
Finite Mixture Modelling
Model Specification, Estimation & Application

Bettina Grün

Department of Statistics and Mathematics

Research Seminar, November 23 2007

Finite mixture models

The finite mixture distribution is given by

H(y|x,Θ) =
K∑

k=1

πkFk(y|x, ϑk)

with
K∑

k=1

πk = 1 ∧ πk > 0 ∀k.

In the following it is assumed that the component specific density functions
fk exist and determine the mixture density h.

Finite mixture models

Types of applications:

• semi-parametric tool to estimate general distribution functions

• modeling unobserved heterogeneity

Special cases:

• model-based clustering

• mixtures of regression models

Finite mixture models

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●● ●

●

●

●

●●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●●
● ●

●

●
●

●

●
●

●
● ●

●

●

●

●
●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

−5 0 5 10

−
2

0
2

4
6

8

Finite mixture models

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●● ●

●

●

●

●●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●●
●

●

−5 0 5 10

−
2

0
2

4
6

8

1

2 3

4

Finite mixture models

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
10

20
30

40
50

x

yn

Finite mixture models

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
10

20
30

40
50

x

yn

Estimation

Maximum-Likelihood: Expectation-Maximization (EM) Algorithm (Demp-
ster, Laird and Rubin, 1977)

• General method for ML estimation in models with unobserved
latent variables: The complete likelihood containing the observed
and unobserved data is easier to estimate.

• Iterates between
– E-step, which computes the expectation of the complete

likelihood, and
– M-step, where the expected complete likelihood is maximized.

Bayesian: Gibbs sampling (Diebolt and Robert, 1994)

• Markov Chain Monte Carlo algorithm
• Applicable when the joint posterior distribution is not known

explicitly, but the conditional posterior distributions of each
variable/subsets of variables are known.

Missing data

The component-label vectors zn = (znk)k=1,...,K are treated as missing
data. It holds that

• znk ∈ {0,1} and

•
∑K

k=1 znk = 1 for all k = 1, . . . , K.

The complete log-likelihood is given by

logLc(Θ) =
K∑

k=1

N∑
n=1

znk [logπk + log fk(yn|xn, ϑk)] .

EM algorithm: E-step

Given the current parameter estimates Θ(i) replace the missing data znk

by the estimated a-posteriori probabilities

ẑ
(i)
nk = P(k|yn, xn,Θ(i)) =

π
(i)
k fk(yn|xn, ϑ(i)

k)
K∑

u=1

π
(i)
u fk(yn|xn, ϑ(i)

u)

.

The conditional expectation of logLc(Θ) at the ith step is given by

Q(Θ;Θ(i)) = EΘ(i) [logLc(Θ)|y, x]

=
K∑

k=1

N∑
n=1

ẑ
(i)
nk [logπk + log fk(yn|xn, ϑk)] .

EM algorithm: M-step

The next parameter estimate is given by:

Θ(i+1) = argmax
Θ

Q(Θ;Θ(i)).

The estimates for the prior class probabilities are given by:

π
(i+1)
k =

1

N

N∑
n=1

ẑ
(i)
nk .

The component specific parameter estimates are determined by:

ϑ(i+1)
k = argmax

ϑk

N∑
n=1

ẑ
(i)
nk log(fk(yn|xn, ϑk)).

⇒ weighted ML estimation of the component specific model.

M-step: Mixtures of Gaussian distributions

The solutions for the M-step are given in closed form:

µ(i+1)
k =

∑N
n=1 ẑ

(i)
nk yn∑N

n=1 ẑ
(i)
nk

Σ(i+1)
k =

∑N
n=1 ẑ

(i)
nk (yn − µ(i+1)

k)(yn − µ(i+1)
k)∑N

n=1 ẑ
(i)
nk

′

Estimation: EM algorithm

Advantages:

• The likelihood is increased in each step → EM algorithm converges
for bounded likelihoods.

• Relatively easy to implement:
– Different mixture models require only different M-steps.
– Weighted ML estimation of the component specific model is

sometimes already available.

Disadvantages:

• Standard errors have to be determined separately as the information
matrix is not required during the algorithm.

• Convergence only to a local optimum
• Slow convergence

⇒ variants such as Stochastic EM (SEM) or Classification EM (CEM)

EM algorithm: Number of components

Information criteria: e.g. AIC, BIC, ICL

Likelihood ratio test statistic: Comparison of nested models where the
smaller model is derived by fixing one parameter at the border of the
parameter space.

⇒ Regularity conditions are not fulfilled.

The asymptotic null distribution is not the usual χ2-distribution with
degrees of freedom equal to the difference beween the number of
parameters under the null and alternative hypotheses.

• distributional results for special cases
• bootstrapping

Bayesian estimation

Determine the posterior density using Bayes’ theorem

p(Θ|Y , X) ∝ h(Y |X,Θ)p(Θ),

where p(Θ) is the prior and Y = (yn)n and X = (xn)n.

Standard prior distributions:

• Proper priors: Improper priors give improper posteriors.
• Independent priors for the component weights and the component

specific parameters.
• Conjugate priors for the complete likelihood

– Dirichlet distribution D(e0,1, . . . , e0,K) for the component weights
which is the conjugate prior for the multinomial distribution.

– Priors on the component specific parameters depend on the
underlying distribution family.

• Invariant priors, e.g. the parameter for the Dirchlet prior is constant
over all components: e0,k ≡ e0.

Estimation: Gibbs sampling

Starting with Z0 = (z0
n)n=1,...,N repeat the following steps for i =

1, . . . , I0, . . . , I + I0.

1. Parameter simulation conditional on the classification Z(i−1):
(a) Sample π1, . . . , πK from D((

∑N
n=1 z

(i−1)
nk + e0,k)k=1,...,K).

(b) Sample component specific parameters from the complete-data
posterior p(ϑ1, . . . , ϑK|Z(i−1), Y)

Store the actual values of all parameters Θ(i) = (π(i)
k , ϑ(i)

k)k=1,...,K .
2. Classification of each observation (yn, xn) conditional on knowing

Θ(i):
Sample z(i)

n from the multinomial distribution with parameter equal to
the posterior probabilities.

After discarding the burn-in draws the draws I0 + 1, . . . , I + I0 can be
used to approximate all quantities of interest.

Example: Gaussian distribution

Assume an independence prior

p(µk,Σ−1
k) ∼ fN(µk; b0, B0)fW (Σ−1

k ; c0, C0).

1. Parameter simulation conditional on the classification Z(i−1):

(a) Sample π
(i)
1 , . . . , π

(i)
K from D((

∑N
n=1 z

(i−1)
nk + e0,k)k=1,...,K).

(b) Sample (Σ−1
k)(i) in each group k from a Wishart

W(ck(Z
(i−1)), Ck(Z

(i−1))) distribution.
(c) Sample µ(i)

k in each group k from aN (bk(Z
(i−1)), Bk(Z

(i−1)))
distribution.

2. Classification of each observation yn conditional on knowing Θ(i):

P(z(i)
nk = 1|yn,Θ(i)) ∝ πkfN(yn;µk,Σk)

Estimation: Gibbs sampling

Advantages:

• Relatively easy to implement
– Different mixture models differ only in the parameter simulation

step.
– Parameter simulation conditional on the classification is sometimes

already available.

Disadvantages:

• Might fail to escape the attraction area of one mode→ not all posterior
modes are visited.

Gibbs sampling: Number of components

• Bayes factors

• Sampling schemes with a varying number of components

– reversible-jump MCMC
– inclusion of birth-and-death processes

Label switching

The posterior distribution is invariant under a permutation of the
components with the same component-specific model.

⇒ Determine a unique labelling for component-specific inference:

• Impose a suitable ordering constraint, e.g. πs < πt ∀s, t ∈ {1, . . . , S}
with s < t.

• Minimize the distance to the Maximum-A-Posteriori (MAP) estimate.
• Fix the component membership for some observations.
• Relabelling algorithms.

Initialization

• Construct a suitable parameter vector Θ(0).

– random
– other estimation methods: e.g. moment estimators

• Classify observations/assign a-posteriori probabilities to each obser-
vation.

– random
– cluster analysis results: e.g. hierarchical clustering, k-means

Extensions and special cases

• Model-based clustering:

– Latent class analysis: multivariate discrete observations where the
marginal distributions in the components are independent.

– mixtures of factor analyzers
– mixtures of t-distributions

• Mixtures of regressions:

– mixtures of generalized linear models
– mixtures of generalized linear mixed models

• Covariates for the component sizes: concomitant variable models

• Impose equality constraints between component-specific parameters

Software in R

• Model-based clustering:

– mclust (Fraley and Raftery, 2002) for Gaussian mixtures:
∗ specify different models depending on the structure of the

variance-covariance matrices (volume, shape, orientation)

Σk = λkDkdiag(ak)D
′
k

∗ initialize EM algorithm with the solution from an agglomerative
hierarchical clustering algorithm

• Clusterwise regression:

– flexmix (Leisch, 2004)

See also CRAN Task View “Cluster Analysis & Finite Mixture Models”.

Software: FlexMix

• The function flexmix() provides the E-step and all data handling.
• The M-step is supplied by the user similar to glm() families.
• Multiple independent responses from different families
• Currently bindings to several GLM families exist (Gaussian, Poisson,

Gamma, Binomial)
• Weighted, hard (CEM) and random (SEM) classification
• Components with prior probability below a user-specified threshold are

automatically removed during iteration

FlexMix Design

• Primary goal is extensibility: ideal for trying out new mixture models.
• No replacement of specialized mixtures like mclust(), but comple-

ment.
• Usage of S4 classes and methods
• Formula-based interface
• Multivariate responses:

combination of univariate families: assumption of independence
(given x), each response may have its own model formula, i.e.,
a different set of regressors

multivariate families: if family handles multivariate response directly,
then arbitrary multivariate response distributions are possible

Example: Clustering

> library("flexmix")
> data("diabetes", package = "mclust")
> diabetes_data <- as.matrix(diabetes[, 2:4])

Example: Clustering

●●
●

●
●

●

●
●

●●

●
●

●

●● ●
●
●

● ●●●
●●

●
●

●
●●

●

●●
●

●

●
●
●

●

●

●
●

●

●
●

●
●●●

●

●

●●

●
●

●●

●●

●
●●

●●

●
●●●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●●

●
●

●●
● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

500 1000 1500

−
50

0
0

50
0

10
00

insulin

ss
pg

●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●
●●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●●

●

●●

●●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

glucose

ss
pg

Example: Clustering

> (mix <- stepFlexmix(diabetes_data ~ 1, k = 1:5,
+ model = FLXMCmvnorm(diag = FALSE),
+ nrep = 10))
1 : * * * * * * * * * *
2 : * * * * * * * * * *
3 : * * * * * * * * * *
4 : * * * * * * * * * *
5 : * * * * * * * * * *

Call:
stepFlexmix(diabetes_data ~ 1, model = FLXMCmvnorm(diag = FALSE),

k = 1:5, nrep = 10)

iter converged k k0 logLik AIC BIC ICL
1 2 TRUE 1 1 -2545.833 5109.666 5136.456 5136.456
2 12 TRUE 2 2 -2354.674 4747.347 4803.905 4811.644
3 24 TRUE 3 3 -2303.557 4665.113 4751.439 4770.353
4 36 TRUE 4 4 -2287.605 4653.210 4769.302 4793.502
5 60 TRUE 5 5 -2274.655 4647.309 4793.169 4822.905

> plot(mix)

Example: Clustering

●

●

●
● ●

1 2 3 4 5

47
00

48
00

49
00

50
00

51
00

number of components

● AIC
BIC
ICL

●

●
●

Example: Clustering

> (mix_best <- getModel(mix))
Call:
stepFlexmix(diabetes_data ~ 1, model = FLXMCmvnorm(diag = FALSE),

k = 3, nrep = 10)

Cluster sizes:
1 2 3

82 28 35

convergence after 24 iterations
> summary(mix_best)
Call:
stepFlexmix(diabetes_data ~ 1, model = FLXMCmvnorm(diag = FALSE),

k = 3, nrep = 10)

prior size post>0 ratio
Comp.1 0.540 82 101 0.812
Comp.2 0.199 28 96 0.292
Comp.3 0.261 35 123 0.285

’log Lik.’ -2303.557 (df=29)
AIC: 4665.113 BIC: 4751.439

Example: Clustering

●●
●

●
●

●

●
●

●●

●
●

●

●● ●
●
●

● ●●●
●●

●
●

●
●●

●

●●
●

●

●
●
●

●

●

●
●

●

●
●

●
●●●

●

●

●●

●
●

●●

●●

●
●●

●●

●
●●●●●

●

●

● ●
●

●●

●

●

●

●

●

●

500 1000 1500

−
50

0
0

50
0

10
00

insulin

ss
pg

1
2

3

●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●
●●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●●

●

●●

●●

●

●
●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

glucose

ss
pg

1

2

3

Example: Clustering

> table(cluster(getModel(mix)), diabetes$class)
chemical normal overt

1 10 72 0
2 1 0 27
3 25 4 6

> parameters(mix_best, component = 1, simplify = FALSE)
$center

glucose insulin sspg
91.00937 358.19098 164.14443

$cov
glucose insulin sspg

glucose 58.21456 80.1404 16.8295
insulin 80.14039 2154.9810 347.6972
sspg 16.82950 347.6972 2484.1538
> plot(mix_best, mark = 2)

Example: Clustering
Rootogram of posterior probabilities > 1e−04

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

Comp. 1

0.0 0.2 0.4 0.6 0.8 1.0

Comp. 2

0.0 0.2 0.4 0.6 0.8 1.0

Comp. 3

Example: Regression

●●

●● ●

●●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

0 50 100 150 200 250 300

0
5

10
15

20
25

Number of aphids

N
um

be
r

of
 in

fe
ct

ed
 p

la
nt

s

Example: Regression

> data("aphids", package = "mixreg")
> (mix <- stepFlexmix(n.inf ~ n.aphids, k = 2, data = aphids,
+ nrep = 10))
2 : * * * * * * * * * *

Call:
stepFlexmix(n.inf ~ n.aphids, data = aphids, k = 2, nrep = 10)

Cluster sizes:
1 2

23 28

convergence after 17 iterations

Example: Regression

> posterior(mix)[1:4,]
[,1] [,2]

[1,] 0.9949732 0.005026814
[2,] 0.9949769 0.005023128
[3,] 0.2098020 0.790198026
[4,] 0.2050383 0.794961704
> predict(mix, newdata = data.frame(n.aphids = c(0, 300)))
$Comp.1

[,1]
1 3.458813
2 20.047842

$Comp.2
[,1]

1 0.8679776
2 1.5740946

Example: Regression

●●

●● ●

●●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

0 50 100 150 200 250 300

0
5

10
15

20
25

Number of aphids

N
um

be
r

of
 in

fe
ct

ed
 p

la
nt

s

Example: Regression

> refit(mix)
Call:
refit(mix)

Number of components: 2

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.4585759 1.3730364 2.5189 0.01177
n.aphids 0.0552974 0.0090624 6.1019 1.048e-09

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8679003 0.5017007 1.7299 0.08365
n.aphids 0.0023539 0.0035375 0.6654 0.50578
> plot(refit(mix))

Example: Regression

n.aphids

(Intercept)

Comp. 1 Comp. 2

Applications

Market segmentation: find groups of customers who share

• characteristics: e.g. groups of tourists with similar behaviours at
their destination

• reactions: e.g. customers with similar price and other marketing
mix elasticities in choice models

⇒ account for heterogeneity between customers

⇒ develop segment-specific marketing strategies

Monographs

D. Böhning.Computer Assisted Analysis of Mixtures and Applications:
Meta-Analysis, Disease Mapping, and Others. Chapman & Hall/CRC,
London, 1999.

S. Frühwirth-Schnatter. Finite Mixture and Markov Switching Models.
Springer Series in Statistics. Springer, New York, 2006.

B. G. Lindsay. Mixture Models: Theory, Geometry, and Applications. The
Institute for Mathematical Statistics, Hayward, California, 1995.

G. J. McLachlan and K. E. Basford. Mixture Models: Inference and
Applications to Clustering. Marcel Dekker, New York, 1988.

G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000.

References

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM-algorithm. Journal of the Royal Statistical
Society B, 39:1–38, 1977.

J. Diebolt and C. P. Robert. Estimation of finite mixture distributions through
Bayesian sampling. Journal of the Royal Statistical Society B, 56:363–375,
1994.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis
and density estimation. Journal of the American Statistical Association, 97
(458):611–631, 2002.

F. Leisch. FlexMix: A general framework for finite mixture models and
latent class regression in R. Journal of Statistical Software, 11(8), 2004.
URL http://www.jstatsoft.org/v11/i08/.

