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Finite mixture models

The finite mixture distribution is given by

H(y|x,Θ) =
K∑

k=1

πkFk(y|x, ϑk)

with
K∑

k=1

πk = 1 ∧ πk > 0 ∀k.

In the following it is assumed that the component specific density functions
fk exist and determine the mixture density h.

Finite mixture models

Types of applications:

• semi-parametric tool to estimate general distribution functions

• modeling unobserved heterogeneity

Special cases:

• model-based clustering

• mixtures of regression models

Finite mixture models
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Estimation

Maximum-Likelihood: Expectation-Maximization (EM) Algorithm (Demp-
ster, Laird and Rubin, 1977)

• General method for ML estimation in models with unobserved
latent variables: The complete likelihood containing the observed
and unobserved data is easier to estimate.

• Iterates between
– E-step, which computes the expectation of the complete

likelihood, and
– M-step, where the expected complete likelihood is maximized.

Bayesian: Gibbs sampling (Diebolt and Robert, 1994)

• Markov Chain Monte Carlo algorithm
• Applicable when the joint posterior distribution is not known

explicitly, but the conditional posterior distributions of each
variable/subsets of variables are known.



Missing data

The component-label vectors zn = (znk)k=1,...,K are treated as missing
data. It holds that

• znk ∈ {0,1} and

•
∑K

k=1 znk = 1 for all k = 1, . . . , K.

The complete log-likelihood is given by

logLc(Θ) =
K∑

k=1

N∑
n=1

znk [logπk + log fk(yn|xn, ϑk)] .

EM algorithm: E-step

Given the current parameter estimates Θ(i) replace the missing data znk

by the estimated a-posteriori probabilities

ẑ
(i)
nk = P(k|yn, xn,Θ(i)) =

π
(i)
k fk(yn|xn, ϑ(i)

k )
K∑

u=1

π
(i)
u fk(yn|xn, ϑ(i)

u )

.

The conditional expectation of logLc(Θ) at the ith step is given by

Q(Θ;Θ(i)) = EΘ(i) [logLc(Θ)|y, x]

=
K∑

k=1

N∑
n=1

ẑ
(i)
nk [logπk + log fk(yn|xn, ϑk)] .

EM algorithm: M-step

The next parameter estimate is given by:

Θ(i+1) = argmax
Θ

Q(Θ;Θ(i)).

The estimates for the prior class probabilities are given by:

π
(i+1)
k =

1

N

N∑
n=1

ẑ
(i)
nk .

The component specific parameter estimates are determined by:

ϑ(i+1)
k = argmax

ϑk

N∑
n=1

ẑ
(i)
nk log(fk(yn|xn, ϑk)).

⇒ weighted ML estimation of the component specific model.

M-step: Mixtures of Gaussian distributions

The solutions for the M-step are given in closed form:

µ(i+1)
k =

∑N
n=1 ẑ

(i)
nk yn∑N

n=1 ẑ
(i)
nk

Σ(i+1)
k =

∑N
n=1 ẑ

(i)
nk (yn − µ(i+1)

k )(yn − µ(i+1)
k )∑N

n=1 ẑ
(i)
nk

′



Estimation: EM algorithm

Advantages:

• The likelihood is increased in each step → EM algorithm converges
for bounded likelihoods.

• Relatively easy to implement:
– Different mixture models require only different M-steps.
– Weighted ML estimation of the component specific model is

sometimes already available.

Disadvantages:

• Standard errors have to be determined separately as the information
matrix is not required during the algorithm.

• Convergence only to a local optimum
• Slow convergence

⇒ variants such as Stochastic EM (SEM) or Classification EM (CEM)

EM algorithm: Number of components

Information criteria: e.g. AIC, BIC, ICL

Likelihood ratio test statistic: Comparison of nested models where the
smaller model is derived by fixing one parameter at the border of the
parameter space.

⇒ Regularity conditions are not fulfilled.

The asymptotic null distribution is not the usual χ2-distribution with
degrees of freedom equal to the difference beween the number of
parameters under the null and alternative hypotheses.

• distributional results for special cases
• bootstrapping

Bayesian estimation

Determine the posterior density using Bayes’ theorem

p(Θ|Y , X) ∝ h(Y |X,Θ)p(Θ),

where p(Θ) is the prior and Y = (yn)n and X = (xn)n.

Standard prior distributions:

• Proper priors: Improper priors give improper posteriors.
• Independent priors for the component weights and the component

specific parameters.
• Conjugate priors for the complete likelihood

– Dirichlet distribution D(e0,1, . . . , e0,K) for the component weights
which is the conjugate prior for the multinomial distribution.

– Priors on the component specific parameters depend on the
underlying distribution family.

• Invariant priors, e.g. the parameter for the Dirchlet prior is constant
over all components: e0,k ≡ e0.

Estimation: Gibbs sampling

Starting with Z0 = (z0
n)n=1,...,N repeat the following steps for i =

1, . . . , I0, . . . , I + I0.

1. Parameter simulation conditional on the classification Z(i−1):
(a) Sample π1, . . . , πK from D((

∑N
n=1 z

(i−1)
nk + e0,k)k=1,...,K).

(b) Sample component specific parameters from the complete-data
posterior p(ϑ1, . . . , ϑK|Z(i−1), Y )

Store the actual values of all parameters Θ(i) = (π(i)
k , ϑ(i)

k )k=1,...,K .
2. Classification of each observation (yn, xn) conditional on knowing

Θ(i):
Sample z(i)

n from the multinomial distribution with parameter equal to
the posterior probabilities.

After discarding the burn-in draws the draws I0 + 1, . . . , I + I0 can be
used to approximate all quantities of interest.



Example: Gaussian distribution

Assume an independence prior

p(µk,Σ−1
k ) ∼ fN(µk; b0, B0)fW (Σ−1

k ; c0, C0).

1. Parameter simulation conditional on the classification Z(i−1):

(a) Sample π
(i)
1 , . . . , π

(i)
K from D((

∑N
n=1 z

(i−1)
nk + e0,k)k=1,...,K).

(b) Sample (Σ−1
k )(i) in each group k from a Wishart

W(ck(Z
(i−1)), Ck(Z

(i−1))) distribution.
(c) Sample µ(i)

k in each group k from aN (bk(Z
(i−1)), Bk(Z

(i−1)))
distribution.

2. Classification of each observation yn conditional on knowing Θ(i):

P(z(i)
nk = 1|yn,Θ(i)) ∝ πkfN(yn;µk,Σk)

Estimation: Gibbs sampling

Advantages:

• Relatively easy to implement
– Different mixture models differ only in the parameter simulation

step.
– Parameter simulation conditional on the classification is sometimes

already available.

Disadvantages:

• Might fail to escape the attraction area of one mode→ not all posterior
modes are visited.

Gibbs sampling: Number of components

• Bayes factors

• Sampling schemes with a varying number of components

– reversible-jump MCMC
– inclusion of birth-and-death processes

Label switching

The posterior distribution is invariant under a permutation of the
components with the same component-specific model.

⇒ Determine a unique labelling for component-specific inference:

• Impose a suitable ordering constraint, e.g. πs < πt ∀s, t ∈ {1, . . . , S}
with s < t.

• Minimize the distance to the Maximum-A-Posteriori (MAP) estimate.
• Fix the component membership for some observations.
• Relabelling algorithms.



Initialization

• Construct a suitable parameter vector Θ(0).

– random
– other estimation methods: e.g. moment estimators

• Classify observations/assign a-posteriori probabilities to each obser-
vation.

– random
– cluster analysis results: e.g. hierarchical clustering, k-means

Extensions and special cases

• Model-based clustering:

– Latent class analysis: multivariate discrete observations where the
marginal distributions in the components are independent.

– mixtures of factor analyzers
– mixtures of t-distributions

• Mixtures of regressions:

– mixtures of generalized linear models
– mixtures of generalized linear mixed models

• Covariates for the component sizes: concomitant variable models

• Impose equality constraints between component-specific parameters

Software in R

• Model-based clustering:

– mclust (Fraley and Raftery, 2002) for Gaussian mixtures:
∗ specify different models depending on the structure of the

variance-covariance matrices (volume, shape, orientation)

Σk = λkDkdiag(ak)D
′
k

∗ initialize EM algorithm with the solution from an agglomerative
hierarchical clustering algorithm

• Clusterwise regression:

– flexmix (Leisch, 2004)

See also CRAN Task View “Cluster Analysis & Finite Mixture Models”.

Software: FlexMix

• The function flexmix() provides the E-step and all data handling.
• The M-step is supplied by the user similar to glm() families.
• Multiple independent responses from different families
• Currently bindings to several GLM families exist (Gaussian, Poisson,

Gamma, Binomial)
• Weighted, hard (CEM) and random (SEM) classification
• Components with prior probability below a user-specified threshold are

automatically removed during iteration



FlexMix Design

• Primary goal is extensibility: ideal for trying out new mixture models.
• No replacement of specialized mixtures like mclust(), but comple-

ment.
• Usage of S4 classes and methods
• Formula-based interface
• Multivariate responses:

combination of univariate families: assumption of independence
(given x), each response may have its own model formula, i.e.,
a different set of regressors

multivariate families: if family handles multivariate response directly,
then arbitrary multivariate response distributions are possible

Example: Clustering

> library("flexmix")
> data("diabetes", package = "mclust")
> diabetes_data <- as.matrix(diabetes[, 2:4])

Example: Clustering
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Example: Clustering

> (mix <- stepFlexmix(diabetes_data ~ 1, k = 1:5,
+ model = FLXMCmvnorm(diag = FALSE),
+ nrep = 10))
1 : * * * * * * * * * *
2 : * * * * * * * * * *
3 : * * * * * * * * * *
4 : * * * * * * * * * *
5 : * * * * * * * * * *

Call:
stepFlexmix(diabetes_data ~ 1, model = FLXMCmvnorm(diag = FALSE),

k = 1:5, nrep = 10)

iter converged k k0 logLik AIC BIC ICL
1 2 TRUE 1 1 -2545.833 5109.666 5136.456 5136.456
2 12 TRUE 2 2 -2354.674 4747.347 4803.905 4811.644
3 24 TRUE 3 3 -2303.557 4665.113 4751.439 4770.353
4 36 TRUE 4 4 -2287.605 4653.210 4769.302 4793.502
5 60 TRUE 5 5 -2274.655 4647.309 4793.169 4822.905

> plot(mix)



Example: Clustering

●

●

●
● ●

1 2 3 4 5

47
00

48
00

49
00

50
00

51
00

number of components

● AIC
BIC
ICL

●

●
●

Example: Clustering

> (mix_best <- getModel(mix))
Call:
stepFlexmix(diabetes_data ~ 1, model = FLXMCmvnorm(diag = FALSE),

k = 3, nrep = 10)

Cluster sizes:
1 2 3

82 28 35

convergence after 24 iterations
> summary(mix_best)
Call:
stepFlexmix(diabetes_data ~ 1, model = FLXMCmvnorm(diag = FALSE),

k = 3, nrep = 10)

prior size post>0 ratio
Comp.1 0.540 82 101 0.812
Comp.2 0.199 28 96 0.292
Comp.3 0.261 35 123 0.285

’log Lik.’ -2303.557 (df=29)
AIC: 4665.113 BIC: 4751.439

Example: Clustering
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Example: Clustering

> table(cluster(getModel(mix)), diabetes$class)
chemical normal overt

1 10 72 0
2 1 0 27
3 25 4 6

> parameters(mix_best, component = 1, simplify = FALSE)
$center

glucose insulin sspg
91.00937 358.19098 164.14443

$cov
glucose insulin sspg

glucose 58.21456 80.1404 16.8295
insulin 80.14039 2154.9810 347.6972
sspg 16.82950 347.6972 2484.1538
> plot(mix_best, mark = 2)



Example: Clustering
Rootogram of posterior probabilities > 1e−04
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Example: Regression

> data("aphids", package = "mixreg")
> (mix <- stepFlexmix(n.inf ~ n.aphids, k = 2, data = aphids,
+ nrep = 10))
2 : * * * * * * * * * *

Call:
stepFlexmix(n.inf ~ n.aphids, data = aphids, k = 2, nrep = 10)

Cluster sizes:
1 2

23 28

convergence after 17 iterations

Example: Regression

> posterior(mix)[1:4,]
[,1] [,2]

[1,] 0.9949732 0.005026814
[2,] 0.9949769 0.005023128
[3,] 0.2098020 0.790198026
[4,] 0.2050383 0.794961704
> predict(mix, newdata = data.frame(n.aphids = c(0, 300)))
$Comp.1

[,1]
1 3.458813
2 20.047842

$Comp.2
[,1]

1 0.8679776
2 1.5740946



Example: Regression
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Example: Regression

> refit(mix)
Call:
refit(mix)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.4585759 1.3730364 2.5189 0.01177
n.aphids 0.0552974 0.0090624 6.1019 1.048e-09

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8679003 0.5017007 1.7299 0.08365
n.aphids 0.0023539 0.0035375 0.6654 0.50578
> plot(refit(mix))

Example: Regression

n.aphids

(Intercept)

Comp. 1 Comp. 2

Applications

Market segmentation: find groups of customers who share

• characteristics: e.g. groups of tourists with similar behaviours at
their destination

• reactions: e.g. customers with similar price and other marketing
mix elasticities in choice models

⇒ account for heterogeneity between customers

⇒ develop segment-specific marketing strategies
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