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Overview

What is a generalized nonlinear model (GNM)?

How does gnm fit GNMs?

What are the key functions in gnm?

Using gnm to fit a ‘standard’ GNM

Using gnm to fit a custom GNM
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Generalized Linear Models

A GLM is made up of a linear predictor

η = β0 + β1x1 + ...+ βpxp

and two functions
I a link function that describes how the mean, E(Y ) = µ,

depends on the linear predictor

g(µ) = η

I a variance function that describes how the variance, V ar(Y )
depends on the mean

V ar(Y ) = φV (µ)

where the dispersion parameter φ is a constant
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Generalized Nonlinear Models

A generalized nonlinear model (GNM) is the same as a
GLM except that we have

g(µ) = η(x; β)

where η(x; β) is nonlinear in the parameters β.

Thus a GNM may also be considered as an extension of a
nonlinear least squares model in which the variance of the
response is allowed to depend on the mean.

There a several models in the literature that fit within this
framework.
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Models for Contingency Tables

Goodman’s row-column association model for 2 way tables

log µij = αi + βj + γiδj

UNIDIFF model for 3 way tables

log µijk = αik + βjk + γkδij

Diagonal reference model for square tables

µij = wγi + (1− w)γj

These are specific examples with multiplicative terms
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More Models with Multiplicative Terms

AMMI model for Gaussian crop yields

µij = αi + βj + σ1γ1iδ1j + σ2γ2iδ2j

Lee-Carter model for (Quasi-)Poisson mortality rates

log(µay/eay) = αa + βaγy,

Rasch-type model for Binomial voting data

logit(µrm) = αr + βrγm

Stereotype model for ordered Multinomial data

log µic = β0c + γc(β1x1i + β2x2i)
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Other Models

Although most standard applications have multiplicative terms,
there is no restriction to such models.

For example, gnm may be used to exponential decay models of
the form

µ = α + exp(β1 + γ1x) + exp(β2 + γ2x)

which nls is unable to fit.
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The gnm Function

Models are specified via symbolic formulae
I functions of class "nonlin" to specify nonlinear terms

Single IWLS algorithm for all models
I works with over-parameterized models

Patterned after glm
I similar arguments, returned objects, methods, etc
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Model Specification

Linear terms in the model may be specified in the usual way, e.g.
y ∼ a + b + a:b

Nonlinear terms must be specified using functions of class
"nonlin"

I specify structure of term, possible also labels & starting values
I provided functions: Exp, Inv, Mult, MultHomog, Dref
I custom functions
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Nesting and Instances

Nonlin terms may be nested, e.g. for a UNIDIFF model:

log µijk = αik + βjk + exp(γk)δij

the exponentiated multiplier is specified as

Mult(Exp(C), A:B)

Multiple instances e.g. in Goodman’s RC(2) model:

log µrc = αr + βc + γrδc + θrφc

may be specified using the instances function:

instances(Mult(A, B), 2)
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Arguments of "nonlin" Terms

Arguments of "nonlin" terms need not be single variables, e.g.
an exponential decay model

µ = α + exp(β1 + γ1x) + exp(β2 + γ2x)

may be specified as

y ∼ instances(Exp(1 + x), 2)

Intercepts are not added to predictor arguments of "nonlin"
terms by default
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Working with Over-Parameterised Models

gnm does not impose any identifiability constraints on the
nonlinear parameters

I the same model can be represented by an infinite number of
parameterisations, e.g.

logµrc = αr + βc + γrδc

= αr + βc + (2γr)(0.5δc)

= αr + βc + γ
′
rδ

′
c

I gnm will return one of these parameterisations, at random

Rules for constraining nonlinear parameters not required

Fitting algorithm must be able to handle singular matrices
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Parameter Estimation

Wish to estimate the predictor

η = η(β)

which is nonlinear, so we have a local design matrix

X(β) =
∂η

∂β

where X is not of full rank, due to over-parameterisation

Use maximum likelihood estimation: want to solve the likehood
score equations

U(β) = ∇l(β) = 0
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Fitting Algorithm

Use a two stage procedure:
I one-parameter-at-a-time Newton method to update nonlinear

parameters
I full Newton-Raphson to update all parameters but with the

Moore-Penrose pseudoinverse (XTWX)−

Starting values are obtained in two ways:

for the linear parameters use estimates from a glm fit
for the nonlinear parameters generate randomly

I parameterisation determined by the starting values of nonlinear
parameters
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Estimating Identifiable Parameter Combinations

Prior to fitting
I using arguments constrain and constrainTo

After fitting
I estimate simple contrasts using getContrasts
I estimate linear combinations of parameters using se

Both getContrasts and se check estimability first
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Example: Yaish Data

Study of social mobility by Yaish (1998, 2004)

3-way contingecny table classified by:

orig father’s social class (7 levels)
dest son’s social class (7 levels)
educ son’s education level (5 levels)
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UNIDIFF Model

In a UNIDIFF model

log µijk = αik + βjk + exp(γk)δij

exp(γk) is the strength of association over dimension indexed by
i and j.
Fit to yaish data:
> unidiff <- gnm(Freq ~ educ*orig + educ*dest

+ Mult(Exp(educ), orig:dest),
ofInterest = "[.]educ",
family = poisson,
data = yaish, subset = (dest != 7))
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Summary of Fitted UNIDIFF Model
Call:

gnm(formula = Freq ~ educ * orig + educ * dest + Mult(Exp(educ),

orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish,

subset = (dest != 7))

Deviance Residuals:

Min 1Q Median 3Q Max

-3.0286 -0.6402 -0.1048 0.5813 2.7459

Coefficients of interest:

Estimate Std. Error z value Pr(>|z|)

Mult(Exp(.), orig:dest).educ1 -0.4531 NA NA NA

Mult(Exp(.), orig:dest).educ2 -0.6785 NA NA NA

Mult(Exp(.), orig:dest).educ3 -1.1965 NA NA NA

Mult(Exp(.), orig:dest).educ4 -1.4920 NA NA NA

Mult(Exp(.), orig:dest).educ5 -2.7026 NA NA NA

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 200.33 on 116 degrees of freedom

AIC: 1140.4

Number of iterations: 48Heather Turner (University of Warwick) gnm Package WU April 2008 18 / 47



Contrasts of Strength Parameters

> unidiffContrasts <- getContrasts(unidiff, ofInterest(unidiff))
> summary(unidiffContrasts, digits = 2)

Model call: gnm(formula = Freq ~ educ * orig + educ * dest +
Mult(Exp(educ), orig:dest), ofInterest = "[.]educ",
family = poisson, data = yaish, subset = (dest != 7))

estimate SE quasiSE quasiVar
Mult(Exp(.), orig:dest).educ1 0.00 0.00 0.098 0.0095
Mult(Exp(.), orig:dest).educ2 -0.23 0.16 0.129 0.0166
Mult(Exp(.), orig:dest).educ3 -0.74 0.23 0.212 0.0449
Mult(Exp(.), orig:dest).educ4 -1.04 0.34 0.326 0.1063
Mult(Exp(.), orig:dest).educ5 -2.25 0.95 0.936 0.8754

Worst relative errors in SEs of simple contrasts (%): -0.9 1.4
Worst relative errors over *all* contrasts (%): -3.6 2.1
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Contrasts Plot
plot(unidiffContrasts, xlab = "Education Level", levelNames = 1:5)
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Profiling

unidiff2 <- update(unidiff, constrain = "[.]educ1")
prof <- profile(unidiff2, ofInterest(unidiff2), trace = TRUE)
plot(prof)
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Profile Confidence Intervals

> conf <- confint(prof)
> print(conf, digits = 2)

2.5 % 97.5 %
Mult(Exp(.), orig:dest).educ1 NA NA
Mult(Exp(.), orig:dest).educ2 -0.6 0.1
Mult(Exp(.), orig:dest).educ3 -1.5 -0.2
Mult(Exp(.), orig:dest).educ4 -2.6 -0.3
Mult(Exp(.), orig:dest).educ5 -Inf -0.7
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Example: Marriage Data

The Living in Ireland Surveys were conducted 1994-2001

For five 5-year cohorts of women born between 1950 and 1975
we have the following data

I year of (first) marriage
I year and month of birth
I social class
I highest level of education attained
I year highest level of education was attained
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Discrete-time Hazard Models

For discrete-time the hazard of marriage occuring at time t is
defined as

h(t) = P (T = t|T ≥ t)

We can model the hazard using models of the form

logit(h(t|xit)) = α(ageit) + x′itβ
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Episode-splitting

To estimate the discrete-time hazard model we generate an
event history for each observation

Pseudo observations are created at each time point from time 0
up to marriage or censoring - this is known as episode-splitting

The parameters can then be estimated by logistic regression of a
marriage indicator at each time point (married = 1, unmarried
= 0)
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Blossfeld and Huinink Model

Blossfeld and Huinink (Am. J. Sociol., 1991) propose the
following linear baseline

α(ageit) = c+ βl log(ageit − 15) + βr log(45− ageit)

I describes the nature of the time dependence
I fixes the support of the hazard to be 15 to 45 years
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BH Model
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Nonlinear Discrete-time Hazard Model

An obvious extension of the BH model is to treat the endpoints
as parameters

α(ageit) = c+ βl log(ageit − αl) + βr log(αr − ageit)

I nonlinear
I can’t specify with standard "nonlin" functions
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Variables and Predictors

A "nonlin" function creates a list of arguments for the internal
function nonlinTerms

Nonlinear terms are considered as functions of variables and
predictors

βl log(ageit − αl) + βr log(αr − ageit)

Create "nonlin" function Bell with argument x, which returns
the arguments
predictors = list(slope = 1, endpoint = 1),
variables = list(substitute(x))
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Term-specific Issues

Would like to use same function for both “log-excess” terms, so
add argument
side = "left"

Need to constrain endpoints to avoid undefined log values, so
define
constraint <- ifelse(side == "right",

max(x) + 1e-5, min(x) - 1e-5)
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Term

The term argument of nonlinTerms takes labels for the
predictors and variables and returns a deparsed expression of the
term:
term = function(predLabels, varLabels) {

paste(predLabels[1], " * log(",
" -"[side == "right"], varLabels[1], " + ",
" -"[side == "left"], constraint,
" + exp(", predLabels[2], "))")

}
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Parameter Labels

Default parameter labels are taken from the predictor names,
here slope and endpoint

To make parameter labels unique, save call to Bell:
call <- sys.call()

and specify call argument to nonlinTerms

call = as.expression(call)
match = c(0, 0)

Heather Turner (University of Warwick) gnm Package WU April 2008 32 / 47



Complete Function

Bell <- function(x, side = "left"){
call <- sys.call()
constraint <- ifelse(side == "right",

max(x) + 1e-5, min(x) - 1e-5)
list(predictors = list(slope = 1, endpoint = 1),

variables = list(substitute(x)),
term = function(predLabels, varLabels) {

paste(predLabels[1], " * log(",
" -"[side == "right"], varLabels[1], " + ",
" -"[side == "left"], constraint,
" + exp(", predLabels[2], "))")

},
call = as.expression(call),
match = c(0, 0)
)

}
class(Bell) <- "nonlin"
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Summary of Extended Model
Call:

gnm(formula = marriages/lives ~ Bell(age, side = "left") + Bell(age,

side = "right"), family = binomial, data = fulldata, weights = lives,

start = c(-20, 3, 0, 3, 0))

Deviance Residuals:

Min 1Q Median 3Q Max

-0.8098 -0.4441 -0.3224 -0.1528 4.0483

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -118.5395 NA NA NA

Bell(age, side = "left")slope 3.6928 NA NA NA

Bell(age, side = "left")endpoint -0.1432 NA NA NA

Bell(age, side = "right")slope 24.8623 NA NA NA

Bell(age, side = "right")endpoint 4.0247 NA NA NA

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 12553 on 31004 degrees of freedom

AIC: 12748

Number of iterations: 76Heather Turner (University of Warwick) gnm Package WU April 2008 34 / 47



Example ‘Recoil’ Plot
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Re-parameterization

The problem with aliasing can be overcome by re-parameterizing
the model:

α(ageit) = γ − δ
{

(ν − αl) log

(
ν − αl

ageit − αl

)}
+ δ

{
(αr − ν) log

(
αr − ν

αr − ageit

)}
A new nonlin function, Surge, is need to specify this term
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Interpretation of Parameters

The parameters of the new parameterisation have a more useful
interpretation than before:
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Recoil Plots for Reparameterised Model
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Infinite Right Endpoint

Having gone through a process of variable selection, the
estimate for the right endpoint is 400 years!

Letting the right end-point tends to infinity:

α(ageit) = γ − δ
{

(ν − αl) log

(
ν − αl

ageit − αl

)
− ageit − ν

}
does not significantly increase the deviance

An argument is added to Surge to specify whether the right
endpoint should be estimated
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Refining the Model

Checking the fit of the model over each covariate suggests some
changes in the predictors

I e.g. replacing the cohort factor by the nonlinear term

θ exp(λ(yrbi − 1950))

Residual analysis also suggests that both the scale and location
of hazard vary between individuals
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Fit over Education Levels

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●●●●●

●

●●●

as.numeric(colnames(grp))

gr
pO

bs
[i,

 ]

No attainment/primary
(2366)

0.
00

0.
05

0.
10

0.
15

0.
20

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●●●●

●

●●●

as.numeric(colnames(grp))

gr
pO

bs
[i,

 ]

Lower secondary
(7900)

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●

●

●●●

as.numeric(colnames(grp))

gr
pO

bs
[i,

 ]

Upper secondary
(11507)

15 20 25 30 35 40 45

●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●●●

●

●●

as.numeric(colnames(grp))

gr
pO

bs
[i,

 ]

College
(4829)

15 20 25 30 35 40 45

●●●●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

as.numeric(colnames(grp))

gr
pO

bs
[i,

 ]

University
(4407)

as.numeric(colnames(grp))

gr
pO

bs
[i,

 ] ● Observed

Model 13 
(common peak)
Model 14 
(separate peaks)

Age (years)

P
ro

po
rt

io
n 

m
ar

rie
d

Heather Turner (University of Warwick) gnm Package WU April 2008 41 / 47



Linear Dependence of Peak Location

Quantifying the education level by the average equivalent years
in education ed a linear dependence of peak location on age can
be incorporated as follows

α(xit) = γ − δ
{

(ν0 + ν1edi − αl) log

(
ν0 + ν1edi − αl

ageit − αl

)}
+δ {ageit + ν0 + ν1edi}

An argument is added to Surge to specify the formula for the
peak location
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Final Model

Coefficients:

(Intercept)

-1.59971836

Surge(age, peakX = ~ . + YrsEduc, right = Inf).peakX(Intercept)

14.42125516

Surge(age, peakX = ~ 1 + ., right = Inf).peakXYrsEduc

0.88430137

Surge(age, peakX = ~ 1 + YrsEduc, right = Inf)fallOff

0.46183848

Surge(age, peakX = ~ 1 + YrsEduc, right = Inf)leftAdj

0.16872262

Mult(., Exp(I(iyearb - 1950))).(Intercept)

-0.01991675

Mult(1, Exp(.)).I(iyearb - 1950)

0.19665983

InEduc

-1.46281777

PostEduc

-0.47859895
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Hazard and Survival Curves

For women born in 1950
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Interpretation

α̂L = 13.86 and the deviance is significantly increased if this is
constrained to 15 years

Peak location varies from 21.32 years (no education) to 27.60
years (university graduates)

Peak hazard varies from 0.17 (b. 1950) through 0.16 (b. 1960)
to 0.07 (b. 1970)
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