gnm: an R Package for Generalized Nonlinear Models

Heather Turner

Department of Statistics University of Warwick, UK

Overview

- What is a generalized nonlinear model (GNM)?
- How does gnm fit GNMs?
- What are the key functions in gnm?
- Using gnm to fit a 'standard' GNM
- Using gnm to fit a custom GNM

Generalized Linear Models

• A GLM is made up of a linear predictor

$$\eta = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

and two functions

► a link function that describes how the mean, $E(Y) = \mu$, depends on the linear predictor

$$g(\mu) = \eta$$

► a variance function that describes how the variance, Var(Y) depends on the mean

$$Var(Y) = \phi V(\mu)$$

where the dispersion parameter ϕ is a constant

Generalized Nonlinear Models

• A generalized nonlinear model (GNM) is the same as a GLM except that we have

$$g(\mu) = \eta(x;\beta)$$

where $\eta(x;\beta)$ is nonlinear in the parameters β .

- Thus a GNM may also be considered as an extension of a nonlinear least squares model in which the variance of the response is allowed to depend on the mean.
- There a several models in the literature that fit within this framework.

Models for Contingency Tables

Goodman's row-column association model for 2 way tables

$$\log \mu_{ij} = \alpha_i + \beta_j + \gamma_i \delta_j$$

UNIDIFF model for 3 way tables

$$\log \mu_{ijk} = \alpha_{ik} + \beta_{jk} + \gamma_k \delta_{ij}$$

Diagonal reference model for square tables

$$\mu_{ij} = w\gamma_i + (1-w)\gamma_j$$

• These are specific examples with multiplicative terms

More Models with Multiplicative Terms

• AMMI model for Gaussian crop yields

$$\mu_{ij} = \alpha_i + \beta_j + \sigma_1 \gamma_{1i} \delta_{1j} + \sigma_2 \gamma_{2i} \delta_{2j}$$

• Lee-Carter model for (Quasi-)Poisson mortality rates

$$\log(\mu_{ay}/e_{ay}) = \alpha_a + \beta_a \gamma_y,$$

• Rasch-type model for Binomial voting data

$$\operatorname{logit}(\mu_{rm}) = \alpha_r + \beta_r \gamma_m$$

• Stereotype model for ordered Multinomial data

$$\log \mu_{ic} = \beta_{0c} + \gamma_c (\beta_1 x_{1i} + \beta_2 x_{2i})$$

Other Models

- Although most standard applications have multiplicative terms, there is no restriction to such models.
- For example, gnm may be used to exponential decay models of the form

$$\mu = \alpha + \exp(\beta_1 + \gamma_1 x) + \exp(\beta_2 + \gamma_2 x)$$

which **nls** is unable to fit.

The gnm Function

- Models are specified via symbolic formulae
 - functions of class "nonlin" to specify nonlinear terms
- Single IWLS algorithm for all models
 - works with over-parameterized models
- Patterned after glm
 - similar arguments, returned objects, methods, etc

Model Specification

• Linear terms in the model may be specified in the usual way, e.g.

 $y \sim a + b + a:b$

- Nonlinear terms must be specified using functions of class "nonlin"
 - specify structure of term, possible also labels & starting values
 - provided functions: Exp, Inv, Mult, MultHomog, Dref
 - custom functions

Nesting and Instances

• Nonlin terms may be nested, e.g. for a UNIDIFF model:

$$\log \mu_{ijk} = \alpha_{ik} + \beta_{jk} + \exp(\gamma_k)\delta_{ij}$$

the exponentiated multiplier is specified as Mult(Exp(C), A:B)

• Multiple instances e.g. in Goodman's RC(2) model:

$$\log \mu_{rc} = \alpha_r + \beta_c + \gamma_r \delta_c + \theta_r \phi_c$$

may be specified using the instances function: instances(Mult(A, B), 2)

Arguments of "nonlin" Terms

 Arguments of "nonlin" terms need not be single variables, e.g. an exponential decay model

$$\mu = \alpha + \exp(\beta_1 + \gamma_1 x) + \exp(\beta_2 + \gamma_2 x)$$

may be specified as

- y \sim instances(Exp(1 + x), 2)
- Intercepts are not added to predictor arguments of "nonlin" terms by default

Working with Over-Parameterised Models

- gnm does not impose any identifiability constraints on the nonlinear parameters
 - the same model can be represented by an infinite number of parameterisations, e.g.

$$\log \mu_{rc} = \alpha_r + \beta_c + \gamma_r \delta_c$$
$$= \alpha_r + \beta_c + (2\gamma_r)(0.5\delta_c)$$
$$= \alpha_r + \beta_c + \gamma'_r \delta'_c$$

- gnm will return one of these parameterisations, at random
- Rules for constraining nonlinear parameters not required
- Fitting algorithm must be able to handle singular matrices

Parameter Estimation

• Wish to estimate the predictor

$$\eta = \eta(\beta)$$

which is nonlinear, so we have a local design matrix

$$X(\beta) = \frac{\partial \eta}{\partial \beta}$$

where X is not of full rank, due to over-parameterisation

• Use maximum likelihood estimation: want to solve the likehood score equations

$$U(\beta) = \nabla l(\beta) = 0$$

Fitting Algorithm

- Use a two stage procedure:
 - one-parameter-at-a-time Newton method to update nonlinear parameters
 - ▶ full Newton-Raphson to update all parameters but with the Moore-Penrose pseudoinverse $(X^TWX)^-$
- Starting values are obtained in two ways: for the linear parameters use estimates from a glm fit for the nonlinear parameters generate randomly
 - parameterisation determined by the starting values of nonlinear parameters

Estimating Identifiable Parameter Combinations

- Prior to fitting
 - using arguments constrain and constrainTo
- After fitting
 - estimate simple contrasts using getContrasts
 - estimate linear combinations of parameters using se
- Both getContrasts and se check estimability first

Example: Yaish Data

- Study of social mobility by Yaish (1998, 2004)
- 3-way contingecny table classified by:

orig father's social class (7 levels) dest son's social class (7 levels) educ son's education level (5 levels)

UNIDIFF Model

In a UNIDIFF model

$$\log \mu_{ijk} = \alpha_{ik} + \beta_{jk} + \exp(\gamma_k)\delta_{ij}$$

 $\exp(\gamma_k)$ is the strength of association over dimension indexed by i and j.

• Fit to yaish data:

```
> unidiff <- gnm(Freq ~ educ*orig + educ*dest
 + Mult(Exp(educ), orig:dest),
  ofInterest = "[.]educ",
  family = poisson,
  data = yaish, subset = (dest != 7))
```

Summary of Fitted UNIDIFF Model

```
Call:
gnm(formula = Freq ~ educ * orig + educ * dest + Mult(Exp(educ),
   orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish,
   subset = (dest != 7))
Deviance Residuals:
   Min
            10 Median 30
                                   Max
-3.0286 -0.6402 -0.1048 0.5813 2.7459
Coefficients of interest:
                          Estimate Std. Error z value Pr(>|z|)
Mult(Exp(.), orig:dest).educ1 -0.4531
                                          NA
                                                 NA
                                                         NA
Mult(Exp(.), orig:dest).educ2 -0.6785
                                         NA
                                                 NA
                                                         NA
Mult(Exp(.), orig:dest).educ3 -1.1965 NA
                                                NA
                                                         NA
Mult(Exp(.), orig:dest).educ4 -1.4920
                                         NA
                                                 NA
                                                         ΝA
Mult(Exp(.), orig:dest).educ5 -2.7026 NA
                                                 NΑ
                                                         NΑ
Std. Error is NA where coefficient has been constrained or is unidentified
```

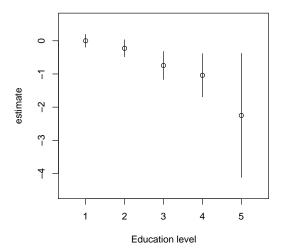
Residual deviance: 200.33 on 116 degrees of freedom AIC: 1140.4

Contrasts of Strength Parameters

> unidiffContrasts <- getContrasts(unidiff, ofInterest(unidiff))
> summary(unidiffContrasts, digits = 2)

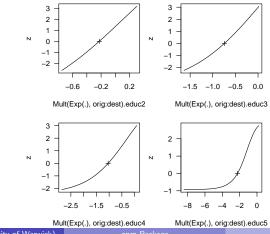
Contrasts Plot

plot(unidiffContrasts, xlab = "Education Level", levelNames = 1:5)



Profiling

unidiff2 <- update(unidiff, constrain = "[.]educ1")
prof <- profile(unidiff2, ofInterest(unidiff2), trace = TRUE)
plot(prof)</pre>



Heather Turner (University of Warwick)

Profile Confidence Intervals

```
> conf <- confint(prof)
> print(conf, digits = 2)
2.5 % 97.5 %
Mult(Exp(.), orig:dest).educ1 NA NA
Mult(Exp(.), orig:dest).educ2 -0.6 0.1
Mult(Exp(.), orig:dest).educ3 -1.5 -0.2
Mult(Exp(.), orig:dest).educ4 -2.6 -0.3
Mult(Exp(.), orig:dest).educ5 -Inf -0.7
```

Example: Marriage Data

- The Living in Ireland Surveys were conducted 1994-2001
- For five 5-year cohorts of women born between 1950 and 1975 we have the following data
 - year of (first) marriage
 - year and month of birth
 - social class
 - highest level of education attained
 - year highest level of education was attained

Discrete-time Hazard Models

• For discrete-time the **hazard** of marriage occuring at time t is defined as

$$h(t) = P(T = t | T \ge t)$$

• We can model the hazard using models of the form

$$logit(h(t|\boldsymbol{x}_{it})) = \alpha(age_{it}) + \boldsymbol{x}'_{it}\boldsymbol{\beta}$$

Episode-splitting

- To estimate the discrete-time hazard model we generate an **event history** for each observation
- Pseudo observations are created at each time point from time 0 up to marriage or censoring - this is known as episode-splitting
- The parameters can then be estimated by logistic regression of a marriage indicator at each time point (married = 1, unmarried = 0)

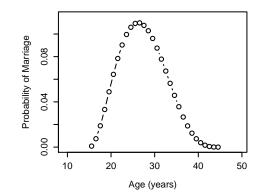
Blossfeld and Huinink Model

• Blossfeld and Huinink (Am. J. Sociol., 1991) propose the following linear baseline

$$\alpha(age_{it}) = c + \beta_l \log(age_{it} - 15) + \beta_r \log(45 - age_{it})$$

- describes the nature of the time dependence
- fixes the support of the hazard to be 15 to 45 years

BH Model



Nonlinear Discrete-time Hazard Model

 An obvious extension of the BH model is to treat the endpoints as parameters

$$\alpha(age_{it}) = c + \beta_l \log(age_{it} - \alpha_l) + \beta_r \log(\alpha_r - age_{it})$$

- nonlinear
- can't specify with standard "nonlin" functions

Variables and Predictors

- A "nonlin" function creates a list of arguments for the internal function nonlinTerms
- Nonlinear terms are considered as functions of variables and predictors

$$\beta_l \log(age_{it} - \alpha_l) + \beta_r \log(\alpha_r - age_{it})$$

• Create "nonlin" function Bell with argument x, which returns the arguments

```
predictors = list(slope = 1, endpoint = 1),
variables = list(substitute(x))
```

Term-specific Issues

- Would like to use same function for both "log-excess" terms, so add argument
 side = "left"
- Need to constrain endpoints to avoid undefined log values, so define

Term

• The term argument of nonlinTerms takes labels for the predictors and variables and returns a deparsed expression of the term:

```
term = function(predLabels, varLabels) {
    paste(predLabels[1], " * log(",
        " -"[side == "right"], varLabels[1], " + ",
        " -"[side == "left"], constraint,
        " + exp(", predLabels[2], "))")
}
```

Parameter Labels

- Default parameter labels are taken from the predictor names, here slope and endpoint
- To make parameter labels unique, save call to Bell:
 call <- sys.call()

```
and specify call argument to nonlinTerms
call = as.expression(call)
match = c(0, 0)
```

Complete Function

```
Bell <- function(x, side = "left"){</pre>
    call <- sys.call()</pre>
    constraint <- ifelse(side == "right",</pre>
                           \max(x) + 1e-5, \min(x) - 1e-5)
    list(predictors = list(slope = 1, endpoint = 1),
         variables = list(substitute(x)),
         term = function(predLabels, varLabels) {
              paste(predLabels[1], " * log(",
                    " -"[side == "right"], varLabels[1], " + ",
                    " -"[side == "left"], constraint,
                    " + exp(", predLabels[2], "))")
         },
     call = as.expression(call),
     match = c(0, 0)
     )
 class(Bell) <- "nonlin"</pre>
```

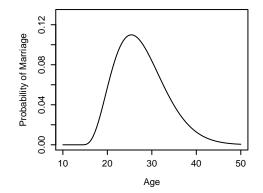
Summary of Extended Model

```
Call:
gnm(formula = marriages/lives ~ Bell(age, side = "left") + Bell(age,
   side = "right"), family = binomial, data = fulldata, weights = lives,
   start = c(-20, 3, 0, 3, 0)
Deviance Residuals:
   Min
           10 Median 30
                                 Max
-0.8098 -0.4441 -0.3224 -0.1528 4.0483
Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
(Intercept)
                            -118.5395
                                            NA
                                                   NA
                                                          NA
Bell(age, side = "left")slope
                            3.6928
                                           NA NA
                                                          NΑ
Bell(age, side = "left")endpoint -0.1432 NA NA
                                                         NA
Bell(age, side = "right")slope 24.8623 NA NA
                                                          NΑ
Bell(age, side = "right")endpoint 4.0247 NA
                                                  NA
                                                          NA
```

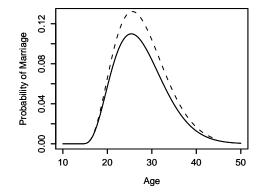
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 12553 on 31004 degrees of freedom AIC: 12748

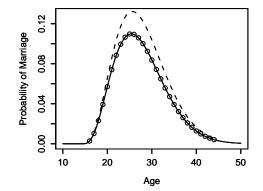
Example 'Recoil' Plot



Example 'Recoil' Plot



Example 'Recoil' Plot



Re-parameterization

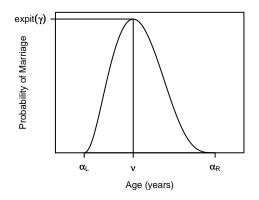
• The problem with aliasing can be overcome by re-parameterizing the model:

$$\alpha(age_{it}) = \gamma - \delta \left\{ (\nu - \alpha_l) \log \left(\frac{\nu - \alpha_l}{age_{it} - \alpha_l} \right) \right\} \\ + \delta \left\{ (\alpha_r - \nu) \log \left(\frac{\alpha_r - \nu}{\alpha_r - age_{it}} \right) \right\}$$

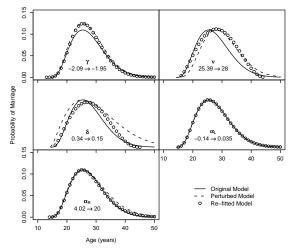
• A new nonlin function, Surge, is need to specify this term

Interpretation of Parameters

• The parameters of the new parameterisation have a more useful interpretation than before:



Recoil Plots for Reparameterised Model



Infinite Right Endpoint

- Having gone through a process of variable selection, the estimate for the right endpoint is 400 years!
- Letting the right end-point tends to infinity:

$$\alpha(age_{it}) = \gamma - \delta \left\{ (\nu - \alpha_l) \log \left(\frac{\nu - \alpha_l}{age_{it} - \alpha_l} \right) - age_{it} - \nu \right\}$$

does not significantly increase the deviance

• An argument is added to <u>Surge</u> to specify whether the right endpoint should be estimated

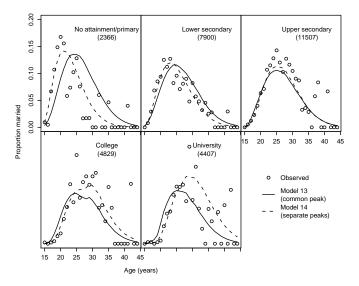
Refining the Model

- Checking the fit of the model over each covariate suggests some changes in the predictors
 - e.g. replacing the cohort factor by the nonlinear term

 $\theta \exp(\lambda(yrb_i - 1950))$

• Residual analysis also suggests that both the scale and location of hazard vary between individuals

Fit over Education Levels



Linear Dependence of Peak Location

 Quantifying the education level by the average equivalent years in education ed a linear dependence of peak location on age can be incorporated as follows

$$\alpha(\boldsymbol{x}_{it}) = \gamma - \delta \left\{ (\nu_0 + \nu_1 e d_i - \alpha_l) \log \left(\frac{\nu_0 + \nu_1 e d_i - \alpha_l}{a g e_{it} - \alpha_l} \right) \right\}$$
$$+ \delta \left\{ a g e_{it} + \nu_0 + \nu_1 e d_i \right\}$$

• An argument is added to Surge to specify the formula for the peak location

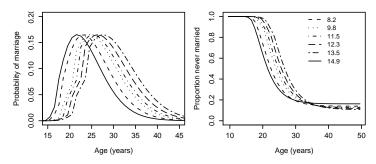
Final Model

Coefficients:

```
(Intercept)
                                                     -1.59971836
Surge(age, peakX = ~ . + YrsEduc, right = Inf).peakX(Intercept)
                                                     14,42125516
          Surge(age, peakX = ~ 1 + ., right = Inf).peakXYrsEduc
                                                      0.88430137
          Surge(age, peakX = ~ 1 + YrsEduc, right = Inf)fallOff
                                                      0.46183848
          Surge(age, peakX = ~ 1 + YrsEduc, right = Inf)leftAdj
                                                      0.16872262
                     Mult(., Exp(I(iyearb - 1950))).(Intercept)
                                                     -0.01991675
                               Mult(1, Exp(.)).I(iyearb - 1950)
                                                      0.19665983
                                                          InEduc
                                                     -1.46281777
                                                        PostEduc
                                                     -0.47859895
```

Hazard and Survival Curves

• For women born in 1950



Deviance = 11847 Residual d.f. = 31000

Interpretation

- $\hat{\alpha}_L = 13.86$ and the deviance is significantly increased if this is constrained to 15 years
- Peak location varies from 21.32 years (no education) to 27.60 years (university graduates)
- Peak hazard varies from 0.17 (b. 1950) through 0.16 (b. 1960) to 0.07 (b. 1970)

References

- More information about gnm can be found on www.warwick.ac.uk/go/gnm
- A comprehensive manual is distributed with the package vignette("gnmOverview", package = "gnm")
- A working paper on the marriage application is available at www.warwick.ac.uk/go/crism/research/2007

Acknowledgements

- The marriage data are from The Economic and Social Research Institute Living in Ireland Survey Microdata File (©Economic and Social Research Institute).
- We gratefully acknowledge Carmel Hannan for introducing us to this application and providing background on the data.