Paired Comparison Preference Models

The prefmod Package: Day 5

Pattern Models - Missing values - Composite Link
based on:
Missing Observations in Paired Comparison Data
Dittrich, Francis, Hatzinger and Katzenbeisser
to appear in Statistical Modelling

Regina Dittrich \& Reinhold Hatzinger
Institute for Statistics and Mathematics, WU Vienna

What is Composite Link?

example given by Thompson and Baker (1981):
In a sample of 422 people we observe 4 blood groups:
$A=42 \%, A B \sim 2 \%, O=48 \%, B=8 \%$
the blood groups $(A, A B, O, B)$ of the child are determined by alleles (a, o, b) of father and mother
e.g. father allele a and mother allele o gives blood group A

observed table	
group	counts
A	179
AB	6
O	202
B	35

complete table

alleles	father		
mother	a	o	b
a	A	A	AB
o	A	O	B
b	AB	B	B

- we want to estimate the probabilities for p_{a}, p_{o}, p_{b}
(same for mother and father)

We look at patttern (aa), which gives blood group A:

the probability for pattern (aa) is:

$$
p(a a)=p_{a} p_{a}=p_{a}^{2}
$$

the expected number for pattern (aa) is

$$
\begin{aligned}
m_{a a} & =N p_{a}^{2} & & \\
\ln m_{a a} & =\ln N+2 \ln p_{a} & & \log \text { link } \\
& =\mu+2 \beta_{a} & & \text { linear predictor } \eta_{1} \\
m_{a a} & =\exp \left(\mu+2 \beta_{a}\right) & & \text { inverse link }
\end{aligned}
$$

all patterns which give blood group A
(9 possible patterns):

alleles	father		
mother	a	o	b
a	p_{a}^{2}	$p_{o} p_{a}$	
o	$p_{o} p_{a}$		
b			

ℓ	genotype	group	μ	x_{a}	x_{o}	x_{b}	$\operatorname{expected}$ frequency	m_{ℓ}
1	aa	A	1	2	0	0	$\exp \left(\mu+2 \beta_{a}\right)$	$=\exp \left(\eta_{1}\right)$
2	ao	A	1	1	1	0	$\exp \left(\mu+1 \beta_{a}+1 \beta_{o}\right)$	$=\exp \left(\eta_{2}\right)$
3	ab	AB	1	1	0	1		
4	oa	A	1	1	1	0	$\exp \left(\mu+1 \beta_{a}+1 \beta_{o}\right)$	$=\exp \left(\eta_{4}\right)$
5	oo	0	1	0	2	0		
6	ob	B	1	0	1	1		
7	ba	AB	1	1	0	1		
8	bo	B	1	0	1	1		
9	bb	B	1	0	0	2		

$p_{\text {obs }}(A)=p_{\text {compl }}(a a)+p_{\text {compl }}(o a)+p_{\text {compl }}(a o)$
$p(A)=\frac{\exp \left(\mu+2 \beta_{a}\right)+\exp \left(\mu+1 \beta_{a}+1 \beta_{o}\right)+\exp \left(\mu+1 \beta_{a}+1 \beta_{o}\right)}{\sum_{\ell} \exp \left(\mu+x_{a} \beta_{a}+x_{o} \beta_{o}+x_{b} \beta_{b}\right)}$
for estimating $\beta_{a}, \beta_{o}, \beta_{b}$ and to get estimated probabilities for blood groups (A, $A B, O, B$)

- we compose (add up) specific links
- that's where the name composite link comes from

$$
\begin{array}{lr}
p(A)=\frac{\exp \left(\eta_{1}\right)+\exp \left(\eta_{2}\right)+\exp \left(\eta_{4}\right)}{\sum_{\ell} \exp \left(\eta_{\ell}\right)} & p(A B)=\frac{\exp \left(\eta_{3}\right)+\exp \left(\eta_{7}\right)}{\sum_{\ell} \exp \left(\eta_{\ell}\right)} \\
p(0)=\frac{\exp \left(\eta_{5}\right)}{\sum_{\ell} \exp \left(\eta_{\ell}\right)} & p(B)=\frac{\exp \left(\eta_{6}\right)+\exp \left(\eta_{8}\right)+\exp \left(\eta_{9}\right)}{\sum_{\ell} \exp \left(\eta_{\ell}\right)}
\end{array}
$$

How can we fit such a model?

- the data are the counts of the blood groups: $y_{A}, y_{A B}, y_{O}, y_{B}$
> y <- c $(179,6,202,35)$
create design matrix X
> X<-matrix (c
$+1,1,1,1,1,1,1,1,1$,
+ 2,1,1,1,0,0,1,0,0,
+ 0,1,0,1,2,1,0,1,0,
$+0,0,1,0,0,1,1,1,2$
+), $\mathrm{nr}=4, \mathrm{~b}=\mathrm{T})$
> X<-t(X) \#transponieren
mu xa xo xb
$\begin{array}{lllll}\text { aa } & 1 & 2 & 0 & 0\end{array}$
$\begin{array}{lllll}\text { ao } & 1 & 1 & 1 & 0\end{array}$
$\begin{array}{lllll}a b & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}\text { oa } & 1 & 1 & 1 & 0\end{array}$
$\begin{array}{lllll}\text { oo } & 1 & 0 & 2 & 0\end{array}$
$\begin{array}{lllll}\mathrm{ob} & 1 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}\text { ba } & 1 & 1 & 0 & 1\end{array}$
bo $\begin{array}{llll}1 & 0 & 1 & 1\end{array}$
bb $\begin{array}{lllll}1 & 0 & 0 & 2\end{array}$

which elements have to be added up for each blood group ?
we create a vector with 9 elements (\# of all possible patterns)
$>s<-c(1,1,2,1,3,4,2,4,4)$
where the numbers represent the observed groups
1 for $A, 2$ for $A B, 3$ for O and 4 for B
- we fit the model - use package gllm Duffy (2010)

```
> library(gllm)
> res <- gllm(y, s, X[, -1])
> summary(res)
Call:
scoregllm(y = y, s = s, X = X, m = as.array(emgllm(y, s, X, maxit = em.maxit,
    tol = tol)$full.table))
```

No. cells in observed table: 4
No. cells in complete table: 9
Mean observed cell size: 106
Model Deviance (df): 3.17 (1)
Estimate S.E. exp(Estimate) Lower 95\% CL Upper 95\% CL
$\begin{array}{llllll}x a & 1.642 & 0.0686 & 5.17 & 4.52 & 5.91\end{array}$
$\begin{array}{lllll}\text { xo } \quad 2.664 & 0.0344 & 14.35 & 13.41 & 15.35\end{array}$
$\begin{array}{llllll}x b & 0.027 & 0.1539 & 1.03 & 0.76 & 1.39\end{array}$
parameter estimates are e.g. $\beta_{a}=1.64=\ln p_{a}$
by $\exp (\beta) / \sum \exp (\beta)$ (normalising) we get the probabilities for alleles $a, b, 0$

```
> e <- exp(coef(res))
> pr <- e/sum(e)
> names(pr) <- c("pa", "po", "pb")
> round(pr, digits = 2)
    pa po pb
0.25 0.70 0.05
```

25% of mothers (fathers) have allele $a, 70 \%$ allele o and 5% allele b

alleles mother	a	o	father	
a			$p_{a} p_{b}$	$p_{a}=0.25$
o				$p_{o}=0.7$
b	$p_{b} p_{a}$			$p_{b}=0.05$
	p_{a}	p_{o}	p_{b}	

the probability for AB is $2 * p_{a} * p_{b}=2 * 0.25 * 0.05=0.025$
the estimated counts for AB are $p_{A B} * N=\left(2 * p_{a} * p_{b}\right) * 422=10.6$
the fitted values are the expected numbers for the blood groups $A, A B, O, B$

```
> fv <- fitted.values(res)
> names(fv) <- c("A", "AB", "O", "B")
> round(fv, digits = 1)
    A AB 0 B
175.0 10.6 205.9 30.5
```

the observed numbers are:
> names (y) <- c("A", "AB", "O", "B")
$>\mathrm{y}$
A AB D B
179620235
these are the observed counts where we started from

Missing observations in paired comparisons

missing observations can occur for several reasons:
by design, respondent doesn't know, is unwilling, fatigue, etc.
if NA occurs at random - easily handled in LLBT
since $m_{\left(y_{j k}\right)}$ depend only on observed values
but we want to use pattern models for several reasons
how can we take account of incomplete response patterns?

- each different missing pattern gives a different design matrix (smaller than design matrix for non-missing data)
- we have to link the observed patterns (incomplete patterns) with complete patterns (all possible patterns)
\triangleright use composite link

Data structure for patterns y in block [] - no missings

observed y				complete patterns				design η			
y_{12}	y_{13}	y_{23}	(12)	(13)	(23)	μ	x_{1}	x_{2}	x_{3}		
1	1	1	1	1	1	1	2	0	-2		
1	1	-1	1	1	-1	1	2	-2	0		
1	-1	1	1	-1	1	1	0	0	0		
1	-1	-1	1	-1	-1	1	0	-2	2		
-1	1	1	-1	1	1	1	0	2	-2		
-1	1	-1	-1	1	-1	1	0	0	0		
-1	-1	1	-1	-1	1	1	-2	2	0		
-1	-1	-1	-1	-1	-1	1	-2	0	2		

- expected numbers for the patterns y in block []:

$$
\ln m_{y_{[]}}=\mu_{1}+\sum_{j=1}^{J} \lambda_{j}^{O} x_{j}=\eta_{y} \quad m_{y_{[]}}=\exp \left(\eta_{y}\right)
$$

$\ln m_{(1,1,1)}=\mu_{1}+2 \lambda_{1}-2 \lambda_{3}=\eta_{\ell_{(1,1,1)}} \quad m_{(1,1,1)}=\exp \left(\eta_{\ell_{(1,1,1)}}\right)$
$\ln m_{(1,1,-1)}=\mu_{1}+2 \lambda_{1}-2 \lambda_{2}=\eta_{\ell_{(1,1,-1)}} \quad m_{(1,1,-1)}=\exp \left(\eta_{\ell_{(1,1,-1)}}\right)$

Data structure for observed y in block [23] $-y_{23}$ missing

observedy				complete patterns				design η			
y_{12}	y_{13}	y_{23}		(12)	(13)	(23)	μ	x_{1}	x_{2}	x_{3}	
1	1	NA	ℓ_{1}	1	1	1	2	2	0	-2	
			ℓ_{2}	1	1	-1	2	2	-2	0	
1	-1	NA	ℓ_{3}	1	-1	1	2	0	0	0	
			ℓ_{4}	1	-1	-1	2	0	-2	2	
-1	1	NA	ℓ_{5}	-1	1	1	2	0	2	-2	
			ℓ_{6}	-1	1	-1	2	0	0	0	
-1	-1	NA	ℓ_{7}	-1	-1	1	2	-2	2	0	
			ℓ_{8}	-1	-1	-1	2	-2	0	2	

- expected numbers for observed y in block [23]

$$
\begin{gathered}
m_{y_{[23]}}=\exp \left(\eta_{y_{12}, y_{13}, 1}\right)+\exp \left(\eta_{y_{12}, y_{13},-1}\right) \\
\text { we apply composite link }
\end{gathered}
$$

e.g. expected numbers for observed $y_{(1,1, N A)}$

$$
\begin{aligned}
m_{o b s(1,1, N A)} & =\exp \eta_{\ell_{1}}+\exp \eta_{\ell_{2}} \\
& =\exp \left(\mu_{2}+2 \lambda_{1}-2 \lambda_{3}\right)+\exp \left(\mu_{2}+2 \lambda_{1}-2 \lambda_{2}\right)
\end{aligned}
$$

Data structure - including NA patterns

observedy				complete patterns			NA patterns r		
[]	y_{12}	y_{13}	y_{23}	(12)	(13)	(23)	(12)	(13)	(23)
	1	1	1	1	1	1	0	0	0
	1	1	-1	1	1	-1	0	0	0
	1	-1	1	1	-1	1	0	0	0
	1	-1	-1	1	-1	-1	0	0	0
	-1	1	1	-1	1	1	0	0	0
	-1	1	-1	-1	1	-1	0	0	0
	-1	-1	1	-1	-1	1	0	0	0
	-1	-1	-1	-1	-1	-1	0	0	0
block 2	1	1	NA	1	1	1	0	0	1
				1	1	-1	0	0	1
	1	-1	NA	1	-1	1	0	0	1
				1	-1	-1	0	0	1
	-1	1	NA	-1	1	1	0	0	1
				-1	1	-1	0	0	1
	-1	-1	NA	-1	-1	1	0	0	1
				-1	-1	-1	0	0	1

$r_{j k}$ is 1 if comparison $(j k)$ is missing
How many blocks? $\binom{3}{0}+\binom{3}{1}+\binom{3}{2}+\binom{3}{3}=1+3+3+1=8 \quad\left(2^{\# c o m p}\right)$
$\ell=2^{\# c o m p}$ complete patterns in each block (\#resp.categories ${ }^{\# \text { comp }}$) total number of patterns in complete data is therefore $2^{2} \#$ comp $=64$ number of all observable patterns is $3^{\# c o m p}=27$

Modelling missing values

now we model the complete data

- pattern models including NA's have two parts:
- outcome model: which we modelled so far by
$f(y ; \lambda)$ probabilities of outcome model λs are related to y
$\exp \eta_{y} \ldots$ expected numbers in a cell (depend on λ parameters)
- nonresponse model:
$q(r \mid y ; \psi)$ probabilities of nonresponse model ψs are related to r (and y)
$\exp \eta_{r \mid y} \ldots$ expected numbers in a cell (depend on ψ parameters)
- the joint cell probability for the y and r patterns is

$$
P\{y, r ; \lambda, \psi\}=f(y) q(r \mid y)
$$

Modelling missing values (cont'd)

relate the observed data with complete data
cell probabilities for observed data (incomplete data):

$$
\begin{aligned}
P\left\{y_{12}, y_{13}, y_{23} ; \lambda, \psi\right\} & =f\left(y_{12}, y_{13}, y_{23} ; \lambda\right) q\left(0,0,0 \mid y_{12}, y_{13}, y_{23} ; \psi\right) \\
P\left\{y_{12}, y_{13}, \text { NA } ; \lambda, \psi\right\} & \left.\left.=\sum_{y_{23} f\left(y_{12}, y_{13}, y_{23} ; \lambda\right) q\left(0,0,1 \mid y_{12}, y_{13}, y_{23} ; \psi\right)}^{P\left\{y_{12}, \text { NA }, y_{23} ; \lambda, \psi\right\}} \begin{array}{rl}
& =\sum_{y_{13}} f\left(y_{12}, y_{13}, y_{23} ; \lambda\right) q\left(0,1,0 \mid y_{12}, y_{13}, y_{23} ; \psi\right) \\
& \vdots
\end{array}\right) . \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

example $P\left\{y_{12}, y_{13}, \mathrm{NA} ; \lambda, \psi\right\}$:

$$
\begin{aligned}
P\left\{y_{12}, y_{13}, \mathrm{NA} ; \lambda, \psi\right\}=f\left(y_{12}, y_{13}, 1 ; \lambda\right)+ & f\left(y_{12}, y_{13},-1 ; \lambda\right) \\
& \times q\left(0,0,1 \mid y_{12}, y_{13}, y_{23} ; \psi\right)
\end{aligned}
$$

- composite link approach

Missing data mechanisms (Rubin, 1976)

let $y_{\text {complete }}=\left(y_{o b s}, y_{\text {mis }}\right)$ and $r_{j k}$ is NA indicator (if NA: $r_{j k}=1$)
Missing completely at random (MCAR): $\quad q(r ; \psi)$ if the conditional distribution $q(r \mid y ; \psi)$ is independent of y, i.e. $q(r \mid y ; \psi)=q(r ; \psi)$

Missing at random (MAR): $\quad q\left(r \mid y_{o b s} ; \psi\right)$
if the conditional distribution depends on
the observed, but not on the missing values
$q(r \mid y ; \psi)=q\left(r \mid y_{o b s} ; \psi\right)$
Missing not at random (MNAR): $\quad q\left(r \mid y_{o b s}, y_{m i s} ; \psi\right)$
if the conditional distribution depends on both
the observed and the missing values,
$q(r \mid y ; \psi)=q\left(r \mid y_{o b s}, y_{m i s} ; \psi\right)$

Some models: $q(r \mid y ; \psi)$

- under MCAR assumption: we use α to specify ψ general model: one α for each comparison $\quad q\left(r ; \alpha_{j k}\right)$

$$
P\left\{R_{j k}=r_{j k} ; \alpha_{i j}\right\}=\frac{e^{\alpha_{j k} r_{j k}}}{1+e^{\alpha_{j k}}} \quad r_{j k} \in\{0,1\}
$$

probability for a nonresponse for each comparison $-\alpha_{i j}$ can not be estimated model 1: common α, i.e., $\alpha_{j k}=\alpha \quad q(r ; \alpha)$

$$
P\left\{R_{j k}=r_{j k} ; \alpha\right\}=\frac{e^{\alpha \sum_{j<k} r_{j k}}}{1+e^{\alpha \Sigma_{j<k} r_{j k}}}
$$

model 2: reparameterise $\alpha_{j k}$ with $\alpha_{j}+\alpha_{k} \quad q\left(r ; \alpha_{j}\right)$
denominator is now:

$$
\exp \left(\sum_{j=1}^{J} \alpha_{j}\left(\sum_{\nu=j+1}^{J} r_{j \nu}+\sum_{\nu=1}^{j-1} r_{\nu j}\right)\right)
$$

Some models: $q(r \mid y ; \psi)$

- under MNAR assumption: we use α and β to specify ψ and include dependence on y
general model: one α and β for each comparison $\quad q\left(r \mid y ; \alpha_{j k}, \beta_{j k}\right)$

$$
P\left\{R_{j k}=r_{j k} \mid Y_{j k}=y_{j k} ; \alpha_{j k}, \beta_{j k}\right\}=\frac{e^{\left(\alpha_{j k}+y_{j k} \beta_{j k}\right) r_{j k}}}{1+e^{\alpha_{j k}+y_{j k} \beta_{j k}}}
$$

$\beta \mathrm{s}$ are interaction parameters; linear dependent; can not be estimated

- our model: one α and β for each comparison $\quad q\left(r \mid y ; \alpha_{j}, \beta_{j}\right)$ reparameterise $\alpha_{j k}$ with $\alpha_{j}+\alpha_{k}$ and $\beta_{j k}$ with $\beta_{j}+\beta_{k}$

Estimation:

linear predictors of outcome model η_{y} are extended to $\eta_{y}+\eta_{r \mid y}$
apart from that, the procedure remains the same as for the pure outcome model

The missing observations model in prefmod

some nonresponse models for missing observations are handled using further arguments in the pattern model functions

```
e.9.:
    pattPC.fit(obj, nitems, formel = ~1, elim = ~1, resptype = "paircomp",
    obj.names = NULL, undec = FALSE, ia = FALSE,
    NItest = FALSE, NI = FALSE,
    MIScommon = FALSE,
    MISalpha = NULL, MISbeta = NULL, pr.it = FALSE)
NItest ...separate estimation for complete and incomplete patterns
NI ...large table (crossclassification with NA patterns)
MIScommon ... fits a common parameter for NA indicators, i.e., \alpha= 的 = 的 = ...
MISalpha ...specification to fit parameters for NA indicators using \mp@subsup{\alpha}{j}{}+\mp@subsup{\alpha}{k}{}
MISbeta ... fits parameters for MNAR model using }\mp@subsup{\beta}{j}{}+\mp@subsup{\beta}{k}{
MIScommon , MISalpha, MISbeta not available for
pattR.fit() and pattL.fit() yet *
```


Missing values example: Attitudes towards foreigners

Survey at the Vienna University of Economics, 2010

98 students rated four extreme statements about hypothetical consequences of migration through a paired comparison experiment

1) crimRate Foreigners increase crime rates
2) position Foreigners take away training positions
3) socBurd Foreigners are a burden for the social welfare system
4) culture Foreigners threaten our culture

- the responses to the six comparisons are coded: $(1,0,-1)$

1 if in a comparison ($j k$) item j was preferred
-1 if in a comparison ($j k$) item k was preferred
0 denotes an undecided response - "can not say "
NA is missing: if the answer was "refuse to say "

Data preparation

> load("../data/immig.RData")
> head(immig)
V12 V13 V23 V14 V24 V34 SEX AGE NAT

1	-1	0	1	-1	1	-1	2	21	Österr

2	1	1	-1	1	0	1	1	26	Österr

3	1	0	-1	$N A$	$N A$	1	2	22	Österr

4	1	1	-1	1	$N A$	1	2	21	Österr

5 NA -1 NA NA NA $1 \quad 1 \quad 22$ Slowakei

6	-1	-1	1	0	1	1	2	20	Österr

> immig<-immig[,1:6]

How many missings are in the 6 comparisons? Function: checkMIS()
> names <- c("crimRate", "position", "socBurd", "culture")
> checkMIS(immig, nitems $=4$, verbose $=$ TRUE, obj.names $=$ names)
number of missing comparisons:
crimRate position socBurd culture

crimRate	0	10	10	16
position	10	0	14	18
socBurd	10	14	0	17
culture	16	18	17	0

number of missing comparisons for objects:
36424151

Various models to fit

```
How many missings in data?
> table(unlist(immig[,1:6]), useNA="always")
    -1 0 1 <NA>
    143}124236 8
```

- complete cases CC - remove all patterns with missing values
> cc <- complete.cases(immig) \# create index cc
$>c c[1: 5]$
[1] TRUE TRUE FALSE FALSE FALSE
> \# use only data where cc = TRUE i.e. complete cases
> icompl <- immig[cc,]
- fit model for complete cases CC icompl

```
> mcc <- pattPC.fit(icompl, nitems=4, undec=T)
> wcc <- patt.worth(mcc)
> rownames(wcc)<-c("crimRate","position","socBurd","culture")
> colnames(wcc)<-c("CC")
```

> plotworth(wcc, ylab = "estimated worth")
Preferences

Pattern models including missing values

- two approaches to estimate outcome model $f(y ; \lambda)$

MCAR - 1st approach:

- consider outcome model $f(y ; \lambda)$ only - no modelling of $q(r \mid \alpha)$
(the parameters of the outcome model are the λs which include item parameters and may be undecided-term(s), interaction terms, subject covariates)
- possible as under MCAR outcome and nonresponse model are independent
- estimation of outcome model (using composite link) is based on the \# of different missing patterns given in the data
- can use small table: only as many blocks as there are different observed missing patterns and no table for $r_{j k}$ default option: NI $=\mathrm{F}$
example:
> mn<-pattPC.fit(immig, nitems=4, undec=T)
deviance of mn is 537.5247
- this is the already known specification (and what is done by prefmod in case missing values are present in the data)

MCAR - 2nd approach:

estimate outcome model $f(y ; \lambda)$ and nonresponse model $q(r ; \alpha)$ simultanously - estimation based on big table \# all possible blocks $\times \#$ possible patterns $=2^{\# \text { comp }} \times \#$ resp.cat. $\#$ comp

- no α s - reference model option: NI = T
> mnO <- pattPC.fit(immig, nitems = 4, undec = T, NI = T) deviance of mnO is 1353
- α s for each object
> mn2<-pattPC.fit(immig, nitems=4, undec=T, MISalpha=c(T,T,T,T)) deviance of mn 2 is 1018.533
- one α - same for all objects
> mn1<-pattPC.fit(immig, nitems=4, undec=T, MIScommon $=\mathrm{T}$)
deviance of mn 1 is 1023.391
- in all MCAR models the λ-parameters for the objects are the same because under MCAR outcome model and nonresponse model are independent (no β)! (but not in complete cases - model)

MNAR models - including β s - always 2nd approach is used:

- α s and $\beta \mathrm{s}$ for each object

```
> mnbeta <- pattPC.fit(immig, nitems=4, undec=T, MISalpha=c(T,T,T,T),
```

$+\quad$ MISbeta=c(T,T,T,T))
deviance of mnbeta is 978.7235

- in MNAR models the λ-parameters might be different to MCAR models the inclusion of β s can affect the λs - the object parameters
- are there not ignorable missing values?
we compare:
model with $4 \alpha \mathrm{~s}$: mn2 deviance is 1018.533 and model with $4 \alpha \mathrm{~s}+4 \beta \mathrm{~s}:$ mnbeta deviance is 978.7235
$>d<-(1018.533-978.7235)$
> 1 - pchisq(d, 4)
[1] $4.74 \mathrm{e}-08$
- there is a significant deviance change - we need β-parameters
- in this example missing values are not at random!

Example (cont'd)

MNAR models - β s

- estimation problems if there are no missing values for certain objects use option: checkMIS() in MISalpha and MISbeta

```
> nam <- c("crimRate","position","socBurd","culture")
> mnbetac <- pattPC.fit(immig, nitems=4, undec=T,
+ MISalpha=checkMIS(immig,nitems=4),
+ MISbeta=checkMIS(immig,nitems=4),
+ obj.names=nam)
```

 Deviance: 979
 log likelihood: -727
 no of iterations: 35 (Code: 1)
 estinate \(\quad\) 8e \(\quad \begin{array}{r}\text { z P-value }\end{array}\)
 \(\begin{array}{lllll}\text { crimkate } & 0.8826 & 0.117 & 7.549 & 0.0000\end{array}\)
 \(\begin{array}{llllll}\text { position } & 0.0605 & 0.102 & 0.594 & 0.5525\end{array}\)
 \(\begin{array}{lllll}\text { position } & 0.0605 & 0.102 & 0.594 & 0.5525 \\ \text { socBurd } & 0.7463 & 0.109 & 6.819 & 0.0000\end{array}\)
 \(\begin{array}{lllll}\text { mis.alpha1 } & -1.1057 & 0.212 & -5.213 & 0.0000\end{array}\)
 mis.alpha2 \(-1.00720 .213-4.736 \quad 0.0000\)
 mis.alpha3 \(-1.48510 .316-4.6930 .0000\)
 mis.alpha4 \(-0.4054 \quad 0.200-2.024 \quad 0.0430\)
 \(\begin{array}{lllll}\text { mis.alpha4 } & -0.4054 & 0.200 & -2.024 & 0.0430 \\ \text { mis.betal } & -0.8243 & 0.252 & -3.266 & 0.0011\end{array}\)
 \(\begin{array}{lllll}\text { mis.beta2 } & -0.4636 & 0.225 & -2.059 & 0.0395\end{array}\)
 \(\begin{array}{llllll}\text { mis.beta3 } & 1.6111 & 0.321 & 5.026 & 0.0000\end{array}\)
 mis.beta4 \(-0.7903 \quad 0.243-3.256 \quad 0.0011\)
 \(\begin{array}{llllll}\mathrm{U} & -0.2678 & 0.108 & -2.487 & 0.0129\end{array}\)

Interpretation of $\beta \mathbf{s}$

According to the NMAR model:
example: odds for nonresponse in comparison (34) i.e. (socBurd, culture)
$\exp \left(2 \beta_{3}+2 \beta_{4}\right)$ gives the odds ratio of
the odds for NA if socBurd would have been chosen $y_{34}=1$ to the odds for NA if culture would have been chosen $y_{34}=-1$
to be the more likely consequence of migration
$>\exp (2 * 1.6111+2 *-0.7903)$
[1] 5.16

- if someone would have chosen socBurd (compared to culture),
the odds for a nonresponse are 5.16 times higher
- The inclination not to respond in a given comparison ($j k$) depends on
the objects involved - it depends on
the response which would have been given
odds for all comparisons $-\exp \left(2 \beta_{i}+2 \beta_{j}\right)$

consequences	if choosen			
	crimRate	position	socBurd	culture
crimRate1	-	13.14	25.26	
position	0.08	-		12.28
socBurd	4.82	9.92	-	
culture	0.04	0.08	5.16	-

- if someone would have chosen position (compared to culture),
the odds for a nonresponse are $\exp (2 *-0.4636+2 *-0.7903)=0.08$ times lower but
- if someone would have chosen culture (compared to position),
the odds for a nonresponse are $1 / \exp (2 *-0.4636+2 *-0.7903)=12.28$ times higher
- if someone would have chosen culture (compared to crimRate), the odds for a nonresponse are $1 / \exp (2 *-0.8243+2 *-0.7903)=25.26$ times higher
examine log odds: $\left(2 \beta_{i}+2 \beta_{j}\right)$
> beta <- coef(mnbetac) [8:11]
$>$ \# get sum of all combinations of 4 betas
> b<-outer (beta,beta, "+")
> \# upper triangle is minus lower triangle on log scale
> b[upper.tri(b)]<- b[upper.tri(b)]*(-1)
$>$ \# need to multiply by 2
$>\mathrm{b}<-\mathrm{b} * 2$
> \# diagonal should be 0
$>\operatorname{diag}(\mathrm{b})<-0$
> nam <- c("crime", "pos","socB","culture")
> dimnames(b) <- list(nam, nam)

examine log odds: (cont'd)

$>\mathrm{b}$

```
        crime pos socB culture
crime 0.00 2.58 -1.57 3.23
pos -2.58 0.00 -2.30 2.51
socB 1.57 2.30
culture -3.23 -2.51 1.64 0.00
> # sum of all columns (log odds for NA for item i versus all other items)
> colSums(b)
    crime pos socB culture
    -4.23 2.36 -2.23 4.10
```

- for items with positive log odds for NA (position, culture) compared to all others the λs decrease in MNAR model
- for items with negative log odds for NA (crime, socB) compared to all others the λ s increase in MNAR model

examine odds: $\exp \left(2 \beta_{i}+2 \beta_{j}\right)$

```
> odds <- exp(b)
> odds
            crime pos socB culture
crime 1.0000 13.1412 0.207 25.262
pos 0.0761 1.0000 0.101 12.278
socB 4.8241 9.9256 1.000 0.194
culture 0.0396 0.0814 5.163 1.000
> # sum of all columns (odds of NA for item i versus all other items)
> colSums(odds)
    crime pos socB culture
    5.94 24.15 6.47 38.73
```

