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Pattern Models

What is Composite Link?

example given by Thompson and Baker (1981):

In a sample of 422 people we observe 4 blood groups:
A = 42% , AB ∼ 2%, O = 48%, B = 8%

the blood groups (A, AB, O, B) of the child are determined by
alleles (a,o,b) of father and mother
e.g. father allele a and mother allele o gives blood group A

observed table

group counts
A 179
AB 6
O 202
B 35

complete table

alleles father
mother a o b

a A A AB
o A O B
b AB B B

● we want to estimate the probabilities for pa, po, pb

(same for mother and father)

Slides 2011 2

Pattern Models

We look at patttern (aa), which gives blood group A:

alleles father
mother a o b

a p2a
o
b

the probability for pattern (aa) is:
p(aa) = pa pa = p2a
the expected number for pattern (aa) is

maa = N p2a

lnmaa = lnN + 2 lnpa log link= µ + 2 βa linear predictor η1

maa = exp(µ + 2βa) inverse link
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Pattern Models

all patterns which give

blood group A

(9 possible patterns):

alleles father
mother a o b

a p2a popa
o popa
b

` genotype group µ xa xo xb expected frequency m`

1 aa A 1 2 0 0 exp(µ + 2βa) = exp(η1)
2 ao A 1 1 1 0 exp(µ + 1βa + 1βo) = exp(η2)
3 ab AB 1 1 0 1
4 oa A 1 1 1 0 exp(µ + 1βa + 1βo) = exp(η4)
5 oo 0 1 0 2 0
6 ob B 1 0 1 1
7 ba AB 1 1 0 1
8 bo B 1 0 1 1
9 bb B 1 0 0 2

pobs(A) = pcompl(aa) + pcompl(oa) + pcompl(ao)
p(A) = exp(µ+2βa)+exp(µ+1βa+1βo)+exp(µ+1βa+1βo)∑` exp(µ+xaβa+xoβo+xbβb)
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Pattern Models

for estimating βa, βo, βb and

to get estimated probabilities for blood groups (A, AB, O, B)

● we compose (add up) speci�c links

� that's where the name composite link comes from

p(A) = exp(η1)+exp(η2)+exp(η4)∑` exp(η`) p(AB) = exp(η3)+exp(η7)∑` exp(η`)
p(0) = exp(η5)∑` exp(η`) p(B) = exp(η6)+exp(η8)+exp(η9)∑` exp(η`)
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Pattern Models

How can we �t such a model?● the data are the counts of the blood groups: yA, yAB, yO, yB
> y <- c(179, 6, 202, 35)

create design matrix X

> X<-matrix(c(
+ 1,1,1,1,1,1,1,1,1,
+ 2,1,1,1,0,0,1,0,0,
+ 0,1,0,1,2,1,0,1,0,
+ 0,0,1,0,0,1,1,1,2
+ ),nr=4,b=T)
> X<-t(X) #transponieren

mu xa xo xb
aa 1 2 0 0
ao 1 1 1 0
ab 1 1 0 1
oa 1 1 1 0
oo 1 0 2 0
ob 1 0 1 1
ba 1 1 0 1
bo 1 0 1 1
bb 1 0 0 2
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Pattern Models

> Xdf
genotyp gruppe mu xa xo xb

1 aa A 1 2 0 0
2 ao A 1 1 1 0
3 ab AB 1 1 0 1
4 oa A 1 1 1 0
5 oo O 1 0 2 0
6 ob B 1 0 1 1
7 ba AB 1 1 0 1
8 bo B 1 0 1 1
9 bb B 1 0 0 2

which elements have to be added up for each blood group ?

we create a vector with 9 elements (# of all possible patterns)

> s <- c(1, 1, 2, 1, 3, 4, 2, 4, 4)

where the numbers represent the observed groups

1 for A, 2 for AB, 3 for O and 4 for B
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Pattern Models

● we �t the model � use package gllm Du�y (2010)

> library(gllm)
> res <- gllm(y, s, X[, -1])
> summary(res)
Call:
scoregllm(y = y, s = s, X = X, m = as.array(emgllm(y, s, X, maxit = em.maxit,

tol = tol)$full.table))

No. cells in observed table: 4
No. cells in complete table: 9

Mean observed cell size: 106
Model Deviance (df): 3.17 (1)

Estimate S.E. exp(Estimate) Lower 95% CL Upper 95% CL
xa 1.642 0.0686 5.17 4.52 5.91
xo 2.664 0.0344 14.35 13.41 15.35
xb 0.027 0.1539 1.03 0.76 1.39
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Pattern Models

parameter estimates are e.g. βa = 1.64 = lnpa

by exp(β)/∑exp(β) (normalising) we get the probabilities for alleles a, b,0

> e <- exp(coef(res))
> pr <- e/sum(e)

> names(pr) <- c("pa", "po", "pb")
> round(pr, digits = 2)
pa po pb

0.25 0.70 0.05

25% of mothers (fathers) have allele a, 70% allele o and 5% allele b

alleles father
mother a o b

a papb pa = 0.25
o po = 0.7
b pbpa pb = 0.05

pa po pb

the probability for AB is 2 ∗ pa ∗ pb = 2 ∗ 0.25 ∗ 0.05 = 0.025

the estimated counts for AB are pAB ∗N = (2 ∗ pa ∗ pb) ∗ 422 = 10.6
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Pattern Models

the �tted values are the expected numbers

for the blood groups A,AB,O,B

> fv <- fitted.values(res)
> names(fv) <- c("A", "AB", "O", "B")
> round(fv, digits = 1)

A AB O B
175.0 10.6 205.9 30.5

the observed numbers are:
> names(y) <- c("A", "AB", "O", "B")
> y
A AB O B

179 6 202 35

these are the observed counts where we started from
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Missing Observations

Missing observations in paired comparisons

missing observations can occur for several reasons:

by design, respondent doesn't know, is unwilling, fatigue, etc.

if NA occurs at random � easily handled in LLBT

since m(yjk) depend only on observed values

but we want to use pattern models for several reasons

how can we take account of incomplete response patterns?

● each di�erent missing pattern gives a di�erent design matrix

(smaller than design matrix for non-missing data)● we have to link the observed patterns (incomplete patterns)

with complete patterns (all possible patterns)

⊳ use composite link
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Missing Observations

Data structure for patterns y in block [ ] � no missings

observed y completepatterns design η
y12 y13 y23 (12) (13) (23) µ x1 x2 x3
1 1 1 1 1 1 1 2 0 -2
1 1 −1 1 1 −1 1 2 -2 0
1 −1 1 1 −1 1 1 0 0 0
1 −1 −1 1 −1 −1 1 0 -2 2−1 1 1 −1 1 1 1 0 2 -2−1 1 −1 −1 1 −1 1 0 0 0−1 −1 1 −1 −1 1 1 -2 2 0−1 −1 −1 −1 −1 −1 1 -2 0 2

● expected numbers for the patterns y in block [ ]:
lnmy[ ] = µ1 + J∑

j=1λ
O
j xj = ηy my[ ] = exp(ηy)

lnm(1,1, 1) = µ1 + 2λ1 − 2λ3 = η`(1,1,1) m(1,1, 1) = exp(η`(1,1,1))
lnm(1,1,−1) = µ1 + 2λ1 − 2λ2 = η`(1,1,−1) m(1,1,−1) = exp(η`(1,1,−1))
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Missing Observations

Data structure for observed y in block [23] � y23 missing

observedy complete patterns design η
y12 y13 y23 (12) (13) (23) µ x1 x2 x3
1 1 NA `1 1 1 1 2 2 0 -2

`2 1 1 −1 2 2 -2 0
1 −1 NA `3 1 −1 1 2 0 0 0

`4 1 −1 −1 2 0 -2 2−1 1 NA `5 −1 1 1 2 0 2 -2
`6 −1 1 −1 2 0 0 0−1 −1 NA `7 −1 −1 1 2 -2 2 0
`8 −1 −1 −1 2 -2 0 2

● expected numbers for observed y in block [23]
my[23] = exp(ηy12,y13,1) + exp(ηy12,y13,−1)

we apply composite link

e.g. expected numbers for observed y(1,1,NA)
mobs(1,1,NA) = expη`1 + expη`2= exp(µ2 + 2λ1 − 2λ3) + exp(µ2 + 2λ1 − 2λ2)
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Missing Observations

Data structure � including NA patterns

observedy complete patterns NA patterns r
y12 y13 y23 (12) (13) (23) (12) (13) (23)

[] 1 1 1 1 1 1 0 0 0
1 1 −1 1 1 −1 0 0 0
1 −1 1 1 −1 1 0 0 0
1 −1 −1 1 −1 −1 0 0 0−1 1 1 −1 1 1 0 0 0−1 1 −1 −1 1 −1 0 0 0−1 −1 1 −1 −1 1 0 0 0−1 −1 −1 −1 −1 −1 0 0 0

block 2 1 1 NA 1 1 1 0 0 1
1 1 −1 0 0 1

1 −1 NA 1 −1 1 0 0 1
1 −1 −1 0 0 1−1 1 NA −1 1 1 0 0 1−1 1 −1 0 0 1−1 −1 NA −1 −1 1 0 0 1−1 −1 −1 0 0 1

block 3 ⋮ ⋮ ⋮
rjk is 1 if comparison (jk) is missing

How many blocks? (30) + (31) + (32) + (33) = 1 + 3 + 3 + 1 = 8 (2#comp)
` = 2#comp complete patterns in each block (#resp. categories#comp )

total number of patterns in complete data is therefore 22#comp = 64

number of all observable patterns is 3#comp = 27
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Missing Observations

Modelling missing values

now we model the complete data▸ pattern models including NA's have two parts:▸ outcome model: which we modelled so far by

f(y; λ) probabilities of outcome model

λs are related to y

expηy . . . expected numbers in a cell (depend on λ parameters)▸ nonresponse model:

q(r∣y;ψ) probabilities of nonresponse model

ψs are related to r (and y)

expηr∣y. . . expected numbers in a cell (depend on ψ parameters)

▸ the joint cell probability for the y and r patterns is

P {y, r; λ,ψ} = f(y) q(r∣y)
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Missing Observations

Modelling missing values (cont'd)

relate the observed data with complete data

cell probabilities for observed data (incomplete data):

P {y12, y13, y23; λ,ψ} = f(y12, y13, y23; λ) q(0,0,0 ∣ y12, y13, y23;ψ)
P {y12, y13,NA; λ,ψ} = ∑y23f(y12, y13, y23; λ) q(0,0,1 ∣ y12, y13, y23;ψ)
P {y12,NA, y23; λ,ψ} = ∑y13f(y12, y13, y23; λ) q(0,1,0 ∣ y12, y13, y23;ψ)⋮
example P {y12, y13,NA; λ,ψ} :

P {y12, y13,NA; λ,ψ} = f(y12, y13,1; λ) + f(y12, y13,−1;λ)× q(0,0,1 ∣ y12, y13, y23;ψ)

▸ composite link approach
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Missing Observations

Missing data mechanisms (Rubin, 1976)

let ycomplete = (yobs, ymis) and rjk is NA indicator (if NA: rjk = 1)

Missing completely at random (MCAR): q(r; ψ)
if the conditional distribution q(r∣y;ψ) is independent of y, i.e.

q(r∣y;ψ) = q(r; ψ)
Missing at random (MAR): q(r∣yobs; ψ)
if the conditional distribution depends on

the observed, but not on the missing values

q(r∣y;ψ) = q(r∣yobs;ψ)
Missing not at random (MNAR): q(r∣yobs, ymis; ψ)
if the conditional distribution depends on both

the observed and the missing values,

q(r∣y;ψ) = q(r∣yobs, ymis;ψ)
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Some models: q(r ∣y; ψ)
▸ under MCAR assumption: we use α to specify ψ

general model: one α for each comparison q(r; αjk)
P {Rjk = rjk;αij} = eαjkrjk1+eαjk rjk ∈ {0,1}

probability for a nonresponse for each comparison � αij can not be estimated

model 1: common α, i.e., αjk = α q(r; α)
P {Rjk = rjk;α} = e

α∑j<k rjk
1+eα∑j<k rjk

model 2: reparameterise αjk with αj +αk q(r; αj)
denominator is now: exp(∑Jj=1αj(∑Jν=j+1 rjν +∑j−1ν=1 rνj) )
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Some models: q(r ∣y; ψ)
▸ under MNAR assumption: we use α and β to specify ψ

and include dependence on y

general model: one α and β for each comparison q(r ∣y;αjk, βjk)
P {Rjk = rjk∣Yjk = yjk;αjk, βjk} = e(αjk+yjkβjk) rjk

1+eαjk+yjkβjk
βs are interaction parameters; linear dependent; can not be estimated▸ our model: one α and β for each comparison q(r ∣y;αj, βj)
reparameterise αjk with αj +αk and βjk with βj + βk
Estimation:

linear predictors of outcome model ηy are extended to ηy + ηr∣y
apart from that, the procedure remains the same as for the pure outcome

model
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The missing observations model in prefmod

some nonresponse models for missing observations are handled

using further arguments in the pattern model functions

e.g.:

pattPC.fit(obj, nitems, formel = ~1, elim = ~1, resptype = "paircomp",
obj.names = NULL, undec = FALSE, ia = FALSE,
NItest = FALSE, NI = FALSE,
MIScommon = FALSE,
MISalpha = NULL, MISbeta = NULL, pr.it = FALSE)

NItest . . . separate estimation for complete and incomplete patterns
NI . . . large table (crossclassi�cation with NA patterns)
MIScommon . . . �ts a common parameter for NA indicators, i.e., α = αj = αk = . . .
MISalpha . . . speci�cation to �t parameters for NA indicators using αj +αk
MISbeta . . . �ts parameters for MNAR model using βj + βk
MIScommon , MISalpha, MISbeta not available for

pattR.fit() and pattL.fit() yet ♠
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Missing values example: Attitudes towards foreigners

Survey at the Vienna University of Economics, 2010

98 students rated four extreme statements about hypothetical consequences
of migration through a paired comparison experiment

1) crimRate Foreigners increase crime rates
2) position Foreigners take away training positions
3) socBurd Foreigners are a burden for the social welfare system
4) culture Foreigners threaten our culture

● the responses to the six comparisons are coded: (1,0,−1)
1 if in a comparison (jk) item j was preferred

−1 if in a comparison (jk) item k was preferred

0 denotes an undecided response � "can not say "

NA is missing: if the answer was "refuse to say "

Slides 2011 21

Data preparation

> load("../data/immig.RData")
> head(immig)
V12 V13 V23 V14 V24 V34 SEX AGE NAT

1 -1 0 1 -1 1 -1 2 21 Österr
2 1 1 -1 1 0 1 1 26 Österr
3 1 0 -1 NA NA 1 2 22 Österr
4 1 1 -1 1 NA 1 2 21 Österr
5 NA -1 NA NA NA 1 1 22 Slowakei
6 -1 -1 1 0 1 1 2 20 Österr
> immig<-immig[,1:6]

How many missings are in the 6 comparisons? Function: checkMIS()
> names <- c("crimRate", "position", "socBurd", "culture")
> checkMIS(immig, nitems = 4, verbose = TRUE, obj.names = names)
number of missing comparisons:

crimRate position socBurd culture
crimRate 0 10 10 16
position 10 0 14 18
socBurd 10 14 0 17
culture 16 18 17 0
number of missing comparisons for objects:
36 42 41 51
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Various models to �t

How many missings in data?
> table(unlist(immig[,1:6]), useNA="always")
-1 0 1 <NA>
143 124 236 85▸ complete cases CC � remove all patterns with missing values

> cc <- complete.cases(immig) # create index cc
> cc[1:5]
[1] TRUE TRUE FALSE FALSE FALSE
> # use only data where cc = TRUE i.e. complete cases
> icompl <- immig[cc,]▸ �t model for complete cases CC icompl

> mcc <- pattPC.fit(icompl, nitems=4, undec=T)
> wcc <- patt.worth(mcc)
> rownames(wcc)<-c("crimRate","position","socBurd","culture")
> colnames(wcc)<-c("CC")
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> plotworth(wcc, ylab = "estimated worth")
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Pattern models including missing values▸ two approaches to estimate outcome model f(y;λ)
MCAR � 1st approach:

● consider outcome model f(y;λ) only � no modelling of q(r∣α)
(the parameters of the outcome model are the λs which include item param-
eters and may be undecided-term(s), interaction terms, subject covariates)

� possible as under MCAR outcome and nonresponse model are independent

� estimation of outcome model (using composite link) is based on the
# of di�erent missing patterns given in the data

� can use small table: only as many blocks as there are di�erent observed
missing patterns and no table for rjk default option: NI = F

example:

> mn<-pattPC.fit(immig, nitems=4, undec=T)

deviance of mn is 537.5247

● this is the already known speci�cation (and what is done by prefmod in case

missing values are present in the data)
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MCAR � 2nd approach:

estimate outcome model f(y;λ) and nonresponse model q(r;α) simultanously

� estimation based on big table
# all possible blocks × # possible patterns = 2#comp ×#resp.cat.#comp▸ no αs � reference model option: NI = T

> mn0 <- pattPC.fit(immig, nitems = 4, undec = T, NI = T)

deviance of mn0 is 1353▸ αs for each object

> mn2<-pattPC.fit(immig, nitems=4, undec=T, MISalpha=c(T,T,T,T))

deviance of mn2 is 1018.533▸ one α � same for all objects

> mn1<-pattPC.fit(immig, nitems=4, undec=T, MIScommon = T)

deviance of mn1 is 1023.391

● in all MCAR models the λ-parameters for the objects are the same because
under MCAR outcome model and nonresponse model are independent (no
β)! (but not in complete cases - model)
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MNAR models � including βs � always 2nd approach is used:▸ αs and βs for each object

> mnbeta <- pattPC.fit(immig, nitems=4, undec=T, MISalpha=c(T,T,T,T),
+ MISbeta=c(T,T,T,T))
deviance of mnbeta is 978.7235

● in MNAR models the λ-parameters might be di�erent to MCAR models

the inclusion of βs can a�ect the λs � the object parameters

● are there not ignorable missing values?

we compare:

model with 4αs: mn2 deviance is 1018.533 and
model with 4αs + 4βs : mnbeta deviance is 978.7235

> d <- (1018.533 - 978.7235)
> 1 - pchisq(d, 4)
[1] 4.74e-08

● there is a signi�cant deviance change � we need β-parameters● in this example missing values are not at random!
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Example (cont'd)
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MNAR models � βs

● estimation problems if there are no missing values for certain objects

use option: checkMIS() in MISalpha and MISbeta

> nam <- c("crimRate","position","socBurd","culture")
> mnbetac <- pattPC.fit(immig, nitems=4, undec=T,
+ MISalpha=checkMIS(immig,nitems=4),
+ MISbeta=checkMIS(immig,nitems=4),
+ obj.names=nam)
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Interpretation of βs

According to the NMAR model:

example: odds for nonresponse in comparison (34) i.e. (socBurd, culture)
exp(2β3 + 2β4) gives the odds ratio of

the odds for NA if socBurd would have been chosen y34 = 1 to
the odds for NA if culture would have been chosen y34 = −1
to be the more likely consequence of migration

> exp(2 * 1.6111 + 2 * -0.7903)
[1] 5.16▸ if someone would have chosen socBurd (compared to culture),

the odds for a nonresponse are 5.16 times higher▸ The inclination not to respond in a given comparison (jk) depends on

the objects involved � it depends on

the response which would have been given
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odds for all comparisons � exp(2βi + 2βj)
consequences if choosen

crimRate position socBurd culture
crimRate1 � 13.14 25.26
position 0.08 � 12.28
socBurd 4.82 9.92 �
culture 0.04 0.08 5.16 �▸ if someone would have chosen position (compared to culture),

the odds for a nonresponse are exp(2 ∗ −0.4636 + 2 ∗ −0.7903) =0.08 times

lower but▸ if someone would have chosen culture (compared to position),

the odds for a nonresponse are 1/exp(2 ∗ −0.4636 +2 ∗ −0.7903) = 12.28 times

higher▸ if someone would have chosen culture (compared to crimRate),

the odds for a nonresponse are 1/exp(2 ∗ −0.8243 +2 ∗ −0.7903) = 25.26 times

higher
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examine log odds: (2βi + 2βj)
> beta <- coef(mnbetac)[8:11]
> # get sum of all combinations of 4 betas
> b<-outer(beta,beta, "+")
> # upper triangle is minus lower triangle on log scale
> b[upper.tri(b)]<- b[upper.tri(b)]*(-1)
> # need to multiply by 2
> b <- b*2
> # diagonal should be 0
> diag(b)<-0
> nam <- c("crime","pos","socB","culture")
> dimnames(b) <- list(nam, nam)
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examine log odds: (cont'd)

> b
crime pos socB culture

crime 0.00 2.58 -1.57 3.23
pos -2.58 0.00 -2.30 2.51
socB 1.57 2.30 0.00 -1.64
culture -3.23 -2.51 1.64 0.00
> # sum of all columns (log odds for NA for item i versus all other items)
> colSums(b)
crime pos socB culture
-4.23 2.36 -2.23 4.10

● for items with positive log odds for NA (position, culture) compared to all
others the λs decrease in MNAR model

● for items with negative log odds for NA (crime, socB) compared to all

others the λs increase in MNAR model
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examine odds: exp(2βi + 2βj)
> odds <- exp(b)
> odds

crime pos socB culture
crime 1.0000 13.1412 0.207 25.262
pos 0.0761 1.0000 0.101 12.278
socB 4.8241 9.9256 1.000 0.194
culture 0.0396 0.0814 5.163 1.000
> # sum of all columns (odds of NA for item i versus all other items)
> colSums(odds)
crime pos socB culture
5.94 24.15 6.47 38.73
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