1$  for all k = 1, ..., K.

The complete log-likelihood is given by

$$\log L_c(\Theta) = \sum_{k=1}^{K} \sum_{n=1}^{N} z_{nk} \left[ \log \pi_k + \log f_k(\boldsymbol{y}_n | \boldsymbol{x}_n, \boldsymbol{\vartheta}_k) \right]$$

#### **EM algorithm: E-step**

Given the current parameter estimates  $\Theta^{(i)}$  replace the missing data  $z_{nk}$  by the estimated a-posteriori probabilities

$$\widehat{z}_{nk}^{(i)} = \mathbb{P}(k|\boldsymbol{y}_n, \boldsymbol{x}_n, \boldsymbol{\Theta}^{(i)}) = rac{\pi_k^{(i)} f_k(\boldsymbol{y}_n|\boldsymbol{x}_n, \boldsymbol{\vartheta}_k^{(i)})}{\sum\limits_{u=1}^K \pi_u^{(i)} f_k(\boldsymbol{y}_n|\boldsymbol{x}_n, \boldsymbol{\vartheta}_u^{(i)})}.$$

The conditional expectation of log  $L_c(\Theta)$  at the *i*<sup>th</sup> step is given by

$$Q(\Theta; \Theta^{(i)}) = \mathbb{E}_{\Theta^{(i)}}[\log L_c(\Theta) | \boldsymbol{y}, \boldsymbol{x}]$$
  
=  $\sum_{k=1}^{K} \sum_{n=1}^{N} \hat{z}_{nk}^{(i)}[\log \pi_k + \log f_k(\boldsymbol{y}_n | \boldsymbol{x}_n, \boldsymbol{\vartheta}_k)]$ 

# **EM algorithm: M-step**

The next parameter estimate is given by:

$$\Theta^{(i+1)} = \arg\max_{\Theta} Q(\Theta; \Theta^{(i)})$$

The estimates for the prior class probabilities are given by:

$$\pi_k^{(i+1)} = \frac{1}{N} \sum_{n=1}^N \hat{z}_{nk}^{(i)}.$$

The component specific parameter estimates are determined by:

$$\boldsymbol{\vartheta}_{k}^{(i+1)} = \operatorname*{arg\,max}_{\boldsymbol{\vartheta}_{k}} \sum_{n=1}^{N} \hat{z}_{nk}^{(i)} \log(f_{k}(\boldsymbol{y}_{n} | \boldsymbol{x}_{n}, \boldsymbol{\vartheta}_{k})).$$

 $\Rightarrow$  weighted ML estimation of the component specific model.

#### M-step: Mixtures of Gaussian distributions

The solutions for the M-step are given in closed form:

$$\mu_{k}^{(i+1)} = \frac{\sum_{n=1}^{N} \hat{z}_{nk}^{(i)} y_{n}}{\sum_{n=1}^{N} \hat{z}_{nk}^{(i)}}$$
$$\Sigma_{k}^{(i+1)} = \frac{\sum_{n=1}^{N} \hat{z}_{nk}^{(i)} (y_{n} - \mu_{k}^{(i+1)}) (y_{n} - \mu_{k}^{(i+1)})'}{\sum_{n=1}^{N} \hat{z}_{nk}^{(i)}}$$

#### **Estimation: EM algorithm**

#### Advantages:

- The likelihood is increased in each step  $\rightarrow$  EM algorithm converges for bounded likelihoods.
- Relatively easy to implement:
  - Different mixture models require only different M-steps.
  - Weighted ML estimation of the component specific model is sometimes already available.

#### Disadvantages:

- Standard errors have to be determined separately as the information matrix is not required during the algorithm.
- Convergence only to a local optimum
- Slow convergence
- $\Rightarrow$  variants such as Stochastic EM (SEM) or Classification EM (CEM)

# **EM algorithm: Number of components**

Information criteria: e.g. AIC, BIC, ICL

- **Likelihood ratio test statistic:** Comparison of nested models where the smaller model is derived by fixing one parameter at the border of the parameter space.
  - $\Rightarrow$  Regularity conditions are not fulfilled.

The asymptotic null distribution is not the usual  $\chi^2$ -distribution with degrees of freedom equal to the difference between the number of parameters under the null and alternative hypotheses.

- distributional results for special cases
- bootstrapping

# **Bayesian estimation**

Determine the posterior density using Bayes' theorem

 $p(\Theta|\boldsymbol{Y}, \boldsymbol{X}) \propto h(\boldsymbol{Y}|\boldsymbol{X}, \Theta)p(\Theta),$ 

where  $p(\Theta)$  is the prior and  $Y = (y_n)_n$  and  $X = (x_n)_n$ .

Standard prior distributions:

- Proper priors: Improper priors give improper posteriors.
- Independent priors for the component weights and the component specific parameters.
- Conjugate priors for the complete likelihood
  - Dirichlet distribution  $\mathcal{D}(e_{0,1},\ldots,e_{0,K})$  for the component weights which is the conjugate prior for the multinomial distribution.
  - Priors on the component specific parameters depend on the underlying distribution family.
- Invariant priors, e.g. the parameter for the Dirchlet prior is constant over all components:  $e_{0,k} \equiv e_0$ .

# **Estimation: Gibbs sampling**

Starting with  $Z^0 = (z_n^0)_{n=1,...,N}$  repeat the following steps for  $i = 1, ..., I_0, ..., I + I_0$ .

1. Parameter simulation conditional on the classification  $Z^{(i-1)}$ :

(a) Sample  $\pi_1, \ldots, \pi_K$  from  $\mathcal{D}((\sum_{n=1}^N z_{nk}^{(i-1)} + e_{0,k})_{k=1,\ldots,K}).$ 

(b) Sample component specific parameters from the complete-data posterior  $p(\vartheta_1, \dots, \vartheta_K | Z^{(i-1)}, Y)$ 

Store the actual values of all parameters  $\Theta^{(i)} = (\pi_k^{(i)}, \vartheta_k^{(i)})_{k=1,\dots,K}$ .

2. Classification of each observation  $(y_n, x_n)$  conditional on knowing  $\Theta^{(i)}$ :

Sample  $z_n^{(i)}$  from the multinomial distribution with parameter equal to the posterior probabilities.

After discarding the burn-in draws the draws  $I_0 + 1, ..., I + I_0$  can be used to approximate all quantities of interest.

#### **Example: Gaussian distribution**

Assume an independence prior

$$p(\mu_k, \Sigma_k^{-1}) \sim f_N(\mu_k; b_0, B_0) f_W(\Sigma_k^{-1}; c_0, C_0)$$

- 1. Parameter simulation conditional on the classification  $Z^{(i-1)}$ :
  - (a) Sample  $\pi_1^{(i)}, \ldots, \pi_K^{(i)}$  from  $\mathcal{D}((\sum_{n=1}^N z_{nk}^{(i-1)} + e_{0,k})_{k=1,\ldots,K})$ . (b) Sample  $(\sum_k^{-1})^{(i)}$  in each group k from a Wishart  $\mathcal{W}(c_k(\mathbf{Z}^{(i-1)}), \mathbf{C}_k(\mathbf{Z}^{(i-1)}))$  distribution. (c) Sample  $\boldsymbol{\mu}_k^{(i)}$  in each group k from a  $\mathcal{N}(\boldsymbol{b}_k(\mathbf{Z}^{(i-1)}), \boldsymbol{B}_k(\mathbf{Z}^{(i-1)}))$

  - distribution.
- 2. Classification of each observation  $y_n$  conditional on knowing  $\Theta^{(i)}$ :

$$\mathbb{P}(z_{nk}^{(i)}=1|m{y}_n,\Theta^{(i)})\propto \pi_k f_N(m{y}_n;m{\mu}_k,m{\Sigma}_k)$$

#### Estimation: Gibbs sampling

Advantages:

- Relatively easy to implement
  - Different mixture models differ only in the parameter simulation step.
  - Parameter simulation conditional on the classification is sometimes already available.

Disadvantages:

• Might fail to escape the attraction area of one mode  $\rightarrow$  not all posterior modes are visited.

#### Gibbs sampling: Number of components

- Bayes factors
- Sampling schemes with a varying number of components
  - reversible-jump MCMC
  - inclusion of birth-and-death processes

#### Label switching

The posterior distribution is invariant under a permutation of the components with the same component-specific model.

- $\Rightarrow$  Determine a unique labelling for component-specific inference:
- Impose a suitable ordering constraint, e.g.  $\pi_s < \pi_t \ \forall s, t \in \{1, \dots, S\}$ with s < t.
- Minimize the distance to the Maximum-A-Posteriori (MAP) estimate.
- Fix the component membership for some observations.
- Relabelling algorithms.

#### Initialization

- Construct a suitable parameter vector  $\Theta^{(0)}$ .
  - random
  - other estimation methods: e.g. moment estimators
- Classify observations/assign a-posteriori probabilities to each observation.
  - random
  - cluster analysis results: e.g. hierarchical clustering, *k*-means

## **Extensions and special cases**

- Model-based clustering:
  - Latent class analysis: multivariate discrete observations where the marginal distributions in the components are independent.
  - mixtures of factor analyzers
  - mixtures of *t*-distributions
- Mixtures of regressions:
  - mixtures of generalized linear models
  - mixtures of generalized linear mixed models
- Covariates for the component sizes: concomitant variable models
- Impose equality constraints between component-specific parameters

# Software in R

- Model-based clustering:
  - mclust (Fraley and Raftery, 2002) for Gaussian mixtures:
    - \* specify different models depending on the structure of the variance-covariance matrices (volume, shape, orientation)

 $\Sigma_k = \lambda_k D_k \operatorname{diag}(a_k) D'_k$ 

- \* initialize EM algorithm with the solution from an agglomerative hierarchical clustering algorithm
- Clusterwise regression:
  - flexmix (Leisch, 2004)

#### Software: FlexMix

- The function flexmix() provides the E-step and all data handling.
- The M-step is supplied by the user similar to glm() families.
- Multiple independent responses from different families
- Currently bindings to several GLM families exist (Gaussian, Poisson, Gamma, Binomial)
- Weighted, hard (CEM) and random (SEM) classification
- Components with prior probability below a user-specified threshold are automatically removed during iteration

See also CRAN Task View "Cluster Analysis & Finite Mixture Models".

#### **FlexMix Design**

- Primary goal is extensibility: ideal for trying out new mixture models.
- No replacement of specialized mixtures like mclust(), but complement.
- Usage of S4 classes and methods
- Formula-based interface
- Multivariate responses:
- **combination of univariate families:** assumption of independence (given *x*), each response may have its own model formula, i.e., a different set of regressors
- **multivariate families:** if family handles multivariate response directly, then arbitrary multivariate response distributions are possible

- > library("flexmix")
- > data("diabetes", package = "mclust")
- > diabetes\_data <- as.matrix(diabetes[, 2:4])</pre>

# **Example: Clustering**



#### **Example: Clustering**

|                  |                                     |                              |                  |                   | -                                     |                       |                                      |                              |                                     | <pre>model = FLXMCmvnorm(diag = FALSE), nrep = 10))</pre>                                                                                                                                                                        |
|------------------|-------------------------------------|------------------------------|------------------|-------------------|---------------------------------------|-----------------------|--------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                | : *                                 | *                            | *                | *                 | *                                     | *                     | *                                    | *                            | *                                   | *                                                                                                                                                                                                                                |
| 2                | : *                                 | *                            | *                | *                 | *                                     | *                     | *                                    | *                            | *                                   | *                                                                                                                                                                                                                                |
| 3                | : *                                 | *                            | *                | *                 | *                                     | *                     | *                                    | *                            | *                                   | *                                                                                                                                                                                                                                |
| 4                | : *                                 | *                            | *                | *                 | *                                     | *                     | *                                    | *                            | *                                   | *                                                                                                                                                                                                                                |
| 5                | : *                                 | *                            | *                | *                 | *                                     | *                     | *                                    | *                            | *                                   | *                                                                                                                                                                                                                                |
| 500              | epF.                                | Le                           | xmi              | ix(               | di                                    | at                    | bet                                  | te                           | s_c                                 | <pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE)</pre>                                                                                                                                                                           |
| 50               | epF<br>k<br>ite:                    | Le:<br>=                     | xmi<br>1:<br>cor | ix(<br>5,<br>nve  | di<br>n<br>rg                         | ab<br>ire             | pet<br>pp                            | te:<br>=<br>x                | s_0<br>1(<br>k0                     | <pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE) )) logLik AIC BIC ICL</pre>                                                                                                                                                     |
| :<br>:<br>:      | epF<br>k<br>ite:                    | 1e:<br>=<br>r (<br>2         | xmi<br>1:<br>cor | ix(<br>5,<br>ive  | di<br>n<br>rg<br>TR                   | ab<br>re<br>ged<br>UE | pet<br>p<br>l l<br>L 1               | te:<br>=<br>x :<br>1         | s_c<br>1(<br>k0<br>1                | <pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE) ) logLik AIC BIC ICL -2545.833 5109.666 5136.456 5136.456</pre>                                                                                                                 |
| :<br>1<br>2      | epr<br>k<br>ite:<br>1               | 1e:<br>=<br>r (<br>2<br>2    | xmi<br>1:<br>cor | ix(<br>:5,<br>ive | di<br>n<br>rg<br>TR<br>TR             | ab<br>re<br>ged<br>UE | pet<br>pp<br>1 k<br>2 1<br>2 2       | te:<br>=<br>x :<br>1<br>2    | s_c<br>10<br>k0<br>1<br>2           | <pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE) )) logLik AIC BIC ICL -2545.833 5109.666 5136.456 5136.456 -2354.674 4747.347 4803.905 4811.644</pre>                                                                           |
| :<br>1<br>2<br>3 | epr<br>k<br>ite:<br>1<br>2          | 1e:<br>=<br>2<br>2<br>4      | xmi<br>1:<br>cor | ix(<br>5,<br>nve  | di<br>n<br>rg<br>TR<br>TR<br>TR       | ab<br>re<br>UE<br>UE  | pet<br>p<br>l k<br>l 1<br>l 2<br>l 3 | te:<br>=<br>1<br>2<br>3      | s_0<br>10<br>k0<br>1<br>2<br>3      | <pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE) )) logLik AIC BIC ICL -2545.833 5109.666 5136.456 5136.456 -2354.674 4747.347 4803.905 4811.644 -2303.557 4665.113 4751.439 4770.353</pre>                                      |
| 1<br>2<br>3<br>4 | epr:<br>k<br>ite:<br>1:<br>2:<br>3: | 1e:<br>=<br>2<br>2<br>4<br>5 | xmi<br>1:<br>cor | ix(<br>5,         | di<br>n<br>rg<br>TR<br>TR<br>TR<br>TR | ab<br>ire<br>UE<br>UE | pet<br>p<br>1 1<br>2 2<br>2 3<br>2 4 | te:<br>=<br>1<br>2<br>3<br>1 | s_0<br>1(<br>k0<br>1<br>2<br>3<br>4 | <pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE) )) logLik AIC BIC ICL -2545.833 5109.666 5136.456 5136.456 -2354.674 4747.347 4803.905 4811.644 -2303.557 4665.113 4751.439 4770.353 -2287.605 4653.210 4769.302 4793.502</pre> |

#### **Example: Clustering**



#### **Example: Clustering**

> (mix\_best <- getModel(mix))
Call:
stepFlexmix(diabetes\_data ~ 1, model = FLXMCmvnorm(diag = FALSE),
 k = 3, nrep = 10)
Cluster sizes:
 1 2 3
82 28 35
convergence after 24 iterations
> summary(mix\_best)
Call:
stepFlexmix(diabetes\_data ~ 1, model = FLXMCmvnorm(diag = FALSE),
 k = 3, nrep = 10)
 prior size post>0 ratio

Comp.10.540821010.812Comp.20.19928960.292Comp.30.261351230.285

'log Lik.' -2303.557 (df=29) AIC: 4665.113 BIC: 4751.439

# **Example: Clustering**



# **Example: Clustering**

> table(cluster(getModel(mix)), diabetes\$class) chemical normal overt 1 10 72 0 2 1 0 27 3 25 4 6 > parameters(mix\_best, component = 1, simplify = FALSE) \$center glucose insulin sspg 91.00937 358.19098 164.14443 \$cov glucose insulin sspg

glucose 58.21456 80.1404 16.8295 insulin 80.14039 2154.9810 347.6972 sspg 16.82950 347.6972 2484.1538 > plot(mix\_best, mark = 2)

# **Example: Clustering**

#### Rootogram of posterior probabilities > 1e-04



# **Example: Regression**



# **Example: Regression**

| > | d | ata | ı(' | "aj | oh: | ids | 5"  | , 1 | bad | cka | age | e = | "m  | ix | reg' | ')   |   |   |    |      |   |         |
|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|------|------|---|---|----|------|---|---------|
| > | ( | mix | c • | <-` | st  | ter | pF. | Lez | cmi | ĹX  | (n  | in  | f~  | n  | .aph | nids | k | = | 2, | data | = | aphids, |
| + |   |     |     |     |     |     |     |     |     |     |     | n   | rep | =  | 10)  | )    |   |   |    |      |   |         |
| 2 | : | *   | *   | *   | *   | *   | *   | *   | *   | *   | *   |     |     |    |      |      |   |   |    |      |   |         |

Call: stepFlexmix(n.inf ~ n.aphids, data = aphids, k = 2, nrep = 10)

#### Cluster sizes:

1 2 23 28

convergence after 17 iterations

# **Example: Regression**

| > posterior(mix | <pre>()[1:4,]</pre>                                    |
|-----------------|--------------------------------------------------------|
| [,1]            | [,2]                                                   |
| [1,] 0.9949732  | 0.005026814                                            |
| [2,] 0.9949769  | 0.005023128                                            |
| [3,] 0.2098020  | 0.790198026                                            |
| [4,] 0.2050383  | 0.794961704                                            |
| > predict(mix,  | <pre>newdata = data.frame(n.aphids = c(0, 300)))</pre> |
| \$Comp.1        |                                                        |
| [,1]            |                                                        |
| 1 3.458813      |                                                        |
| 2 20.047842     |                                                        |
|                 |                                                        |
| \$Comp.2        |                                                        |
| [,1]            |                                                        |
| 1 0.8679776     |                                                        |
| 2 1.5740946     |                                                        |

#### **Example: Regression**



#### **Example: Regression**

## **Example: Regression**



## **Applications**

Market segmentation: find groups of customers who share

- characteristics: e.g. groups of tourists with similar behaviours at their destination
- reactions: e.g. customers with similar price and other marketing mix elasticities in choice models
- $\Rightarrow$  account for heterogeneity between customers
- $\Rightarrow$  develop segment-specific marketing strategies

#### **Monographs**

D. Böhning.*Computer Assisted Analysis of Mixtures and Applications: Meta-Analysis, Disease Mapping, and Others.* Chapman & Hall/CRC, London, 1999.

S. Frühwirth-Schnatter. *Finite Mixture and Markov Switching Models*. Springer Series in Statistics. Springer, New York, 2006.

B. G. Lindsay. *Mixture Models: Theory, Geometry, and Applications*. The Institute for Mathematical Statistics, Hayward, California, 1995.

G. J. McLachlan and K. E. Basford. *Mixture Models: Inference and Applications to Clustering.* Marcel Dekker, New York, 1988.

G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000.

#### References

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM-algorithm. *Journal of the Royal Statistical Society B*, 39:1–38, 1977.

J. Diebolt and C. P. Robert. Estimation of finite mixture distributions through Bayesian sampling. *Journal of the Royal Statistical Society B*, 56:363–375, 1994.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis and density estimation. *Journal of the American Statistical Association*, 97 (458):611–631, 2002.

F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R. *Journal of Statistical Software*, 11(8), 2004. URL http://www.jstatsoft.org/v11/i08/.