

Finite Mixture Modelling

Model Specification, Estimation & Application

Bettina Grün

Department of Statistics and Mathematics

Research Seminar, November 23 2007

Finite mixture models

The finite mixture distribution is given by

$$H(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\Theta}) = \sum_{k=1}^{K} \pi_k F_k(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\vartheta}_k)$$

with

$$\sum_{k=1}^{K} \pi_k = 1 \quad \land \quad \pi_k > 0 \,\forall k$$

In the following it is assumed that the component specific density functions f_k exist and determine the mixture density h.

Finite mixture models

Types of applications:

- semi-parametric tool to estimate general distribution functions
- modeling unobserved heterogeneity

Special cases:

- model-based clustering
- mixtures of regression models

Finite mixture models

Estimation

- Maximum-Likelihood: Expectation-Maximization (EM) Algorithm (Dempster, Laird and Rubin, 1977)
 - General method for ML estimation in models with unobserved latent variables: The complete likelihood containing the observed and unobserved data is easier to estimate.
 - Iterates between
 - E-step, which computes the expectation of the complete likelihood, and
 - M-step, where the expected complete likelihood is maximized.

Bayesian: Gibbs sampling (Diebolt and Robert, 1994)

- Markov Chain Monte Carlo algorithm
- Applicable when the joint posterior distribution is not known explicitly, but the conditional posterior distributions of each variable/subsets of variables are known.

Missing data

The component-label vectors $z_n = (z_{nk})_{k=1,\dots,K}$ are treated as missing data. It holds that

- $z_{nk} \in \{0,1\}$ and
- $\sum_{k=1}^{K} z_{nk} = 1$ for all k = 1, ..., K.

The complete log-likelihood is given by

$$\log L_c(\Theta) = \sum_{k=1}^{K} \sum_{n=1}^{N} z_{nk} \left[\log \pi_k + \log f_k(\boldsymbol{y}_n | \boldsymbol{x}_n, \boldsymbol{\vartheta}_k) \right]$$

EM algorithm: E-step

Given the current parameter estimates $\Theta^{(i)}$ replace the missing data z_{nk} by the estimated a-posteriori probabilities

$$\widehat{z}_{nk}^{(i)} = \mathbb{P}(k|\boldsymbol{y}_n, \boldsymbol{x}_n, \boldsymbol{\Theta}^{(i)}) = rac{\pi_k^{(i)} f_k(\boldsymbol{y}_n|\boldsymbol{x}_n, \boldsymbol{\vartheta}_k^{(i)})}{\sum\limits_{u=1}^K \pi_u^{(i)} f_k(\boldsymbol{y}_n|\boldsymbol{x}_n, \boldsymbol{\vartheta}_u^{(i)})}.$$

The conditional expectation of log $L_c(\Theta)$ at the *i*th step is given by

$$Q(\Theta; \Theta^{(i)}) = \mathbb{E}_{\Theta^{(i)}}[\log L_c(\Theta) | \boldsymbol{y}, \boldsymbol{x}]$$

= $\sum_{k=1}^{K} \sum_{n=1}^{N} \hat{z}_{nk}^{(i)}[\log \pi_k + \log f_k(\boldsymbol{y}_n | \boldsymbol{x}_n, \boldsymbol{\vartheta}_k)]$

EM algorithm: M-step

The next parameter estimate is given by:

$$\Theta^{(i+1)} = \arg\max_{\Theta} Q(\Theta; \Theta^{(i)})$$

The estimates for the prior class probabilities are given by:

$$\pi_k^{(i+1)} = \frac{1}{N} \sum_{n=1}^N \hat{z}_{nk}^{(i)}.$$

The component specific parameter estimates are determined by:

$$\boldsymbol{\vartheta}_{k}^{(i+1)} = \operatorname*{arg\,max}_{\boldsymbol{\vartheta}_{k}} \sum_{n=1}^{N} \hat{z}_{nk}^{(i)} \log(f_{k}(\boldsymbol{y}_{n} | \boldsymbol{x}_{n}, \boldsymbol{\vartheta}_{k})).$$

 \Rightarrow weighted ML estimation of the component specific model.

M-step: Mixtures of Gaussian distributions

The solutions for the M-step are given in closed form:

$$\mu_{k}^{(i+1)} = \frac{\sum_{n=1}^{N} \hat{z}_{nk}^{(i)} y_{n}}{\sum_{n=1}^{N} \hat{z}_{nk}^{(i)}}$$
$$\Sigma_{k}^{(i+1)} = \frac{\sum_{n=1}^{N} \hat{z}_{nk}^{(i)} (y_{n} - \mu_{k}^{(i+1)}) (y_{n} - \mu_{k}^{(i+1)})'}{\sum_{n=1}^{N} \hat{z}_{nk}^{(i)}}$$

Estimation: EM algorithm

Advantages:

- The likelihood is increased in each step \rightarrow EM algorithm converges for bounded likelihoods.
- Relatively easy to implement:
 - Different mixture models require only different M-steps.
 - Weighted ML estimation of the component specific model is sometimes already available.

Disadvantages:

- Standard errors have to be determined separately as the information matrix is not required during the algorithm.
- Convergence only to a local optimum
- Slow convergence
- \Rightarrow variants such as Stochastic EM (SEM) or Classification EM (CEM)

EM algorithm: Number of components

Information criteria: e.g. AIC, BIC, ICL

- **Likelihood ratio test statistic:** Comparison of nested models where the smaller model is derived by fixing one parameter at the border of the parameter space.
 - \Rightarrow Regularity conditions are not fulfilled.

The asymptotic null distribution is not the usual χ^2 -distribution with degrees of freedom equal to the difference between the number of parameters under the null and alternative hypotheses.

- distributional results for special cases
- bootstrapping

Bayesian estimation

Determine the posterior density using Bayes' theorem

 $p(\Theta|\boldsymbol{Y}, \boldsymbol{X}) \propto h(\boldsymbol{Y}|\boldsymbol{X}, \Theta)p(\Theta),$

where $p(\Theta)$ is the prior and $Y = (y_n)_n$ and $X = (x_n)_n$.

Standard prior distributions:

- Proper priors: Improper priors give improper posteriors.
- Independent priors for the component weights and the component specific parameters.
- Conjugate priors for the complete likelihood
 - Dirichlet distribution $\mathcal{D}(e_{0,1},\ldots,e_{0,K})$ for the component weights which is the conjugate prior for the multinomial distribution.
 - Priors on the component specific parameters depend on the underlying distribution family.
- Invariant priors, e.g. the parameter for the Dirchlet prior is constant over all components: $e_{0,k} \equiv e_0$.

Estimation: Gibbs sampling

Starting with $Z^0 = (z_n^0)_{n=1,...,N}$ repeat the following steps for $i = 1, ..., I_0, ..., I + I_0$.

1. Parameter simulation conditional on the classification $Z^{(i-1)}$:

(a) Sample π_1, \ldots, π_K from $\mathcal{D}((\sum_{n=1}^N z_{nk}^{(i-1)} + e_{0,k})_{k=1,\ldots,K}).$

(b) Sample component specific parameters from the complete-data posterior $p(\vartheta_1, \dots, \vartheta_K | Z^{(i-1)}, Y)$

Store the actual values of all parameters $\Theta^{(i)} = (\pi_k^{(i)}, \vartheta_k^{(i)})_{k=1,\dots,K}$.

2. Classification of each observation (y_n, x_n) conditional on knowing $\Theta^{(i)}$:

Sample $z_n^{(i)}$ from the multinomial distribution with parameter equal to the posterior probabilities.

After discarding the burn-in draws the draws $I_0 + 1, ..., I + I_0$ can be used to approximate all quantities of interest.

Example: Gaussian distribution

Assume an independence prior

$$p(\mu_k, \Sigma_k^{-1}) \sim f_N(\mu_k; b_0, B_0) f_W(\Sigma_k^{-1}; c_0, C_0)$$

- 1. Parameter simulation conditional on the classification $Z^{(i-1)}$:
 - (a) Sample $\pi_1^{(i)}, \ldots, \pi_K^{(i)}$ from $\mathcal{D}((\sum_{n=1}^N z_{nk}^{(i-1)} + e_{0,k})_{k=1,\ldots,K})$. (b) Sample $(\sum_k^{-1})^{(i)}$ in each group k from a Wishart $\mathcal{W}(c_k(\mathbf{Z}^{(i-1)}), \mathbf{C}_k(\mathbf{Z}^{(i-1)}))$ distribution. (c) Sample $\boldsymbol{\mu}_k^{(i)}$ in each group k from a $\mathcal{N}(\boldsymbol{b}_k(\mathbf{Z}^{(i-1)}), \boldsymbol{B}_k(\mathbf{Z}^{(i-1)}))$

 - distribution.
- 2. Classification of each observation y_n conditional on knowing $\Theta^{(i)}$:

$$\mathbb{P}(z_{nk}^{(i)}=1|m{y}_n,\Theta^{(i)})\propto \pi_k f_N(m{y}_n;m{\mu}_k,m{\Sigma}_k)$$

Estimation: Gibbs sampling

Advantages:

- Relatively easy to implement
 - Different mixture models differ only in the parameter simulation step.
 - Parameter simulation conditional on the classification is sometimes already available.

Disadvantages:

• Might fail to escape the attraction area of one mode \rightarrow not all posterior modes are visited.

Gibbs sampling: Number of components

- Bayes factors
- Sampling schemes with a varying number of components
 - reversible-jump MCMC
 - inclusion of birth-and-death processes

Label switching

The posterior distribution is invariant under a permutation of the components with the same component-specific model.

- \Rightarrow Determine a unique labelling for component-specific inference:
- Impose a suitable ordering constraint, e.g. $\pi_s < \pi_t \ \forall s, t \in \{1, \dots, S\}$ with s < t.
- Minimize the distance to the Maximum-A-Posteriori (MAP) estimate.
- Fix the component membership for some observations.
- Relabelling algorithms.

Initialization

- Construct a suitable parameter vector $\Theta^{(0)}$.
 - random
 - other estimation methods: e.g. moment estimators
- Classify observations/assign a-posteriori probabilities to each observation.
 - random
 - cluster analysis results: e.g. hierarchical clustering, *k*-means

Extensions and special cases

- Model-based clustering:
 - Latent class analysis: multivariate discrete observations where the marginal distributions in the components are independent.
 - mixtures of factor analyzers
 - mixtures of *t*-distributions
- Mixtures of regressions:
 - mixtures of generalized linear models
 - mixtures of generalized linear mixed models
- Covariates for the component sizes: concomitant variable models
- Impose equality constraints between component-specific parameters

Software in R

- Model-based clustering:
 - mclust (Fraley and Raftery, 2002) for Gaussian mixtures:
 - * specify different models depending on the structure of the variance-covariance matrices (volume, shape, orientation)

 $\Sigma_k = \lambda_k D_k \operatorname{diag}(a_k) D'_k$

- * initialize EM algorithm with the solution from an agglomerative hierarchical clustering algorithm
- Clusterwise regression:
 - flexmix (Leisch, 2004)

Software: FlexMix

- The function flexmix() provides the E-step and all data handling.
- The M-step is supplied by the user similar to glm() families.
- Multiple independent responses from different families
- Currently bindings to several GLM families exist (Gaussian, Poisson, Gamma, Binomial)
- Weighted, hard (CEM) and random (SEM) classification
- Components with prior probability below a user-specified threshold are automatically removed during iteration

See also CRAN Task View "Cluster Analysis & Finite Mixture Models".

FlexMix Design

- Primary goal is extensibility: ideal for trying out new mixture models.
- No replacement of specialized mixtures like mclust(), but complement.
- Usage of S4 classes and methods
- Formula-based interface
- Multivariate responses:
- **combination of univariate families:** assumption of independence (given *x*), each response may have its own model formula, i.e., a different set of regressors
- **multivariate families:** if family handles multivariate response directly, then arbitrary multivariate response distributions are possible

- > library("flexmix")
- > data("diabetes", package = "mclust")
- > diabetes_data <- as.matrix(diabetes[, 2:4])</pre>

Example: Clustering

Example: Clustering

					-					<pre>model = FLXMCmvnorm(diag = FALSE), nrep = 10))</pre>
1	: *	*	*	*	*	*	*	*	*	*
2	: *	*	*	*	*	*	*	*	*	*
3	: *	*	*	*	*	*	*	*	*	*
4	: *	*	*	*	*	*	*	*	*	*
5	: *	*	*	*	*	*	*	*	*	*
500	epF.	Le	xmi	ix(di	at	bet	te	s_c	<pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE)</pre>
50	epF k ite:	Le: =	xmi 1: cor	ix(5, nve	di n rg	ab ire	pet pp	te: = x	s_0 1(k0	<pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE))) logLik AIC BIC ICL</pre>
: : :	epF k ite:	1e: = r (2	xmi 1: cor	ix(5, ive	di n rg TR	ab re ged UE	pet p l l L 1	te: = x : 1	s_c 1(k0 1	<pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE)) logLik AIC BIC ICL -2545.833 5109.666 5136.456 5136.456</pre>
: 1 2	epr k ite: 1	1e: = r (2 2	xmi 1: cor	ix(:5, ive	di n rg TR TR	ab re ged UE	pet pp 1 k 2 1 2 2	te: = x : 1 2	s_c 10 k0 1 2	<pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE))) logLik AIC BIC ICL -2545.833 5109.666 5136.456 5136.456 -2354.674 4747.347 4803.905 4811.644</pre>
: 1 2 3	epr k ite: 1 2	1e: = 2 2 4	xmi 1: cor	ix(5, nve	di n rg TR TR TR	ab re UE UE	pet p l k l 1 l 2 l 3	te: = 1 2 3	s_0 10 k0 1 2 3	<pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE))) logLik AIC BIC ICL -2545.833 5109.666 5136.456 5136.456 -2354.674 4747.347 4803.905 4811.644 -2303.557 4665.113 4751.439 4770.353</pre>
1 2 3 4	epr: k ite: 1: 2: 3:	1e: = 2 2 4 5	xmi 1: cor	ix(5,	di n rg TR TR TR TR	ab ire UE UE	pet p 1 1 2 2 2 3 2 4	te: = 1 2 3 1	s_0 1(k0 1 2 3 4	<pre>lata ~ 1, model = FLXMCmvnorm(diag = FALSE))) logLik AIC BIC ICL -2545.833 5109.666 5136.456 5136.456 -2354.674 4747.347 4803.905 4811.644 -2303.557 4665.113 4751.439 4770.353 -2287.605 4653.210 4769.302 4793.502</pre>

Example: Clustering

Example: Clustering

> (mix_best <- getModel(mix))
Call:
stepFlexmix(diabetes_data ~ 1, model = FLXMCmvnorm(diag = FALSE),
 k = 3, nrep = 10)
Cluster sizes:
 1 2 3
82 28 35
convergence after 24 iterations
> summary(mix_best)
Call:
stepFlexmix(diabetes_data ~ 1, model = FLXMCmvnorm(diag = FALSE),
 k = 3, nrep = 10)
 prior size post>0 ratio

Comp.10.540821010.812Comp.20.19928960.292Comp.30.261351230.285

'log Lik.' -2303.557 (df=29) AIC: 4665.113 BIC: 4751.439

Example: Clustering

Example: Clustering

> table(cluster(getModel(mix)), diabetes\$class) chemical normal overt 1 10 72 0 2 1 0 27 3 25 4 6 > parameters(mix_best, component = 1, simplify = FALSE) \$center glucose insulin sspg 91.00937 358.19098 164.14443 \$cov glucose insulin sspg

glucose 58.21456 80.1404 16.8295 insulin 80.14039 2154.9810 347.6972 sspg 16.82950 347.6972 2484.1538 > plot(mix_best, mark = 2)

Example: Clustering

Rootogram of posterior probabilities > 1e-04

Example: Regression

Example: Regression

>	d	ata	ı('	"aj	oh:	ids	5"	, 1	bad	cka	age	e =	"m	ix	reg'	')						
>	(mix	c •	<-`	st	ter	pF.	Lez	cmi	ĹX	(n	in	f~	n	.aph	nids	k	=	2,	data	=	aphids,
+												n	rep	=	10))						
2	:	*	*	*	*	*	*	*	*	*	*											

Call: stepFlexmix(n.inf ~ n.aphids, data = aphids, k = 2, nrep = 10)

Cluster sizes:

1 2 23 28

convergence after 17 iterations

Example: Regression

> posterior(mix	<pre>()[1:4,]</pre>
[,1]	[,2]
[1,] 0.9949732	0.005026814
[2,] 0.9949769	0.005023128
[3,] 0.2098020	0.790198026
[4,] 0.2050383	0.794961704
> predict(mix,	<pre>newdata = data.frame(n.aphids = c(0, 300)))</pre>
\$Comp.1	
[,1]	
1 3.458813	
2 20.047842	
\$Comp.2	
[,1]	
1 0.8679776	
2 1.5740946	

Example: Regression

Example: Regression

Example: Regression

Applications

Market segmentation: find groups of customers who share

- characteristics: e.g. groups of tourists with similar behaviours at their destination
- reactions: e.g. customers with similar price and other marketing mix elasticities in choice models
- \Rightarrow account for heterogeneity between customers
- \Rightarrow develop segment-specific marketing strategies

Monographs

D. Böhning.*Computer Assisted Analysis of Mixtures and Applications: Meta-Analysis, Disease Mapping, and Others.* Chapman & Hall/CRC, London, 1999.

S. Frühwirth-Schnatter. *Finite Mixture and Markov Switching Models*. Springer Series in Statistics. Springer, New York, 2006.

B. G. Lindsay. *Mixture Models: Theory, Geometry, and Applications*. The Institute for Mathematical Statistics, Hayward, California, 1995.

G. J. McLachlan and K. E. Basford. *Mixture Models: Inference and Applications to Clustering.* Marcel Dekker, New York, 1988.

G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000.

References

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM-algorithm. *Journal of the Royal Statistical Society B*, 39:1–38, 1977.

J. Diebolt and C. P. Robert. Estimation of finite mixture distributions through Bayesian sampling. *Journal of the Royal Statistical Society B*, 56:363–375, 1994.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis and density estimation. *Journal of the American Statistical Association*, 97 (458):611–631, 2002.

F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R. *Journal of Statistical Software*, 11(8), 2004. URL http://www.jstatsoft.org/v11/i08/.