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Model

What Are Linear Logistic Models With Relaxed Assump-

tions?

• They allow to analyse categorical repeated measurement

data (categorical panel data)

• They are Item Response Models

• They are called �with Relaxed Assumptions� because they

require neither unidimensionalty of items nor distributional

assumptions about the latent trait

• They allow to contrast treatment and/or subject covariate

e�ects

• They provide a framework for testing assumptions on (item)

dimensionality, trend and covariate e�ects

• They measure change on a metric scale (actually a ratio

scale)

• They are very rarely applied (especially in a business, eco-

nomics, marketing etc. context)
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Models

About The Nature Of LLRA

• LLRA are Generalised Rasch Models

• Each item (or group of items) may - but need not - measure

a single latent trait, hence it is a multi-dimensional model

• Change is modelled as a function of trend e�ects and covari-

ate/treatment main and interaction e�ects

• Those e�ects can be speci�ed by linear decomposition of

virtual item parameters

• Due to conditional maximum likelihood estimation (CML),

inference on e�ect parameters is completely independent of

the trait parameters

• Item and person parameters are not of interest

• The same items are used at each occassion

• Treatment/covariate e�ects are assumed to be generalisable

over subjects of a certain group
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Model

Questions The LLRA Can Answer

• Is there a treatment/covariate e�ect?

• Is there a trend e�ect?

• Are treatment/covariate/trend e�ects the same for a group

of items?

• Are there any interaction e�ects between groups (e.g. gender
and treatment)?

• Is there a speci�c functional form of trend and covari-

ate/treatment e�ects over time (e.g. linear trend)?

• All combinations of the above.
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Model

Conditions And Assumptions

• All changes (positive or negative) must be independent of

each other, including changes of the same person for other

items

• E�ect parameters take the same values for all subjects in a

group

• There are no latent classes or unobserved heterogeneity due

to subgroups

• Equal item discrimination (otherwise e�ect and discrimina-

tion parameters are confounded)

Its bene�t is that - given the above holds - measurement of

change is free of systematic in�uences of nuisance parameters,

like item and person parameters.
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Model

Model Formulation - I

At T1

P (Xvih1 = 1|T1) =
exp(hθvi1 + ωih)∑mi
l=0 exp(lθvi1 + ωil)

,

At Tt

P (Xviht = 1|Tt) =
exp(hθvit+ ωih)∑mi
l=0 exp(lθvit+ ωil)

=
exp(h(θvi1 + δvit) + ωih)∑mi
l=0 exp(l(θvi1 + δvit) + ωil)

,

θvit ... location of subject v for item i at Tt
δvit = θvit − θvi1 ... amount of change of person v for trait i

between time T1 and Tt
h ... h-th response category (h = 0, . . . ,mi)

ωih ... parameter for category h for item i
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Model

Model Formulation - II

The �exiblity of LLRA now arises from a (linear) reparametrisa-

tion of δvit to include di�erent e�ects:

δvit = wT
itη

wT
it ... row of design matrix W (covariate values, e.g. dosages

or treatment groups) for trait i up to Tt.

η is a vector of parameters typically describing treatment

or coavariate groups and trend and interactions etc.

δvit =
∑
j

qvjitλjit+ τit+
∑
j<l

qvjitqvlitρjlit

qvjit ... dosage of treatments j for trait i between T1 and Tt.
λjit ... e�ect of the treatment j on trait i at Tt
τit ... trend e�ect on trait i for Tt.
ρjlit ... interaction e�ects of treatments j and l on trait i at Tt.
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Estimation

Estimation Of LLRA - I

Change e�ects in LLRA can be estimated via CML by using a

trick:

Instead of assessing the change on the latent trait, change is

estimated from di�erences in item di�culties

• In Rasch models, item and person parameters lie on the same

latent trait

• A positive location change on the trait is equivalent to a

negative shift of the item-(category) threshold

• Hence the same item at t di�erent time points is viewed as

t di�erent �virtual� items whose locations di�er by δvit
• CML can be applied to estimate those di�erences (condi-

tional an di�culties and person parameters)
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LLTM

Detour: The LLTM For Measuring Change

If we have unidimensional, Rasch model conforming items, we

can assess change by means of the LLTM with exactly the same

trick of using �virtual items�

• Di�culties for each item are estimated at all time points

• Change is the di�erence between the di�culty at T1 and the

later time points

• In principle, di�erent items can be used at each timepoint,

since di�culties are known from the Rasch model

• The big di�erence to LLRA is that the baseline is estimated

as well (the di�culties)
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Estimation

Estimation Of LLRA - II

Informal: The likelihood is the product of all positive and neg-

ative change patterns between two time points, e.g. for (0,1)

and (1,0) for dichotomous items.

• Possibly a small part of information considered (all (1,1) and

(0,0) paterns are discarded)

• Changes must occur in both directions

• Changes must not be too large

• Assumption of independence of changes
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How to �t LLRA?

Data Structure - I

To �t LLRA with, e.g. eRm, the usual wide format has to be

changed in to long format

Real Persons T1 T2
S1 x111 x121 . . . x1k1 x112 x122 . . . x1k2
... ... ...
Sn xn11 xn21 . . . xnk1 xn12 xn22 . . . xnk2

Virtual Persons T1 T2
S∗11 x111 x112
... ... ...
S∗n1 xn11 xn12
... ... ...
S∗1k x1k1 x1k2
... ... ...
S∗nk xnk1 xnk2
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How to �t LLRA?

Data Structure - II

Group membership or covariate values must be speci�ed so we
can assign each persons item answers to the according group.
This must be multiplied with the according number of items
(assignment group), e.g. a treatment and a control, 3 items ->
six groups

Virtual Persons T1 T2 Assignment Group
Item 1 TG S∗

(TG)11
x(TG)111 x(TG)112 1

...
...

...
...

S∗
(TG)n1

x(TG)n11 x(TG)n12 1

CG S∗
(CG)11

x(CG)111 x(CG)112 2
...

...
...

...
S∗
(CG)n1

x(CG)n11 x(CG)n12 2

...
...

...
...

Item k TG S∗
(TG)1k

x(TG)1k1 x(TG)1k2 2k − 1
...

...
...

...
S∗
(TG)nk

x(TG)nk1 x(TG)nk2 2k − 1
CG S∗

(CG)1k
x(CG)1k1 x(CG)1k2 2k

...
...

...
...

S∗
(CG)nk

x(CG)nk1 x(CG)nk2 2k
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How to �t LLRA?

Design Matrix

Since we are interested in estimation of η, the crucial step is

setting up the design matrix W .

In principle, W can be of any from, but we will use the following

canonical structure:

• Each column corresponds to an e�ect

• The number of rows is the number of time points × the

number of items × the number of covariate groups × the

number of categories - 1

• The slowest index is the index of time points. Nested within

time points are the item indices, and within items the group

indices. The fastest index corresponds to response categories

in case of polytomous items

• Non existing e�ects get a zero value

• For items with di�erent numbers of catgories, the super�uous

rows consist of zeros
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How to �t LLRA?

Design Matrix - Generalisation Of E�ects

After setting up a �quasi saturated� LLRA, the model can be

simpli�ed (e.g. e�ects can be generalised)

• Collapsing columns to equate e�ects (e.g. two treatment

groups get the same e�ects)

• Speci�ying certain functional forms (linear e�ects over time,

etc.)

• Collapsing columns to equate e�ects for certain dimensions

(i.e. items)

• Applying any kind of linear contrasts on the e�ects (e.g.

treatment 1 and 2 together are 3 times as e�ective as treat-

ment 3)

• �Classic� LLRA speci�es a general trend over all items and

groups and a treatment e�ect for each group over all items
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How to �t LLRA?

Design Matrix - Example I

2 time points, 2 groups (control and treatment), k dichotomous
items

λ1 λ2 · · · λk τ1 τ2 · · · τk

T1 Item 1 � TG
Item 1 � CG
Item 2 � TG
Item 2 � CG

...
Item k � TG
Item k � CG

T2 Item 1 � TG 1 1
Item 1 � CG 1
Item 2 � TG 1 1
Item 2 � CG 1

... ... ...
Item k � TG 1 1
Item k � CG 1
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How to �t LLRA?

Design Matrix - Example II

2 time points, 2 groups (control and treatment), 3 items with 4
categories
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λ1 λ2 λ3 τ1 τ2 τ3 ω12 ω13 ω22 ω23 ω32 ω33

T1 Item 1 TG Cat 1
Cat 2 1
Cat 3 1

CG Cat 1
Cat 2 1
Cat 3 1

Item 2 TG Cat 1
Cat 2 1
Cat 3 1

CG Cat 1
Cat 2 1
Cat 3 1

Item 3 TG Cat 1
Cat 2 1
Cat 3 1

CG Cat 1
Cat 2 1
Cat 3 1

T2 Item 1 TG Cat 1 1 1
Cat 2 2 2 1
Cat 3 3 3 1

CG Cat 1 1
Cat 2 2 1
Cat 3 3 1

Item 2 TG Cat 1 1 1
Cat 2 2 2 1
Cat 3 3 3 1

CG Cat 1 1
Cat 2 2 1
Cat 3 3 1

Item 3 TG Cat 1 1 1
Cat 2 2 2 1
Cat 3 3 3 1

CG Cat 1 1
Cat 2 2 1
Cat 3 3 1



How to �t LLRA?

Design Matrix in R - I

Since these design matrices may become huge and are very

sparse, setting them up manually might be cumbersome.

Hence we let R do it for us. What can help us is:

• The Kronecker product, %x%

• The Matrix package, library(Matrix)

For example: Setting up the former two design matrices.

Dichotomous
> des.tmp <- c(0, 1) %x% diag(3)
> design.2 <- cbind(des.tmp %x% c(1, 0), des.tmp %x% c(1, 1))
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How to �t LLRA?

Design Matrix in R - II

For example: Setting up the former two design matrices.

Polytomous
> pseudodes <- matrix(c(1, 0, 1, 1), 2, 2)
> des0 <- diag(3) %x% pseudodes
> des0 <- des0[, c(1, 3, 5, 2, 4, 6)]
> des0 <- c(0, 1) %x% des0
> des1 <- des0 %x% c(1, 2, 3)
> c0 <- matrix(c(0, 1, 0, 0, 0, 1), 3, 2)
> c1 <- c(1, 1) %x% c0
> c2 <- diag(3) %x% c1
> des2 <- cbind(des1, rbind(c2, c2))

Collapsing is simply summing up the values in the according

columns

> des2 <- cbind(des2[, 1], colSums(des2[, c(2, 3)]), des2[, c(4:12)])
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How to �t LLRA?

Fitting with eRm - I

Example: Two groups, three items, two time points
> data <- matrix(unlist(dat), nc = 2)
> grps6 <- as.numeric(gl(6, 50, 300))
> res.llra <- LPCM(data, W = design.2, mpoints = 2, groupvec = grps6,
+ sum0 = F)
> res.llra
Results of LPCM estimation:

Call: LPCM(X = data, W = design.2, mpoints = 2, groupvec = grps6, sum0 = F)

Conditional log-likelihood: -94.49457
Number of iterations: 16
Number of parameters: 6

Basic Parameters eta:
eta 1 eta 2 eta 3 eta 4 eta 5 eta 6

Estimate 1.8918415 -0.7908925 1.9095409 0.4595322 -0.07410689 -0.9650805
Std.Err 0.8268503 0.5709425 0.6091365 0.3687384 0.38516366 0.4154649
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How to �t LLRA?

Fitting with eRm - II

Do it yourself: Fit LLRA as in Hatzinger & Rusch (2009) for

• Example 1

• Example 2

• Example 4

• Example 5

• Example 6

• Example 7

See http://erm.r-forge.r-project.org/
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How to �t LLRA easier?

LLRA functions for eRm

As you can see, this is a lot of work...

Functions in eRm will automatise this in the near future.

• LLRA(): A wrapper that does all of the above; restructure

data, build design matrix, build assignment vector, �t LPCM

• collapse W(): A function to conveniently collapse W

• plotGR(), plotTR(): Plot group and trend e�ects

• anova(): Model comparison with likelihood ratio test
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