This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
RM(data)
, PCM(data)
, RSM(data)
, LTM(data)
, LPCM(data)
, LRSM(data)
, LLRA(data,mpoints,groups)
: Model fitting functionssummary(obj)
, residuals(obj)
, coef(obj)
, anova(obj)
: GenericsgofIRT(obj)
, LRtest(obj)
, Waldtest(obj)
, NPtest(obj)
: Test and Statistics for Model fitplotICC(obj)
, plotGOF(obj)
, plotDIF(obj)
, plotPImap(obj)
, plotPWmap(obj)
,plotGR(obj)
, plotTR(obj)
: Plot functionsperson.parameter(obj)
: Extract person parametersitem_info(obj)
, test_info(obj)
: item or scale informationperson.fit(obj)
, item.fit(obj)
: person and item fit statisticsrasch(data)
, ltm(data)
, tpm(data)
, grm(data)
, gpcm(data)
: Model fitting functions (with constraints)GoF(obj)
, margins(obj)
, unidimtest(obj)
: Tests for Model fitplot(obj)
,summary(obj)
, residuals(obj)
, coef(obj)
, anova(obj)
: Genericsfactor.scores(obj)
: Extract person parametersinformation(obj)
: item or scale informationperson.fit(obj)
, item.fit(obj)
: person and item fit statisticsNote: Not all functions are necessarily working with all object classes.
mirt(data,model,itemtype)
, bfactor(data)
, mixedmirt(data,model,formula)
: Model fitting functions for different itemtypesmirt.model()
: Model set up for confirmatory IRT and constraintsmultipleGroups(data,model,itemtype)
,DIF(obj)
: Multiple group and DIF functionswald(obj)
: Test and Statistics for Model fititemplot(obj,options)
: Plot functions (many different options)plot(obj)
,summary(obj)
, fitted(obj)
, residuals(obj)
, coef(obj)
, anova(obj)
: Genericsfscores(obj)
: Extract person parametersiteminfo(obj)
, testinfo(obj)
, expected.item(obj)
: item or scale informationM2(obj)
, itemfit(obj)
: person and item fit statisticsksIRT(data,key,weights)
: Model fitting function. format
specifies whether multiple choice (1), rating scale or partial credit (2) or nominal treatment (3) or allows mixed formats. Other scoring rules can be specified with weights
.plot(obj,plottype)
: Plot functions (many different options)subjthetaML(obj)
: Extract person parameterssubjEIS(obj)
, subjETS(obj)
, subjscoreML(obj)
, subjOCC(obj)
: subject-wise scores (expected item and test, ML scores; OCC gives all incl. observed)coefH(data)
: Scalability coefficientsaisp(data)
: Scale partitioningcheck.iio(data)
,check.pmatrix(data)
,check.restscore(data)
, check.monotonicity(data)
: Assumption checksdifLord()
, difGenLord()
(u and nu DIF in two and multiple groups)difRaju()
(un and nu DIF for two groups)difLRT()
(u DIF in Rasch models)dichoDif()
,genDichoDif()
: Convenience function to check DIF (all methods for 2 or more groups)raschtree(formula)
,pctree(formula)
, rstree(formula)
: Model-based recursive partitioning of modelsplot(obj)
,summary(obj)
,coef(obj)
: GenericsmRm::mrm(data,cl=groups)
Mixed dichotomous Rasch modelspsychomix::raschmix(formula, data, k=groups)
Mixed dichotomous Rasch models with possible concomitant variablesmixRasch::mixRasch(data,n.c=groups)
Dichotomous and polytomous Rasch models.plot(obj)
,summary(obj)
,coef(obj)
: Generics