Practical statistical network analysis
(with R and igraph)

Gabor Csardi
csardi@Ormki.kfki.hu

Department of Biophysics, KFKI Research Institute for Nuclear and Particle Physics of the
Hungarian Academy of Sciences, Budapest, Hungary

Currently at
Department of Medical Genetics,
University of Lausanne, Lausanne, Switzerland

What is a network (or graph)?

Practical statistical network analysis — WU Wien

What is a network (or graph)?

What is a network (or graph)?

Practical statistical network analysis — WU Wien

What is a graph?

e Binary relation (=edges) between elements of a set (=vertices).

What is a graph?

e Binary relation (=edges) between elements of a set (=vertices).

o Eg

vertices = {A, B,C, D, F}
edges — ({A7 B}7 {A7 C}7 {B7 C}" {C7 E}).

What is a graph?

e Binary relation (=edges) between elements of a set (=vertices).

o Eg

vertices = {A, B,C, D, F}
edges — ({A7 B}7 {A7 C}7 {B7 C}" {C7 E}).

e It is “better’ to draw it:

@é@ o)

o®

What is a graph?

e Binary relation (=edges) between elements of a set (=vertices).

o Eg

vertices = {A, B,C, D, F}
edges — ({A7 B}7 {A7 C}7 {B7 C}" {C7 E}).

e It is “better’ to draw it:

®) (B)
% =

e® | ° o

Practical statistical network analysis — WU Wien

Undirected and directed graphs

e |f the pairs are unordered, then the graph is undirected:

vertices = {A, B,C, D, E}
edges — ({A7 B}7 {A7 C}? {B7 C}? {07 E})'

Undirected and directed graphs

e |f the pairs are unordered, then the graph is undirected:

vertices = {A, B,C, D, E}
edges — ({A7 B}7 {A7 C}? {B7 C}? {07 E})'

e Otherwise it is directed:

vertices = {A, B,C, D, F}
edges — ((A7 B)7 (A7 C)? (B7 0)7 (07 E))'

Practical statistical network analysis — WU Wien

The igraph “package”

e For classic graph theory and network science.

e (Core functionality is implemented as a C library.
e High level interfaces from R and Python.

e GNU GPL.

e http://igraph.sf.net

File Edit View History Bookmarks Tools Help

o o @ /\J} ‘I_I http:#/cneurocys.rmki.kfki.hufigraph/ |“ l>] ‘\W"‘ \\] I@I o
[Gmail - Inbox (1) - csardi.ga... . | [| The igraph library for co... 3 | -
The igraph library .
@ Introduction ¢ News ([Download Documentation (@l Screenshots g Community & Links License [an ersion: 0.5

Release notes

Introduction
igraph is a free software package for creating and Fast greedy community detection,
manipulating undirected and directed graphs. It Q=0.164

includes implementations for classic graph theory
problems like minimum spanning trees and
network flow, and also implements algorithms for
some recent network analysis methods, like
community structure search.

Read more »

Features

igraph contains functions for generating regular
and random graphs, manipulating graphs,
assigning attributes to vertices and edges. It can
calculate various structural properties, includes
heuristics for community structure detection,
supports many file formats.

Read more »

Requirements

The software you need for installing igraph
depends on whether you want to use the C library,
the R package or the Python extension.

Read more »

0,3,5,10,12,13,17,25,26,27,20, 32,36, 38, 43, 44, 47,54, 56,57, 67, 72, 78,
82, 88,94

Done oo™

Practical statistical network analysis — WU Wien

Vertex and edge ids

e Vertices are always numbered from zero (!).
e Numbering is continual, form 0 to |V| — 1.

Vertex and edge ids

e Vertices are always numbered from zero (!).
e Numbering is continual, form 0 to |V| — 1.
e We have to “translate” vertex names to ids:

V ={A,B,C,D,E)}
E = ((4,B),(A,C),(B,C),(C,E)).
A=0,B=1,C=2,D=3FE =4

Vertex and edge ids

e Vertices are always numbered from zero (!).
e Numbering is continual, form 0 to |V| — 1.
e We have to “translate” vertex names to ids:

V ={A,B,C,D,E)}
E = ((4,B),(A,C),(B,C),(C,E)).
A=0,B=1,C=2,D=3FE =4

1 > g <- graph(c(0,1, 0,2, 1,2, 2,4), n=5)

Practical statistical network analysis — WU Wien

Creating igraph graphs

e igraph objects

Creating igraph graphs

e igraph objects
e print(), summary(), is.igraph()

© o0 N O Ot = W NN

—_ =
= O

Creating igraph graphs

e igraph objects
e print(), summary(), is.igraph()
e is.directed(), vcount(), ecount()

> g <- graph(c(0,1, 0,2, 1,2, 2,4), n=5)
> g

Vertices: b

Edges: 4

Directed: TRUE

Edges:

[0] O -> 1

[1] 0 —> 2

[2] 1 > 2

[3] 2 > 4

Practical statistical network analysis — WU Wien

Visualization

1 > g <- graph.tree(40, 4)
2 > plot(g)
3 > plot(g, layout=layout.circle)

SR \)

Visualization

> g <- graph.tree(40, 4)
> plot(g)
plot(g, layout=layout.circle)

A\

Force directed layouts
plot(g, layout=layout.fruchterman.reingold)
plot(g, layout=layout.graphopt)

V V V %

plot(g, layout=layout.kamada.kawai)

Visualization

g <- graph.tree(40, 4)

> plot(g)

vV V V #H A\

=+

plot(g, layout=layout.circle)

Force directed layouts

plot(g, layout=layout.fruchterman.reingold)
plot(g, layout=layout.graphopt)

plot(g, layout=layout.kamada.kawai)

Interactive
tkplot (g, layout=layout.kamada.kawai)
1 <- layout=layout.kamada.kawai(g)

Visualization

g <- graph.tree(40, 4)

> plot(g)

vV V V #H A\

=+

plot(g, layout=layout.circle)

Force directed layouts

plot(g, layout=layout.fruchterman.reingold)
plot(g, layout=layout.graphopt)

plot(g, layout=layout.kamada.kawai)

Interactive
tkplot (g, layout=layout.kamada.kawai)
1 <- layout=layout.kamada.kawai(g)

3D
rglplot(g, layout=1)

Visualization

> g <- graph.tree(40, 4)
> plot(g)
plot(g, layout=layout.circle)

A\

Force directed layouts
plot(g, layout=layout.fruchterman.reingold)
plot(g, layout=layout.graphopt)

V V V %

plot(g, layout=layout.kamada.kawai)

=+

Interactive
> tkplot(g, layout=layout.kamada.kawai)
> 1 <- layout=layout.kamada.kawai(g)

3D
> rglplot(g, layout=1)

Visual properties
> plot(g, layout=1l, vertex.color="cyan")

Practical statistical network analysis — WU Wien

10

Simple graphs

e igraph can handle multi-graphs:

V ={A,B,C,D,E}
E = ((AB),(AB),(AC), (BC), (CE)).

> g <- graph(c(0,1,0,1, 0,2, 1,2, 3,4), n=5)
> g

Vertices: b

Edges: 5

Directed: TRUE

Edges:

[0] 0 —>
[1] 0 —>
[2] 0 —>
[3] 1 —>
[4] 3 —>

© o0 N O Ot ke W NN

—_
S

—_
—
NN - =

—_
N\

Practical statistical network analysis — WU Wien

11

Simple graphs

e igraph can handle loop-edges:

V ={A,B,C,D,E}
E = ((AA),(AB),(AC), (BC), (CE)).

> g <- graph(c(0,0,0,1, 0,2, 1,2, 3,4), n=5)
> g

Vertices: b

Edges: 5

Directed: TRUE

Edges:

[0] 0 —>
[1] 0 —>
[2] 0 —>
[3] 1 —>
[4] 3 —>

© o0 N O Ot ke W NN

—_
S

—_
—
NN - O

—_
N\

Practical statistical network analysis — WU Wien

12

N S

Creating (more) igraph graphs

el <- scan("lesmis.txt")

el <- matrix(el, byrow=TRUE, nc=2)
gmis <- graph.edgelist(el, dir=FALSE)
summary (gmis)

Practical statistical network analysis — WU Wien

13

1
2
3

Naming vertices

V(gmis)$name
g <- graph.ring(10)
V(g)$name <- sample(letters, vcount(g))

Practical statistical network analysis — WU Wien

14

Creating (more) igraph graphs

1 # A simple undirected graph
2 > g <- graph.formula(Alice-Bob-Cecil-Alice,
3 Daniel-Cecil-Eugene, Cecil-Gordon)

[NSRE.

w N

Creating (more) igraph graphs

A simple undirected graph
> g <- graph.formula(Alice-Bob-Cecil-Alice,
Daniel-Cecil-Eugene, Cecil-Gordon)

Another undirected graph, ":" notation
> g2 <- graph.formula(Alice-Bob:Cecil:Daniel,
Cecil:Daniel-Eugene:Gordon)

Creating (more) igraph graphs

A simple undirected graph
> g <- graph.formula(Alice-Bob-Cecil-Alice,
Daniel-Cecil-Eugene, Cecil-Gordon)

Another undirected graph, ":" notation
> g2 <- graph.formula(Alice-Bob:Cecil:Daniel,
Cecil:Daniel-Eugene:Gordon)

A directed graph
> g3 <- graph.formula(Alice +-+ Bob --+ Cecil
+-- Daniel, Eugene —--+ Gordon:Helen)

Creating (more) igraph graphs

#
>

A simple undirected graph
g <- graph.formula(Alice-Bob-Cecil-Alice,
Daniel-Cecil-Eugene, Cecil-Gordon)

Another undirected graph, ":" notation
g2 <- graph.formula(Alice-Bob:Cecil:Daniel,
Cecil:Daniel-Eugene:Gordon)

A directed graph
g3 <- graph.formula(Alice +-+ Bob --+ Cecil
+-- Daniel, Eugene —--+ Gordon:Helen)

A graph with isolate vertices
g4 <- graph.formula(Alice -- Bob -- Daniel,
Cecil:Gordon, Helen)

Creating (more) igraph graphs

A simple undirected graph
> g <- graph.formula(Alice-Bob-Cecil-Alice,
Daniel-Cecil-Eugene, Cecil-Gordon)

Another undirected graph, ":" notation
> g2 <- graph.formula(Alice-Bob:Cecil:Daniel,
Cecil:Daniel-Eugene:Gordon)

A directed graph
> g3 <- graph.formula(Alice +-+ Bob --+ Cecil
+-- Daniel, Eugene —--+ Gordon:Helen)

A graph with isolate vertices
> g4 <- graph.formula(Alice -- Bob -- Daniel,
Cecil:Gordon, Helen)

"Arrows" can be arbitrarily long
> gb <- graph.formula(Alice +----—----- + Bob)

Practical statistical network analysis — WU Wien

15

Vertex/Edge sets, attributes

e Assigning attributes:
set/get.graph/vertex/edge.attribute.

Vertex/Edge sets, attributes

e Assigning attributes:
set/get.graph/vertex/edge.attribute.

e V(g) and E(g).

Vertex/Edge sets, attributes

e Assigning attributes:
set/get.graph/vertex/edge.attribute.
e V(g) and E(g).
e Smart indexing, e.g.
V(g) [color=="white"]

Vertex/Edge sets, attributes

e Assigning attributes:
set/get.graph/vertex/edge.attribute.
e V(g) and E(g).
e Smart indexing, e.g.
V(g) [color=="white"]
e Easy access of attributes:

1 > g <- erdos.renyi.game(100, 1/100)

2 > V(g)$color <- sample(c("red", "black"),

3 vcount(g) , rep=TRUE)
4 > E(g)$color <- "grey"

5 > red <- V(g) [color == "red"]

6 > bl <- V(g)[color == "black"]

7 > E(g) [red %—-% red]$color <- "red"

s > E(g)l bl ¥%--% bl]$color <- "black"

9 > plot(g, vertex.size=5, layout=

—_
o

layout.fruchterman.reingold)

Practical statistical network analysis — WU Wien

16

© o0 N O Ot o= W NN

— = =
N = O

Creating (even) more graphs

e E.g. from .csv files.

> traits <- read.csv("traits.csv", head=F)
> relations <- read.csv("relations.csv", head=F)
> orgnet <- graph.data.frame(relations)

> traits[,1] <- sapply(strsplit(as.character
(traits[,1]), split=" "), "[[", 1)

> idx <- match(V(orgnet)$name, traits[,1])

> V(orgnet)$gender <- as.character(traitsl[,3] [idx])

> V(orgnet)$age <- traits[,2] [idx]

> igraph.par("print.vertex.attributes", TRUE)
> orgnet

Practical statistical network analysis — WU Wien

17

—_

© o0 N O Ot = W N

Creating (even) more graphs

e From the web, e.g. Pajek files.

> karate <- read.graph("http://cneurocvs.rmki.kfki.hu/igraph/karate.net",
format="pajek")

> summary (karate)

Vertices: 34

Edges: 78

Directed: FALSE

No graph attributes.

No vertex attributes.

No edge attributes.

Practical statistical network analysis — WU Wien

18

Graph representation

e There is no best format, everything
depends on what kind of questions
one wants to ask.

lannis
Esmeralda
Fabien
Alice
Diana
Helen
Cecil
Jennifer
Bob
Gigi

Practical statistical network analysis — WU Wien

19

Graph representation

e Adjacency matrix. Good for
questions like: is 'Alice’ connected

to 'Bob'?
Aicel 0 11|10|0|1]0|0[1]0]1
Bob|1|10|0|1]0|0|1{1]0}0
Cecl |l O|O|O|1T{O0O(1|1[0|0]O0
Dignal Q0 (1|1 |10(1]0[1]|1|1]O0
Esmerada| 1 | O (O |1]|0|1]|0[|1]1]O0
Faben ' 0 (O (1 |O0|1|0|0|1]0]|O0
Ggil0|1|11]1]0{0|0[1]0]0
Helen) 1 11|01 {1|1|1]0]0]1
lannis | 0 O O | 1| 1|0]0|0]|]0]|O
Jemnifer | 1 10| 0|00 (O0O|O0O|1T[0]|O0

Practical statistical network analysis — WU Wien

20

Graph representation

e Edge list. Not really good for
anything.

Alice Bob

Bob Diana
Cecil Diana
Alice Esmeralda
Diana Esmeralda
Cecll Fabien
Esmeralda Fabien
Bob Gigi

Cecll Gigi
Diana Gigi

Alice Helen
Bob Helen
Diana Helen
Esmeralda Helen
Fabien Helen
Gigi Helen
Diana lannis
Esmeralda lannis
Alice Jennifer
Helen Jennifer

Practical statistical network analysis — WU Wien

Graph representation

e Adjacency lists. GQ: who are the
neighbors of 'Alice’?

Alice Bob, Esmeralda, Helen, Jennifer

Bob Alice, Diana, Gigi, Helen

Cecil Diana, Fabien, Gigi

Diana Bob, Cecil, Esmeralda, Gigi, Helen, lannis

Esmeralda Alice, Diana, Fabien, Helen, lannis

Fabien Cecil, Esmeralda, Helen

Gigi Bob, Cecil, Diana, Helen

Helen Alice, Bob, Diana, Esmeralda, Fabien, Gigi, Jennifer
lannis Diana, Esmeralda

Jennifer Alice, Helen

Practical statistical network analysis — WU Wien

22

Graph representation

e igraph. Flat data structures,
indexed edge lists. Easy to handle,
good for many kind of questions.

“=maE=Egcare

| Lele]

/
| [alegefelr]e]

I

ACT T T T T T T TTTTd

— Alice

Bob

Cecil

Alice
Diana
Cecil
Esmeralda
Bob

Cecil
Diana
Alice

Bob

Diana
Esmeralda
Fabien
Gigi

Diana
Esmeralda
Alice
Helen

Bob —
Diana]
Diana —
Esmeralda+«——
Esmeralda
Fabien

Fabien

Gigi

Gigi

Gigi

Helen

Helen

Helen

Helen

Helen

Helen

lannis

lannis

Jennifer

[efefe]e]

Jennifer

Practical statistical network analysis — WU Wien

AT T T T T T T T T T TTTTT

~
N

[“14[<]%]

“=maoaEEgcaw s

23

Centrality in networks

e degree
lannis
2
Esmeralda
5
Fabien
3
Diana
6 Helen
/ 7
Cecill
3
o Bob
Gigi 4
4

Practical statistical network analysis — WU Wien

Alice

Jennifer
2

24

Centrality in networks

e closeness
V-1
C, =
Z'L’#v d'vi
lannis
0.53
Esmeralda
0.69
Fabien
0.6
Diana
0.75 Helen
/ 0.82
Cecil
0.53
o Bob
Gigi 0.64
0.64

Practical statistical network analysis — WU Wien

Alice
0.6

Jennifer
0.5

25

Centrality in networks

® betweenness

B, = Z givj/gij

V£ JIFV,JFV
lannis
0
Esmeralda
4.62
Fabien
1.45
Alice
. 1.67
Diana
6.76 Helen
/ 10.1
Cecil
0.83 Jennifer
0
o Bob
Gigi 1.12
1.45

Practical statistical network analysis — WU Wien

26

Centrality in networks

e eigenvector centrality

Alice
0.63

Jennifer
0.36

1 V|
Ev = X E Aiin7 Ar = \x
=1
lannis
0.36
Esmeralda
0.75
Fabien
0.49
Diana
0.88 Helen
1
Cecil
0.46
o Bob
Gigi 0.71
0.68

Practical statistical network analysis — WU Wien

27

Centrality in networks

e page rank

V|
1 —d Z
1=1
lannis
0.34
Esmeralda
0.74
Fabien
0.47
Alice
. 0.61
Diana
0.87 Helen
1
Cecil
0.47 Jennifer
0.34
o Bob
Gigi 0.59
0.59

Practical statistical network analysis — WU Wien

28

Community structure in networks

e Organizing things, clustering items
to see the structure.

M. E. J. Newman, PNAS, 103, 8577-8582

Practical statistical network analysis — WU Wien

29

Community structure in networks

e How to define what is modular?
Many proposed definitions, here is
a popular one:

1
Q — m %[Avw_pvw]a(cm Cw)-

Community structure in networks

e How to define what is modular?
Many proposed definitions, here is
a popular one:

1
Q — m %[Avw_pvw]a(cm Cw)-

e Random graph null model:

1
Povw = P —
VI(V]—=1)

Community structure in networks

e How to define what is modular?
Many proposed definitions, here is
a popular one:

1
Q — m %[Avw_pvw]d(cva Cw)-

e Random graph null model:

1
VIVl =1)

Pow — P —

e Degree sequence based null model:

Kk
2|

Pow

Practical statistical network analysis — WU Wien

30

Cohesive blocks

(Based on ‘Structural Cohesion and Embeddedness: a Hierarchical Concept of Social
Groups’ by J.Moody and D.White, Americal Sociological Review, 68, 103-127, 2003)

Definition 1: A collectivity is structurally cohesive to the extent that the social
relations of its members hold it together.

Cohesive blocks

(Based on ‘Structural Cohesion and Embeddedness: a Hierarchical Concept of Social
Groups’ by J.Moody and D.White, Americal Sociological Review, 68, 103-127, 2003)

Definition 1: A collectivity is structurally cohesive to the extent that the social
relations of its members hold it together.

Definition 2: A group is structurally cohesive to the extent that multiple
independent relational paths among all pairs of members hold it together.

Cohesive blocks

(Based on ‘Structural Cohesion and Embeddedness: a Hierarchical Concept of Social
Groups’ by J.Moody and D.White, Americal Sociological Review, 68, 103-127, 2003)

Definition 1: A collectivity is structurally cohesive to the extent that the social
relations of its members hold it together.

Definition 2: A group is structurally cohesive to the extent that multiple
independent relational paths among all pairs of members hold it together.

e \ertex-independent paths and vertex connectivity.

Cohesive blocks

(Based on ‘Structural Cohesion and Embeddedness: a Hierarchical Concept of Social
Groups’ by J.Moody and D.White, Americal Sociological Review, 68, 103-127, 2003)

Definition 1: A collectivity is structurally cohesive to the extent that the social
relations of its members hold it together.

Definition 2: A group is structurally cohesive to the extent that multiple
independent relational paths among all pairs of members hold it together.

e \ertex-independent paths and vertex connectivity.

e \ertex connectivity and network flows.

Practical statistical network analysis — WU Wien

31

Cohesive blocks

Cohesive blocks

-

T e ———

-

-
-
-

33

Practical statistical network analysis — WU Wien

Rapid prototyping

Weighted transitivity

3
Aiz’

(i) = (A1A);

Rapid prototyping

Weighted transitivity

. A}
(i) = (A1A);;

W3S,

(X

() = W W)

Rapid prototyping

Weighted transitivity

. A}
(i) = (A1A);;

W3S,

(X

() = W W)

1 wtrans <- function(g) {

2 W <- get.adjacency(g, attr="weight")

3 WM <- matrix(max(W), nrow(W), ncol(W))
4 diag(WM) <- O

5 diag(W %*% W %*%h W) /

6 diag(W %*% WM %*% W)

7}

Practical statistical network analysis — WU Wien

34

Rapid prototyping

Clique percolation (Palla et
al., Nature 435, 814, 2005)

Practical statistical network analysis — WU Wien

35

.and the rest

Cliques and independent vertex
sets.

Network flows.

Motifs, i.e. dyad and triad census.
Random graph generators.

Graph isomorphism.

Vertex similarity measures,
topological sorting, spanning
trees, graph components, K-cores,

transitivity or clustering coefficient.

e eic.
e (C-level: rich data type library.

Practical statistical network analysis — WU Wien

36

Acknowledgement

Tamas Nepusz
All the people who contributed code, sent bug reports, suggestions
The R project
Hungarian Academy of Sciences

The OSS community in general

Practical statistical network analysis — WU Wien

37

