
Rasch Models

Part 3: Parameter Estimation in the

Rasch Model
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Parameter Estimation

Parameter Estimation - general

given a data vector x = (x1, x2, ..., xn)
is a random sample from an unknown population

goal of data analysis is to acquire knowledge about population

each population is identi�ed by a probability distribution,

speci�ed as a function of (usually unknown) parameters

2 situations:

statistical tests:

if parameters were known, probability for speci�c data can be

calculated

� assumptions on parameters are made under H0
� statistical test: evaluates sample data given these assumptions

estimation:

- try to get knowledge about unknown parameters
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Parameter Estimation

Parameter Estimation

example: ball and urn experiment

� red and black balls, let P (red) = π
� draw n = 10 balls (with replacement)

� data: {X1 = red,X2 = red, . . . ,X10 = black}
k = 3 had been red, n − k = 7 had been black

probability distribution function (PDF):

P (observing exactly this sample) =
π ⋅ π ⋅ ⋅ ⋅ ⋅ ⋅ (1 − π) ⋅ (1 − π) = π3 (1 − π)7

general: πk (1 − π)n−k
we do not know π - how can we calculate it?

Maximum Likelihood (ML) Method: we choose that π that is

most likely to have generated the sample
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Parameter Estimation

let's try di�erent values of π:

pi P(pi|k=3,n-k=7)
0.0 0.00000
0.1 0.00048
0.2 0.00168
0.3 0.00222
0.4 0.00179
0.5 0.00098
0.6 0.00035
0.7 0.00008
0.8 0.00001
0.9 0.00000
1.0 0.00000
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P(pi|k=3,n-k=7) is called likelihood, generally L(θ∣x1, . . . , xn)
if we want to estimate π, we look for the maximal value of the
likelihood function � maximum likelihood (ML) estimation
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Parameter Estimation

general: to obtain the maximum of a function:
set �rst derivative to zero - solve equation(s)
derivative often easier found, when using the log likelihood

L(π∣x1, . . . , xn) = n∏
i=1π

xi (1 − π)(1−xi) = πk (1 − π)n−k
logL = k logπ + (n − k) log(1 − π)
d logL

dπ
= k1

π
+ (n − k) 1

1 − π ⋅ (−1) = kπ − n − k1 − π = 0
ML estimator (function to estimate the parameter - rule):

k

π
= n − k
1 − π → k − kπ = nπ − kπ → π = k

n

ML estimate (result of applying the rule):

π̂ = k
n
= 0.3
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Parameter Estimation

Parameter Estimation in the RM

Item Parameter Estimation▸ likelihood based methods:

di�er in their treatment of person parameters

● joint ML estimation (JML)● conditional ML estimation (CML)● marginal ML estimation(MML)▸ other methods available:

less often used

not covered here

Person Parameter Estimation

● ML and weighted ML estimation● Bayes approaches
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Parameter Estimation

Joint Maximum Likelihood (JML)

or `unconditional' ML

Lu = exp(∑v θvrv)exp(−∑iβisi)∏v∏i(1 + exp(θv − βi))
joint estimation of item and person parameters

su�cient statistics are: rv = ∑ixvi for θv and si = ∑v xvi for βi
problem:

as n→∞ estimates for item parameters are inconsistent

and biased in �nite samples with k(k − 1)
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Parameter Estimation

Conditional Maximum Likelihood (CML)

condition on rv

Lc = exp(−∑
i
βisi)/∏

r
∑
x∣r exp(−∑i xiβi)nr

� person parameters do not occur in the conditional likelihood

� items can be compared independent of persons (separation)

� leads to speci�c objectivity

� person free item calibration

� `sample-independence':

actual sample not of relevance for inference on item parameters

CML estimates are unbiased and consistent as n→∞
for estimability set β1 = 0 or ∑βi = 0
items with score si = 0 or n and person with rv = 0 or k are

removed prior to estimation
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Parameter Estimation

Derivation of the conditional likelihood

basic idea:

use the conditional probability of observing a certain response

pattern xv given the marginal sum rv

P (xv∣rv;θv,β) = P (xv∣θv,β)
P (rv∣θv,β)

example: 4 items, r = 3, observed pattern xv is

1101

all possible response patterns x with r = 3:
1110 1101 1011 0111
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Parameter Estimation

Derivation of the conditional likelihood (ctd.)

rewrite RM in multiplicative form

P (Xvi = 1) = ξvεi
1 + ξvεi, ξv = exp(θv), εi = exp(−βi)

probability for the response pattern xv for a certain subject v

P (xv∣ξv,ε) = k∏
i=1
(ξvεi)xvi
1 + ξvεi =

θv
rv∏ki=1 εixvi∏ki=1(1 + ξvεi)

probability for a �xed raw score rv is

P (rv∣ξv,ε) = ∑
y∣rv

k∏
i=1
(ξvεi)xvi
1 + ξvεi =

θv
rv∑y∣rv∏ki=1 εixvi∏ki=1(1 + ξvεi)
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Parameter Estimation

Derivation of the conditional likelihood (cont'd)

collecting all terms

P (xv∣rv;θv,β) = P (xv∣θv,β)
P (rv∣θv,β) =

θv
rv∏ki=1 εixvi∏ki=1(1+ξvεi)

θv
rv∑y∣rv∏ki=1 εixvi∏ki=1(1+ξvεi)

= ∏ki=1 εixvi∑y∣rv∏ki=1 εixvi

crucial term is: ∑y∣rv∏ki=1 εixvi ≡ γr(εi)
the γ's are called elementary symmetric functions (of order r)

γ0 = 1

γ1 = ε1 + . . . + εk
γ2 = ε1ε2 + ε1ε3 + . . . + εk−1εk⋮
γk = ε1ε2ε3⋯εk−1εk
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Parameter Estimation

Marginal Maximum Likelihood (MML)

instead of conditioning integrate out the person parameter

Lm =∏
r

⎡⎢⎢⎢⎢⎣exp(−∑i βisi))∫
exp(θr)

∏ki=1(1 + exp(θ − βi))dG(θ)
⎤⎥⎥⎥⎥⎦
nr

distribution for θ , i.e., G(θ) must be speci�ed

usually it is assumed that θ ∼N(0,1)
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Parameter Estimation

Marginal Maximum Likelihood (MML) (cont'd)

Advantages:● gives also estimates for persons with rv = 0 or rv = k● advantageous if research aims at person distribution● allows estimation of additional parameters

(2PL, 3PL models)

Disadvantages:● parameters can be grossly biased if G(θ) incorrectly speci�ed● CML closer to concept of person-free assessment● no argument for speci�c objectivity● several goodness-of-�t tests not available

distributional properties of CML and MML estimated are asym-

totically the same

can be estimated in R using the ltm package (Rizopoulos,2009)
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Parameter Estimation

Derivation of the marginal likelihood

probability of observing a certain response pattern xv

P (xv∣θv,β) = P (xv∣rv;θv,β)P (rv∣θv,β)= ∫ P (xv∣θv,β)dG(θ)

inserting the RM parameters gives

P (xv) = exp(−∑
i
βisi)∫ exp(θvrv)∏ki=1(1 + exp(θv − βi))dG(θ)

product over all subjects gives Lm
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Parameter Estimation

Person Parameter Estimation

using the unconditional likelihood

Lu = exp(∑v θvrv)exp(−∑iβisi)∏v∏i(1 + exp(θv − βi))
and assuming the βs to be known (from prior estimation)

slightly biased (bias smaller than s.e.'s of estimates)

no estimates for rv = 0 and rv = k
can be approximated using, e.g., spline interpolation

weighted ML estimation:

likelihood function is skewed, additional source of estimation bias

Warm suggests unbiasing correction, computationally unfeasible
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