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Undirected and directed graphs
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Undirected and directed graphs

e |f the pairs are unordered, then the graph is undirected:

vertices = {A, B,C, D, E}
edges — ({A7 B}7 {A7 C}? {B7 C}? {07 E})'

e Otherwise it is directed:

vertices = {A, B,C, D, F}
edges — ((A7 B)7 (A7 C)? (B7 0)7 (07 E))'
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The igraph “package”

e For classic graph theory and network science.

e (Core functionality is implemented as a C library.
e High level interfaces from R and Python.

e GNU GPL.

e http://igraph.sf.net

File Edit View History Bookmarks Tools Help
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Release notes

Introduction
igraph is a free software package for creating and Fast greedy community detection,
manipulating undirected and directed graphs. It Q=0.164

includes implementations for classic graph theory
problems like minimum spanning trees and
network flow, and also implements algorithms for
some recent network analysis methods, like
community structure search.

Read more »

Features

igraph contains functions for generating regular
and random graphs, manipulating graphs,
assigning attributes to vertices and edges. It can
calculate various structural properties, includes
heuristics for community structure detection,
supports many file formats.

Read more »

Requirements

The software you need for installing igraph
depends on whether you want to use the C library,
the R package or the Python extension.

Read more »

0,3,5,10,12,13,17,25,26,27,20, 32,36, 38, 43, 44, 47,54, 56,57, 67, 72, 78,
82, 88,94

Done oo™
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Vertex and edge ids

e Vertices are always numbered from zero (!).
e Numbering is continual, form 0 to |V| — 1.
e We have to “translate” vertex names to ids:

V ={A,B,C,D,E)}
E = ((4,B),(A,C),(B,C),(C,E)).
A=0,B=1,C=2,D=3FE =4

1 > g <- graph( c(0,1, 0,2, 1,2, 2,4), n=5 )

Practical statistical network analysis — WU Wien



Creating igraph graphs

e igraph objects



Creating igraph graphs

e igraph objects
e print(), summary(), is.igraph()



© o0 N O Ot = W NN

—_ =
= O

Creating igraph graphs

e igraph objects
e print(), summary(), is.igraph()
e is.directed(), vcount(), ecount()

> g <- graph( c(0,1, 0,2, 1,2, 2,4), n=5 )
> g

Vertices: b

Edges: 4

Directed: TRUE

Edges:

[0] O -> 1

[1] 0 —> 2

[2] 1 > 2

[3] 2 > 4
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Visualization

1 > g <- graph.tree(40, 4)
2 > plot(g)
3 > plot(g, layout=layout.circle)
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Visualization

> g <- graph.tree(40, 4)
> plot(g)
plot(g, layout=layout.circle)

A\

Force directed layouts
plot(g, layout=layout.fruchterman.reingold)
plot(g, layout=layout.graphopt)

V V V %

plot(g, layout=layout.kamada.kawai)

=+

Interactive
> tkplot(g, layout=layout.kamada.kawai)
> 1 <- layout=layout.kamada.kawai(g)

# 3D
> rglplot(g, layout=1)

# Visual properties
> plot(g, layout=1l, vertex.color="cyan")
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Simple graphs

e igraph can handle multi-graphs:

V ={A,B,C,D,E}
E = ((AB),(AB),(AC), (BC), (CE)).

> g <- graph( c(0,1,0,1, 0,2, 1,2, 3,4), n=5 )
> g

Vertices: b

Edges: 5

Directed: TRUE

Edges:

[0] 0 —>
[1] 0 —>
[2] 0 —>
[3] 1 —>
[4] 3 —>
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Simple graphs

e igraph can handle loop-edges:

V ={A,B,C,D,E}
E = ((AA),(AB),(AC), (BC), (CE)).

> g <- graph( c(0,0,0,1, 0,2, 1,2, 3,4), n=5 )
> g

Vertices: b

Edges: 5

Directed: TRUE

Edges:

[0] 0 —>
[1] 0 —>
[2] 0 —>
[3] 1 —>
[4] 3 —>
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Creating (more) igraph graphs

el <- scan("lesmis.txt")

el <- matrix(el, byrow=TRUE, nc=2)
gmis <- graph.edgelist(el, dir=FALSE)
summary (gmis)
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1
2
3

Naming vertices

V(gmis)$name
g <- graph.ring(10)
V(g)$name <- sample(letters, vcount(g))
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Creating (more) igraph graphs

1 # A simple undirected graph
2 > g <- graph.formula( Alice-Bob-Cecil-Alice,
3 Daniel-Cecil-Eugene, Cecil-Gordon )
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Creating (more) igraph graphs

# A simple undirected graph
> g <- graph.formula( Alice-Bob-Cecil-Alice,
Daniel-Cecil-Eugene, Cecil-Gordon )

# Another undirected graph, ":" notation
> g2 <- graph.formula( Alice-Bob:Cecil:Daniel,
Cecil:Daniel-Eugene:Gordon )

# A directed graph
> g3 <- graph.formula( Alice +-+ Bob --+ Cecil
+-- Daniel, Eugene —--+ Gordon:Helen )

# A graph with isolate vertices
> g4 <- graph.formula( Alice -- Bob -- Daniel,
Cecil:Gordon, Helen )

# "Arrows" can be arbitrarily long
> gb <- graph.formula( Alice +----—----- + Bob )
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Vertex/Edge sets, attributes

e Assigning attributes:
set/get.graph/vertex/edge.attribute.
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Vertex/Edge sets, attributes

e Assigning attributes:
set/get.graph/vertex/edge.attribute.
e V(g) and E(g).
e Smart indexing, e.g.
V(g) [color=="white"]
e Easy access of attributes:

1 > g <- erdos.renyi.game(100, 1/100)

2 > V(g)$color <- sample( c("red", "black"),

3 vcount(g) , rep=TRUE)
4 > E(g)$color <- "grey"

5 > red <- V(g) [ color == "red" ]

6 > bl <- V(g)[ color == "black" ]

7 > E(g) [ red %—-% red ]$color <- "red"

s > E(g)l bl ¥%--% bl ]$color <- "black"

9 > plot(g, vertex.size=5, layout=

—_
o

layout.fruchterman.reingold)
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Creating (even) more graphs

e E.g. from .csv files.

> traits <- read.csv("traits.csv", head=F)
> relations <- read.csv("relations.csv", head=F)
> orgnet <- graph.data.frame(relations)

> traits[,1] <- sapply(strsplit(as.character
(traits[,1]), split=" "), "[[", 1)

> idx <- match(V(orgnet)$name, traits[,1])

> V(orgnet)$gender <- as.character(traitsl[,3] [idx])

> V(orgnet)$age <- traits[,2] [idx]

> igraph.par("print.vertex.attributes", TRUE)
> orgnet
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Creating (even) more graphs

e From the web, e.g. Pajek files.

> karate <- read.graph("http://cneurocvs.rmki.kfki.hu/igraph/karate.net",
format="pajek")

> summary (karate)

Vertices: 34

Edges: 78

Directed: FALSE

No graph attributes.

No vertex attributes.

No edge attributes.
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Graph representation

e There is no best format, everything
depends on what kind of questions
one wants to ask.

lannis
Esmeralda
Fabien
Alice
Diana
Helen
Cecil
Jennifer
Bob
Gigi
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Graph representation

e Adjacency matrix. Good for
questions like: is 'Alice’ connected

to 'Bob'?
Aicel 0 11|10|0|1]0|0[1]0]1
Bob|1|10|0|1]0|0|1{1]0}0
Cecl |l O|O|O|1T{O0O(1|1[0|0]O0
Dignal Q0 (1|1 |10(1]0[1]|1|1]O0
Esmerada| 1 | O (O |1]|0|1]|0[|1]1]O0
Faben ' 0 (O (1 |O0|1|0|0|1]0]|O0
Ggil0|1|11]1]0{0|0[1]0]0
Helen) 1 11|01 {1|1|1]0]0]1
lannis | 0 O O | 1| 1|0]0|0]|]0]|O
Jemnifer | 1 10| 0|00 (O0O|O0O|1T[0]|O0
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Graph representation

e Edge list. Not really good for
anything.

Alice Bob

Bob Diana
Cecil Diana
Alice Esmeralda
Diana Esmeralda
Cecll Fabien
Esmeralda Fabien
Bob Gigi

Cecll Gigi
Diana Gigi

Alice Helen
Bob Helen
Diana Helen
Esmeralda Helen
Fabien Helen
Gigi Helen
Diana lannis
Esmeralda lannis
Alice Jennifer
Helen Jennifer
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Graph representation

e Adjacency lists. GQ: who are the
neighbors of 'Alice’?

Alice Bob, Esmeralda, Helen, Jennifer

Bob Alice, Diana, Gigi, Helen

Cecil Diana, Fabien, Gigi

Diana Bob, Cecil, Esmeralda, Gigi, Helen, lannis

Esmeralda  Alice, Diana, Fabien, Helen, lannis

Fabien Cecil, Esmeralda, Helen

Gigi Bob, Cecil, Diana, Helen

Helen Alice, Bob, Diana, Esmeralda, Fabien, Gigi, Jennifer
lannis Diana, Esmeralda

Jennifer Alice, Helen

Practical statistical network analysis — WU Wien
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Graph representation

e igraph. Flat data structures,
indexed edge lists. Easy to handle,
good for many kind of questions.
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Centrality in networks

e degree
lannis
2
Esmeralda
5
Fabien
3
Diana
6 Helen
/ 7
Cecill
3
o Bob
Gigi 4
4
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Centrality in networks

e closeness
V-1
C, =
Z'L’#v d'vi
lannis
0.53
Esmeralda
0.69
Fabien
0.6
Diana
0.75 Helen
/ 0.82
Cecil
0.53
o Bob
Gigi 0.64
0.64
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Centrality in networks

® betweenness

B, = Z givj/gij

V£ JIFV,JFV
lannis
0
Esmeralda
4.62
Fabien
1.45
Alice
. 1.67
Diana
6.76 Helen
/ 10.1
Cecil
0.83 Jennifer
0
o Bob
Gigi 1.12
1.45
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Centrality in networks

e eigenvector centrality

Alice
0.63

Jennifer
0.36

1 V|
Ev = X E Aiin7 Ar = \x
=1
lannis
0.36
Esmeralda
0.75
Fabien
0.49
Diana
0.88 Helen
1
Cecil
0.46
o Bob
Gigi 0.71
0.68
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Centrality in networks

e page rank

V|
1 —d Z
1=1
lannis
0.34
Esmeralda
0.74
Fabien
0.47
Alice
. 0.61
Diana
0.87 Helen
1
Cecil
0.47 Jennifer
0.34
o Bob
Gigi 0.59
0.59
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Community structure in networks

e Organizing things, clustering items
to see the structure.

M. E. J. Newman, PNAS, 103, 8577-8582

Practical statistical network analysis — WU Wien
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Community structure in networks

e How to define what is modular?
Many proposed definitions, here is
a popular one:

1
Q — m %[Avw_pvw]a(cm Cw)-
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Community structure in networks

e How to define what is modular?
Many proposed definitions, here is
a popular one:

1
Q — m %[Avw_pvw]d(cva Cw)-

e Random graph null model:

1
VIVl =1)

Pow — P —

e Degree sequence based null model:

Kk
2|

Pow
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Cohesive blocks

(Based on ‘Structural Cohesion and Embeddedness: a Hierarchical Concept of Social
Groups’ by J.Moody and D.White, Americal Sociological Review, 68, 103-127, 2003)

Definition 1: A collectivity is structurally cohesive to the extent that the social
relations of its members hold it together.
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Cohesive blocks

(Based on ‘Structural Cohesion and Embeddedness: a Hierarchical Concept of Social
Groups’ by J.Moody and D.White, Americal Sociological Review, 68, 103-127, 2003)

Definition 1: A collectivity is structurally cohesive to the extent that the social
relations of its members hold it together.

Definition 2: A group is structurally cohesive to the extent that multiple
independent relational paths among all pairs of members hold it together.

e \ertex-independent paths and vertex connectivity.

e \ertex connectivity and network flows.
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Cohesive blocks




Cohesive blocks
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Rapid prototyping
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3
Aiz’

(i) = (A1A);



Rapid prototyping

Weighted transitivity

. A}
(i) = (A1A);;

W3S,

(X

() = W W)



Rapid prototyping

Weighted transitivity

. A}
(i) = (A1A);;

W3S,

(X

() = W W)

1 wtrans <- function(g) {

2 W <- get.adjacency(g, attr="weight")

3 WM <- matrix(max(W), nrow(W), ncol(W))
4 diag(WM) <- O

5 diag( W %*% W %*%h W ) /

6 diag( W %*% WM %*% W)

7}

Practical statistical network analysis — WU Wien
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Rapid prototyping

Clique percolation (Palla et
al., Nature 435, 814, 2005)
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.and the rest

Cliques and independent vertex
sets.

Network flows.

Motifs, i.e. dyad and triad census.
Random graph generators.

Graph isomorphism.

Vertex similarity measures,
topological sorting, spanning
trees, graph components, K-cores,

transitivity or clustering coefficient.

e eic.
e (C-level: rich data type library.

Practical statistical network analysis — WU Wien
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