gnm: an R Package for Generalized Nonlinear Models

Heather Turner

Department of Statistics
University of Warwick, UK

Overview

- What is a generalized nonlinear model (GNM)?
- How does gnm fit GNMs?
- What are the key functions in gnm?
- Using gnm to fit a 'standard' GNM
- Using gnm to fit a custom GNM

Generalized Linear Models

- A GLM is made up of a linear predictor

$$
\eta=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}
$$

and two functions

- a link function that describes how the mean, $E(Y)=\mu$, depends on the linear predictor

$$
g(\mu)=\eta
$$

- a variance function that describes how the variance, $\operatorname{Var}(Y)$ depends on the mean

$$
\operatorname{Var}(Y)=\phi V(\mu)
$$

where the dispersion parameter ϕ is a constant

Generalized Nonlinear Models

- A generalized nonlinear model (GNM) is the same as a GLM except that we have

$$
g(\mu)=\eta(x ; \beta)
$$

where $\eta(x ; \beta)$ is nonlinear in the parameters β.

- Thus a GNM may also be considered as an extension of a nonlinear least squares model in which the variance of the response is allowed to depend on the mean.
- There a several models in the literature that fit within this framework.

Models for Contingency Tables

- Goodman's row-column association model for 2 way tables

$$
\log \mu_{i j}=\alpha_{i}+\beta_{j}+\gamma_{i} \delta_{j}
$$

- UNIDIFF model for 3 way tables

$$
\log \mu_{i j k}=\alpha_{i k}+\beta_{j k}+\gamma_{k} \delta_{i j}
$$

- Diagonal reference model for square tables

$$
\mu_{i j}=w \gamma_{i}+(1-w) \gamma_{j}
$$

- These are specific examples with multiplicative terms

More Models with Multiplicative Terms

- AMMI model for Gaussian crop yields

$$
\mu_{i j}=\alpha_{i}+\beta_{j}+\sigma_{1} \gamma_{1 i} \delta_{1 j}+\sigma_{2} \gamma_{2 i} \delta_{2 j}
$$

- Lee-Carter model for (Quasi-)Poisson mortality rates

$$
\log \left(\mu_{a y} / e_{a y}\right)=\alpha_{a}+\beta_{a} \gamma_{y}
$$

- Rasch-type model for Binomial voting data

$$
\operatorname{logit}\left(\mu_{r m}\right)=\alpha_{r}+\beta_{r} \gamma_{m}
$$

- Stereotype model for ordered Multinomial data

$$
\log \mu_{i c}=\beta_{0 c}+\gamma_{c}\left(\beta_{1} x_{1 i}+\beta_{2} x_{2 i}\right)
$$

Other Models

- Although most standard applications have multiplicative terms, there is no restriction to such models.
- For example, gnm may be used to exponential decay models of the form

$$
\mu=\alpha+\exp \left(\beta_{1}+\gamma_{1} x\right)+\exp \left(\beta_{2}+\gamma_{2} x\right)
$$

which nls is unable to fit.

The gnm Function

- Models are specified via symbolic formulae
- functions of class "nonlin" to specify nonlinear terms
- Single IWLS algorithm for all models
- works with over-parameterized models
- Patterned after glm
- similar arguments, returned objects, methods, etc

Model Specification

- Linear terms in the model may be specified in the usual way, e.g. $y \sim a+b+a: b$
- Nonlinear terms must be specified using functions of class "nonlin"
- specify structure of term, possible also labels \& starting values
- provided functions: Exp, Inv, Mult, MultHomog, Dref
- custom functions

Nesting and Instances

- Nonlin terms may be nested, e.g. for a UNIDIFF model:

$$
\log \mu_{i j k}=\alpha_{i k}+\beta_{j k}+\exp \left(\gamma_{k}\right) \delta_{i j}
$$

the exponentiated multiplier is specified as
Mult(Exp(C), A:B)

- Multiple instances e.g. in Goodman's RC(2) model:

$$
\log \mu_{r c}=\alpha_{r}+\beta_{c}+\gamma_{r} \delta_{c}+\theta_{r} \phi_{c}
$$

may be specified using the instances function:
instances(Mult (A, B) , 2)

Arguments of "nonlin" Terms

- Arguments of "nonlin" terms need not be single variables, e.g. an exponential decay model

$$
\mu=\alpha+\exp \left(\beta_{1}+\gamma_{1} x\right)+\exp \left(\beta_{2}+\gamma_{2} x\right)
$$

may be specified as
$\mathrm{y} \sim \operatorname{instances}(\operatorname{Exp}(1+x), 2)$

- Intercepts are not added to predictor arguments of "nonlin" terms by default

Working with Over-Parameterised Models

- gnm does not impose any identifiability constraints on the nonlinear parameters
- the same model can be represented by an infinite number of parameterisations, e.g.

$$
\begin{aligned}
\log \mu_{r c} & =\alpha_{r}+\beta_{c}+\gamma_{r} \delta_{c} \\
& =\alpha_{r}+\beta_{c}+\left(2 \gamma_{r}\right)\left(0.5 \delta_{c}\right) \\
& =\alpha_{r}+\beta_{c}+\gamma_{r}^{\prime} \delta_{c}^{\prime}
\end{aligned}
$$

- gnm will return one of these parameterisations, at random
- Rules for constraining nonlinear parameters not required
- Fitting algorithm must be able to handle singular matrices

Parameter Estimation

- Wish to estimate the predictor

$$
\eta=\eta(\beta)
$$

which is nonlinear, so we have a local design matrix

$$
X(\beta)=\frac{\partial \eta}{\partial \beta}
$$

where X is not of full rank, due to over-parameterisation

- Use maximum likelihood estimation: want to solve the likehood score equations

$$
U(\beta)=\nabla l(\beta)=0
$$

Fitting Algorithm

- Use a two stage procedure:
- one-parameter-at-a-time Newton method to update nonlinear parameters
- full Newton-Raphson to update all parameters but with the Moore-Penrose pseudoinverse $\left(X^{T} W X\right)^{-}$
- Starting values are obtained in two ways:
for the linear parameters use estimates from a glm fit for the nonlinear parameters generate randomly
- parameterisation determined by the starting values of nonlinear parameters

Estimating Identifiable Parameter Combinations

- Prior to fitting
- using arguments constrain and constrainTo
- After fitting
- estimate simple contrasts using getContrasts
- estimate linear combinations of parameters using se
- Both getContrasts and se check estimability first

Example: Yaish Data

- Study of social mobility by Yaish $(1998,2004)$
- 3-way contingecny table classified by:
orig father's social class (7 levels)
dest son's social class (7 levels)
educ son's education level (5 levels)

UNIDIFF Model

- In a UNIDIFF model

$$
\log \mu_{i j k}=\alpha_{i k}+\beta_{j k}+\exp \left(\gamma_{k}\right) \delta_{i j}
$$

$\exp \left(\gamma_{k}\right)$ is the strength of association over dimension indexed by i and j.

- Fit to yaish data:

```
> unidiff <- gnm(Freq ~ educ*orig + educ*dest
    + Mult(Exp(educ), orig:dest),
    ofInterest = "[.]educ",
    family = poisson,
    data = yaish, subset = (dest != 7))
```


Summary of Fitted UNIDIFF Model

```
Call:
gnm(formula = Freq ~ educ * orig + educ * dest + Mult(Exp(educ),
    orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish,
    subset = (dest != 7))
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-3.0286 & -0.6402 & -0.1048 & 0.5813 & 2.7459
\end{tabular}
Coefficients of interest:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error \(z\) & value \(\operatorname{Pr}(>|z|)\) \\
Mult(Exp(.), orig:dest).educ1 & -0.4531 & NA & NA & NA \\
Mult(Exp(.), orig:dest).educ2 & -0.6785 & NA & NA & NA \\
Mult(Exp(.), orig:dest).educ3 & -1.1965 & NA & NA & NA \\
Mult(Exp(.), orig:dest).educ4 & -1.4920 & NA & NA & NA \\
Mult(Exp(.), orig:dest).educ5 & -2.7026 & NA & NA & NA
\end{tabular}
```

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 200.33 on 116 degrees of freedom
AIC: 1140.4

Contrasts of Strength Parameters

```
> unidiffContrasts <- getContrasts(unidiff, ofInterest(unidiff))
> summary(unidiffContrasts, digits = 2)
Model call: gnm(formula = Freq ~ educ * orig + educ * dest +
    Mult(Exp(educ), orig:dest), ofInterest = "[.]educ",
    family = poisson, data = yaish, subset = (dest != 7))
                                estimate SE quasiSE quasiVar
    Mult(Exp(.), orig:dest).educ1 0.00 0.00 0.098 0.0095
    Mult(Exp(.), orig:dest).educ2 -0.23 0.16 0.129 0.0166
    Mult(Exp(.), orig:dest).educ3 -0.74 0.23 0.212 0.0449
    Mult(Exp(.), orig:dest).educ4 -1.04 0.34 0.326 0.1063
    Mult(Exp(.), orig:dest).educ5 -2.25 0.95 0.936 0.8754
Worst relative errors in SEs of simple contrasts (%): -0.9 1.4
Worst relative errors over *all* contrasts (%): -3.6 2.1
```


Contrasts Plot

plot(unidiffContrasts, xlab = "Education Level", levelNames = 1:5)

Profiling

```
unidiff2 <- update(unidiff, constrain = "[.]educ1")
```

prof <- profile(unidiff2, ofInterest(unidiff2), trace $=$ TRUE) plot(prof)

Mult($\operatorname{Exp}($.$) , orig:dest).educ2$

Mult(Exp(.), orig:dest).educ3

Mult(Exp(.), orig:dest).educ5

Mult(Exp(.), orig:dest).educ4

Profile Confidence Intervals

```
> conf <- confint(prof)
> print(conf, digits = 2)
2.5 % 97.5 %
Mult(Exp(.), orig:dest).educ1 NA NA
Mult(Exp(.), orig:dest).educ2 -0.6 0.1
Mult(Exp(.), orig:dest).educ3 -1.5 -0.2
Mult(Exp(.), orig:dest).educ4 -2.6 -0.3
Mult(Exp(.), orig:dest).educ5 -Inf -0.7
```


Example: Marriage Data

- The Living in Ireland Surveys were conducted 1994-2001
- For five 5-year cohorts of women born between 1950 and 1975 we have the following data
- year of (first) marriage
- year and month of birth
- social class
- highest level of education attained
- year highest level of education was attained

Discrete-time Hazard Models

- For discrete-time the hazard of marriage occuring at time t is defined as

$$
h(t)=P(T=t \mid T \geq t)
$$

- We can model the hazard using models of the form

$$
\operatorname{logit}\left(h\left(t \mid \boldsymbol{x}_{i t}\right)\right)=\alpha\left(a g e_{i t}\right)+\boldsymbol{x}_{i t}^{\prime} \boldsymbol{\beta}
$$

Episode-splitting

- To estimate the discrete-time hazard model we generate an event history for each observation
- Pseudo observations are created at each time point from time 0 up to marriage or censoring - this is known as episode-splitting
- The parameters can then be estimated by logistic regression of a marriage indicator at each time point (married $=1$, unmarried $=0$)

Blossfeld and Huinink Model

- Blossfeld and Huinink (Am. J. Sociol., 1991) propose the following linear baseline

$$
\alpha\left(a g e_{i t}\right)=c+\beta_{l} \log \left(a g e_{i t}-15\right)+\beta_{r} \log \left(45-a g e_{i t}\right)
$$

- describes the nature of the time dependence
- fixes the support of the hazard to be 15 to 45 years

BH Model

Nonlinear Discrete-time Hazard Model

- An obvious extension of the BH model is to treat the endpoints as parameters

$$
\alpha\left(a g e_{i t}\right)=c+\beta_{l} \log \left(a g e_{i t}-\alpha_{l}\right)+\beta_{r} \log \left(\alpha_{r}-a g e_{i t}\right)
$$

- nonlinear
- can't specify with standard "nonlin" functions

Variables and Predictors

- A "nonlin" function creates a list of arguments for the internal function nonlinTerms
- Nonlinear terms are considered as functions of variables and predictors

$$
\beta_{l} \log \left(a g e_{i t}-\alpha_{l}\right)+\beta_{r} \log \left(\alpha_{r}-a g e_{i t}\right)
$$

- Create "nonlin" function Bell with argument x , which returns the arguments
predictors $=$ list(slope $=1$, endpoint $=1$),
variables = list(substitute(x))

Term-specific Issues

- Would like to use same function for both "log-excess" terms, so add argument

```
side = "left"
```

- Need to constrain endpoints to avoid undefined log values, so define

```
constraint <- ifelse(side == "right",
    max(x) + 1e-5, min(x) - 1e-5)
```


Term

- The term argument of nonlinTerms takes labels for the predictors and variables and returns a deparsed expression of the term:

```
term = function(predLabels, varLabels) {
    paste(predLabels[1], " * log(",
            " -"[side == "right"], varLabels[1], " + ",
            " -"[side == "left"], constraint,
            " + exp(", predLabels[2], "))")
    }
```


Parameter Labels

- Default parameter labels are taken from the predictor names, here slope and endpoint
- To make parameter labels unique, save call to Bell:

```
call <- sys.call()
```

and specify call argument to nonlinTerms
call = as.expression(call)
match $=c(0,0)$

Complete Function

```
Bell <- function(x, side = "left")\{
    call <- sys.call()
    constraint <- ifelse(side == "right",
        \(\max (x)+1 e-5, \min (x)-1 e-5)\)
    list(predictors \(=\) list(slope \(=1\), endpoint \(=1\) ),
        variables = list(substitute(x)),
        term \(=\) function(predLabels, varLabels) \{
            paste(predLabels[1], " * log(",
                " -"[side == "right"], varLabels[1], " + ",
                        " -"[side == "left"], constraint,
                        " + exp(", predLabels[2], "))")
        \},
    call = as.expression(call),
    match \(=c(0,0)\)
    )
\}
class(Bell) <- "nonlin"
```


Summary of Extended Model

Example ‘Recoil’ Plot

Example ‘Recoil’ Plot

Example ‘Recoil’ Plot

Re-parameterization

- The problem with aliasing can be overcome by re-parameterizing the model:

$$
\begin{aligned}
\alpha\left(a g e_{i t}\right)=\gamma & -\delta\left\{\left(\nu-\alpha_{l}\right) \log \left(\frac{\nu-\alpha_{l}}{a g e_{i t}-\alpha_{l}}\right)\right\} \\
& +\delta\left\{\left(\alpha_{r}-\nu\right) \log \left(\frac{\alpha_{r}-\nu}{\alpha_{r}-a g e_{i t}}\right)\right\}
\end{aligned}
$$

- A new nonlin function, Surge, is need to specify this term

Interpretation of Parameters

- The parameters of the new parameterisation have a more useful interpretation than before:

Recoil Plots for Reparameterised Model

Infinite Right Endpoint

- Having gone through a process of variable selection, the estimate for the right endpoint is 400 years!
- Letting the right end-point tends to infinity:

$$
\alpha\left(a g e_{i t}\right)=\gamma-\delta\left\{\left(\nu-\alpha_{l}\right) \log \left(\frac{\nu-\alpha_{l}}{a g e_{i t}-\alpha_{l}}\right)-a g e_{i t}-\nu\right\}
$$

does not significantly increase the deviance

- An argument is added to Surge to specify whether the right endpoint should be estimated

Refining the Model

- Checking the fit of the model over each covariate suggests some changes in the predictors
- e.g. replacing the cohort factor by the nonlinear term

$$
\theta \exp \left(\lambda\left(y r b_{i}-1950\right)\right)
$$

- Residual analysis also suggests that both the scale and location of hazard vary between individuals

Fit over Education Levels

Linear Dependence of Peak Location

- Quantifying the education level by the average equivalent years in education ed a linear dependence of peak location on age can be incorporated as follows

$$
\begin{aligned}
\alpha\left(\boldsymbol{x}_{i t}\right)=\gamma & -\delta\left\{\left(\nu_{0}+\nu_{1} e d_{i}-\alpha_{l}\right) \log \left(\frac{\nu_{0}+\nu_{1} e d_{i}-\alpha_{l}}{a g e_{i t}-\alpha_{l}}\right)\right\} \\
+ & \delta\left\{a g e_{i t}+\nu_{0}+\nu_{1} e d_{i}\right\}
\end{aligned}
$$

- An argument is added to Surge to specify the formula for the peak location

Final Model

Coefficients:
(Intercept)
-1. 59971836
Surge(age, peakX $=\sim$. + YrsEduc, right $=$ Inf). peakX(Intercept)
14.42125516

Surge(age, peakX $=\sim 1+$., right $=$ Inf). peakXYrsEduc
0.88430137

Surge(age, peakX $=\sim 1+$ YrsEduc, right $=$ Inf)fallOff
0.46183848

Surge(age, peakX $=\sim 1+$ YrsEduc, right $=$ Inf)leftAdj
0.16872262

Mult(., Exp(I(iyearb - 1950))).(Intercept)
-0.01991675
Mult(1, Exp(.)).I(iyearb - 1950)
0.19665983

InEduc
-1.46281777
PostEduc
-0.47859895

Hazard and Survival Curves

- For women born in 1950

Interpretation

- $\hat{\alpha}_{L}=13.86$ and the deviance is significantly increased if this is constrained to 15 years
- Peak location varies from 21.32 years (no education) to 27.60 years (university graduates)
- Peak hazard varies from 0.17 (b. 1950) through 0.16 (b. 1960) to 0.07 (b. 1970)

References

- More information about gnm can be found on www.warwick.ac.uk/go/gnm
- A comprehensive manual is distributed with the package vignette("gnmOverview", package = "gnm")
- A working paper on the marriage application is available at www.warwick.ac.uk/go/crism/research/2007

Acknowledgements

- The marriage data are from The Economic and Social Research Institute Living in Ireland Survey Microdata File (©Economic and Social Research Institute).
- We gratefully acknowledge Carmel Hannan for introducing us to this application and providing background on the data.

