Statistik – Einführung

Wahrscheinlichkeitstheorie Kapitel 3

Statistik - WU Wien

Gerhard Derflinger · Michael Hauser · Jörg Lenneis · Josef Leydold · Günter Tirler · Rosmarie Wakolbinger

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.0/58

Lernziele

- 1. Definieren Experimente, Elementarereignisse, Ereignisse, Ereignisraum und Wahrscheinlichkeit.
- 2. Erklären wie Wahrscheinlichkeiten Ereignissen zugeordnet werden.
- 3. Verwenden Kontingenztafel, Venn-Diagramme und Bäume zum Bestimmen von Wahrscheinlichkeiten.
- Beschreiben und verwenden Regeln für Wahrscheinlichkeiten.
- Definieren von Unabhängigkeit und bedingter Wahrscheinlichkeit.

dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einf \ddot{u}hrung \ / \ Wahrscheinlichkeitstheorie \ -3-p.1/58$

Problem

Problem 1

Wie groß ist die Wahrscheinlichkeit, dass beim Werfen einer Münze "Kopf" kommt?

Verwenden Sie eine Skala von

0 ("sicher nicht") bis 1 ("sicher").

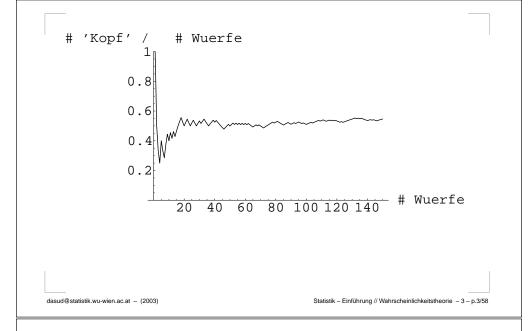
Problem 2:

Werfen Sie nun eine Münze zweimal!

Haben Sie genau einmal "Kopf" und einmal "Zahl" geworfen?

dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung /\!/ \ Wahrscheinlichkeitstheorie \ -3-p.2/58$



Experimente, Ergebnisse und Ereignisse

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.4/58

Experimente

1. (Zufalls-) Experiment

- o Ein Verfahren um eine Beobachtung zu erhalten.
- Spezifikation des Merkmals:
 Was interessiert mich an dem Experiment?
 Was wird beobachtet?

2. Elementarereignis

o Elementares (einfachstes) Ergebnis eines Experiments.

3. Ereignis

o Ein mögliches Ergebnis eines Experiments.

4. Ereignisraum (S)

o Kollektion aller Kombinationen von Ereignissen.

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.5/58

1. Experiment:

Ziehe Spielkarte. Beobachte Farbe und Typ der Karte.

2. Ereignisse:

```
"schwarze Karte", "As", "Herz-König", "Pik", "Bild", "rote 5",
```

- 3. Elementarereignisse: Herz-2, ..., Pik-König, Pik-Ass.
- 4. **Ereignisraum:** Alle möglichen Kombinationen von Karten.

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.6/5

Ergebnisse // Beispiele

Experiment	Beobachtet	Elementarereignisse
Werfen einer Münze	Seite	Zahl, Kopf
Werfen von zwei Münzen	Wurffolge	ZK, KZ, KK, ZZ
Ziehen einer Karte	Farbe & Wert	Pik-2 , Karo-2,
		, Herz-Ass (52)
Ziehen einer Karte	Farbe	rot, schwarz
Fußballspiel	Ausgang	gewinnen, verlieren,
		unentschieden
Kontrolle eines Geräts	Zustand	defekt, in Ordnung
Kunde im Geschäft	Geschlecht	m, w

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.7/58

Ergebnisse // Eigenschaften

Immer nur ein Ergebnis pro Versuch.

Beispiel:

Eine Person kann nur ein Geschlecht besitzen.

Bei jedem Versuch wird stets ein Ergebnis erhalten.

Beispiel:

Beim Werfen einer Münze muss Kopf oder Zahl kommen.

Experiment: Werfen von 2 Münzen. Beobachtet wird Kopf/Zahl.

(Zusammengesetztes)	Menge der zugehörigen
Ereignis	Elementarereignisse
Ereignisraum	KK. KZ. ZK. ZZ

1 Kopf und 1 Zahl KZ, ZK KK, KZ Kopf auf 1. Münze zumindest einmal Kopf KK, KZ, ZK

Kopf auf beiden Münzen ΚK

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.9/58

Ereignisraum

dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung // Wahrscheinlichkeitstheorie \ -3-p.10/58$

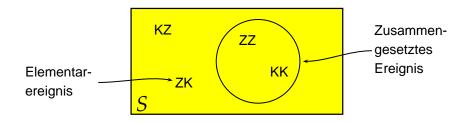
Veranschaulichung des Ereignisraums

- Tabelle oder Liste
- Venn-Diagramm
- Kontingenztafel
- Entscheidungsbaum

dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung // \,Wahrscheinlichkeitstheorie\,-3-p.11/58$

Experiment: Werfen von 2 Münzen. Beobachtet wird Kopf/Zahl.



Ereignisraum: $S = \{KK, KZ, ZK, ZZ\}$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.12/58

Kontingenztafel

Experiment: Werfen von 2 Münzen. Beobachtet wird Kopf/Zahl.

 2. Münze

 Kopf
 Zahl
 Gesamt

 Kopf
 KK
 KZ
 KK, KZ

 Zahl
 ZK
 ZZ
 ZK, ZZ

 Gesamt
 KK, ZK
 KZ, ZZ
 S

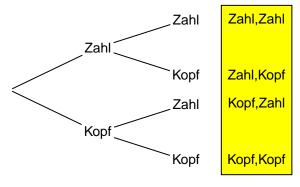
Ereignisraum: $S = \{KK, KZ, ZK, ZZ\}$

dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einf \ddot{u}hrung \ // \ Wahrscheinlichkeitstheorie \ -3-p.13/58$

Entscheidungsbaum

Experiment: Werfen von 2 Münzen. Beobachtet wird Kopf/Zahl.



Ereignisraum S

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie $\,-\,3$ – p.14/58

Zusammengesetzte Ereignisse

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.15/58

Zusammengesetzte Ereignisse

Zusammengesetzte Ereignisse erhält man durch Bildung von

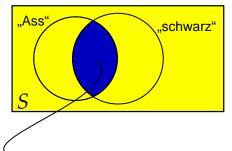
- 1. Durchschnitt
 - Alle Elementarereignisse, die in beiden Ereignissen
 A und B enthalten sind.
 - ∘ Symbol: \cap (d.h., $A \cap B$)
- 2. Vereinigung
 - Alle Elementarereignisse, die in Ereignis
 A oder B enthalten sind.
 - ∘ Symbol: \cup (d.h., $A \cup B$)

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.16/58

Venn Diagramm – Durchschnitt

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.

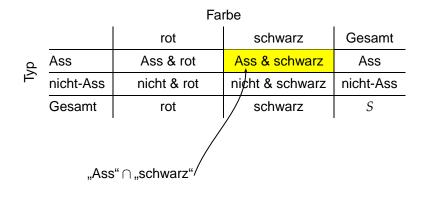


Ereignis: "Ass" ∩ "schwarz" = {Pik-Ass, Treff-Ass}

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.17/58

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.

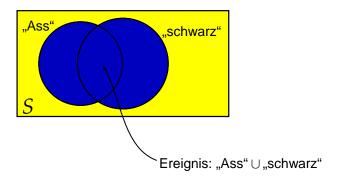


dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.18/58

Venn Diagramm - Vereinigung

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.

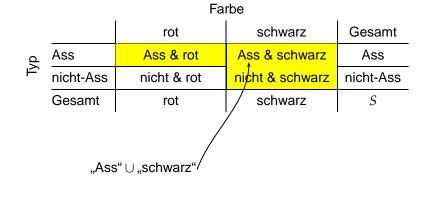


dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung // \ Wahrscheinlichkeitstheorie \ -3-p.19/56$

Tabelle - Vereinigung

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.



dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.20/58

Unmögliches (leeres) Ereignis Ø

Ereignis, das nicht eintreten kann.

Beispiel:

Karte, die sowohl "Ass" als auch "König" zeigt.

Komlementärereignis

Ereignis \bar{A} , das alle Elementarereignisse enthält, die nicht in A vorkommen.

Beispiel:

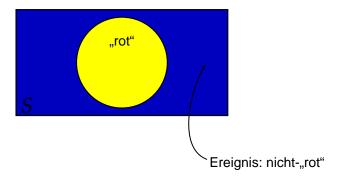
Komplement zu "scharze Karte" ist "rote Karte".

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.21/58

Venn Diagramm - Komplement

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.



dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung // \ Wahrscheinlichkeitstheorie \ -3-p.22/56$

Wahrscheinlichkeit

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.23/58

- 1. Numerisches Maß für die Chance, dass ein Ereignis eintritt
 - o P(Ereignis) Ereignisse werden mit Großbuchstaben, A, B, C, \ldots , bezeichnet.
 - \circ P(A), Probability(A)
- 2. Liegt zwischen 0 (sicher nicht) und 1 (sicher).
- 3. Summe der Wahrscheinlichkeiten aller Elementarereignisse ist 1.

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.24/5

Wahrscheinlichkeiten spezielle Ereignisse

- Unmögliches Ereignis A
 Ereignis mit der Wahrscheinlichkeit 0.
 - $\circ P(A) = 0$
 - o Beispiel: Eichel im französischen Blatt
- Komplementärereignis zu A, Ā
 - $P(\bar{A}) = 1 P(A)$ bzw. $P(A) + P(\bar{A}) = 1$
 - $\circ \ \ \mathsf{Beispiel} \colon A = \{\mathsf{Herz}\}, \, \bar{A} = \{\mathsf{Nicht\ Herz}\}$
- Einander ausschließende Ereignisse A und B
 - $\circ P(A \cap B) = 0$
 - $P(A \cap \bar{A}) = 0$ (Gilt für jede Wahl von A.)
 - \circ Beispiel: $A = \{Pik\}, B = \{Herz\}$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.25/5/

Zuordnung von Wahrscheinlichkeiten

Zuordnen von Wahrscheinlichkeiten zu Ereignissen:

- A priori Methode
- Empirische Methode
- Subjektive Methode

dasud@statistik.wu-wien.ac.at - (2003)

- Struktur des Experiments muß im Vorhinein bekannt sein.
 - Beispiel: Würfeln (idealer Würfel)
 Jede Augenzahl ist gleichwahrscheinlich:

$$P(\{1\}) = P(\{2\}) = \dots = P(\{6\}) = \frac{1}{6}$$

Regel für gleichwahrscheinliche Elementarereignisse:

$$P(\text{Ereignis}) = rac{ ext{Anzahl der günstigen Fälle}}{ ext{Anzahl der möglichen Fälle}} = rac{G}{M}$$

o Beispiel: Würfeln (idealer Würfel)

$$P(\{1\}) = \frac{G}{M} = \frac{1}{6}$$
 $P(\{1,2\}) = \frac{G}{M} = \frac{2}{6}$ $P(\text{Gerade Augenzahl}) = P(\{2,4,6\}) = \frac{G}{M} = \frac{3}{6}$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.27/58

Empirische Methode

- Daten werden bei Experiment gesammelt.
- Auswertung:

$$\frac{P(\text{Ereignis}) = \frac{\text{Anzahl mit Eigenschaft}}{\text{Anzahl der Wiederholungen}} = \frac{X}{N}$$

Beispiel: Ausschußwahrscheinlichkeit
 1000 Teile werden auf Fehler kontrolliert. Es werden 20 defekte Teile festgestellt.

$$P(\text{,defekt"}) = \frac{X}{N} = \frac{20}{1000} = 0.02 = 2\%$$

Annahme: Es gibt keine Änderung der Anteile.

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.28/5

Subjektive Methode

- Die Wahrscheinlichkeit wird vor dem Experiment erhoben.
- Basiert auf individuellem Wissen, Erfahrung.
- Die Antwort unterscheidet sich je nachdem, wen man fragt.

Beispiele:

- Frage an den Experten:
 Wo wird der Aktienmarkt im Dezember stehen?
 P(DAX ≤ 2500) =?
- Frage an den "Mann/Frau von der Straße": Kommt ein Irakkrieg?
 P(Irakkrieg) =?

Welche Methoden sind auf folgende Problemstellungen anzuwenden?

- Werfen einer Münze
- Lotto spielen
- Aktien veranlagen
- Wie groß ist die Wahrscheinlichkeit, dass ein Teilnehmer dieser LV die Note "Gut" bekommt?
- ...

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.30/58

W. für zusammengesetzte Ereignisse

Wahrscheinlichkeiten für zusammengesetzte Ereignisse können folgendermaßen ermittelt werden:

- Aus der Kontingenztafel ablesen
- Formale Methoden
 - o Additionsregel
 - o Bedingte Wahrscheinlichkeiten
 - o Multiplikationsregel

dasud@statistik.wu-wien.ac.at - (2003)

Statistik-Einführung // Wahrscheinlichkeitstheorie -3-p.31/58

Bestimmen von W. mit einer Kontingenztafel

A, B sind Ereignisse aus einem Ereignisraum

	В	Ē	Gesamt
A	$P(A \cap B)$	$P(A \cap \bar{B})$	P(A)
Ā	$P(\bar{A}\cap B)$	$P(\bar{A}\cap \bar{B})$	$ \not P(\bar A) $
Gesamt	P(B)	$P(ar{B})$	/ 1

Gemeinsame Wahrscheinlichkeit

Rändwahrscheinlichkeiten

von A und B

B wird aufgeteilt in $(A \cap B)$ und $(\bar{A} \cap B)$ (einander auschl.), sodass $B = (A \cap B) \cup (\bar{A} \cap B)$,

$$P(B) = P(A \cap B) + P(\bar{A} \cap B).$$

dasud@statistik.wu-wien.ac.at - (2003)

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.

	Fa	rbe		
	rot	schwarz	Gesamt	
Ass	2/52	2/52	4/52	
Nicht Ass	24/52	24/52	48/52	
Gesamt	26/52	26/52	52/52	
P(rot)	P	P(Ass)		

Anzahl der (gleichwahrscheinlichen) Elementarereignisse ist 52.

$$P(\mathrm{Ass}) = \frac{G}{M} = \frac{4 \mathrm{\ g\ddot{u}nstige}}{52 \mathrm{\ m\ddot{o}gliche}} = \frac{4}{52}$$

dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung // \ Wahrscheinlichkeitstheorie \ -3-p.33/58$

Beispiel

Die folgende Tabelle gibt die Anzahl der (gleichwahrscheinlichen) Elementarereignisse zu jedem Ereignis:

	С	Ō	Gesamt
A	4	2	6
Ā	1	3	4
Gesamt	5	5	10

Wieviele Elementarereignisse gibt es insgesamt?

Wie groß sind die folgenden Wahrscheinlichkeiten?

$$P(A) = 6/10$$

$$P(\bar{C}) = 5/10$$

$$P(C \cap \bar{A}) = 1/10$$

$$P(C \cap \bar{A}) = 1/10$$
 $P(A \cap \bar{C}) = 2/10$

$$P(C \cap \bar{C}) = 0$$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.34/58

Additionsregel

● Die **Additionsregel** wird verwendet, um Wahrscheinlichkeiten von Vereinigungen von Ereignissen, $A \cup B$, zu berechnen.

$$P(A \text{ oder } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Für einander ausschließende Ereignisse ($P(A \cap B) = 0$) gilt

$$P(A \text{ oder } B) = P(A \cup B) = P(A) + P(B)$$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.36/5

Additionsregel // Beispiel

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.

Anzahl der Elementarereignisse:

Farbe

		rot	schwarz	Gesamt
Гур	Ass	2	2	4
r	nicht-Ass	24	24	48
	Gesamt	26	26	52

$$P(\text{Ass oder schwarz}) = P(\text{Ass}) + P(\text{schwarz}) - P(\text{Ass} \cap \text{schwarz})$$
$$= \frac{4}{52} + \frac{26}{52} - \frac{2}{52} = \frac{28}{52}$$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Finführung // Wahrscheinlichkeitstheorie – 3 – p.37/5

Additionsregel // Beispiel

Die folgende Tabelle gibt die Anzahl der (gleichwahrscheinlichen) Elementarereignisse zu jedem Ereignis:

	С	Ō	Gesamt
A	4	2	6
Ā	1	3	4
Gesamt	5	5	10

Wie groß sind die folgenden Wahrscheinlichkeiten?

$$P(A \cup \bar{C}) = P(A) + P(\bar{C}) - P(A \cap \bar{C}) = \frac{6}{10} + \frac{5}{10} - \frac{2}{10} = \frac{9}{10}$$

$$P(\bar{A} \cup C) = P(\bar{A}) + P(C) - P(\bar{A} \cap C) = \frac{4}{10} + \frac{5}{10} - \frac{1}{10} = \frac{8}{10}$$

$$P(A \cup \bar{A}) = 1$$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.38/58

Bedingte Wahrscheinlichkeit

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.39/58

Bedingte Wahrscheinlichkeit

- Wahrscheinlichkeit eines Ereignisses, gegeben dass ein anderes Ereignis eingetreten ist.
- Schränkt die Grundgesamtheit auf den Teil ein, der zur neuen Information passt. (Einige Elementarereignisse scheiden aus.)
- Notation und Definition:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Sprechweise:

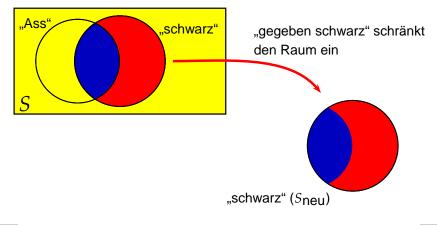
"Wahrscheinlichkeit von A unter der Bedingung B", "Wahrscheinlichkeit von A gegeben B"

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.40/58

Bedingte Wahrsch. // Venn-Diagramm

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.



dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einf \"uhrung // Wahrscheinlichkeitstheorie \ -3-p.41/58$

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.

Anzahl der Elementarereignisse:

	Farbe			
		rot	schwarz	Gesamt
Typ	Ass	2	2	4
r	nicht-Ass	24	24	48
	Gesamt	26	26	52
		•		•

Neuer Raum bei "gegeben schwarz"(Bedingung).

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Finführung // Wahrscheinlichkeitstheorie - 3 - p.42/5

Bedingte Wahrsch. // Tabelle Fs.

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.

Wahrscheinlichkeiten:

	Farbe				
		rot	schwarz	Gesamt	
Тур	Ass		2/26		
₽	nicht-Ass		24/26		
	Gesamt		1		

 $P(\mathsf{Ass}\mid\mathsf{schwarz}) = P(\mathsf{Ass}\cap\mathsf{schwarz})/P(\mathsf{schwarz}) = \frac{2}{26} = \frac{1}{13}.$

 $P(\text{nicht-Ass} \mid \text{schwarz}) = P(\text{nicht-Ass} \cap \text{schwarz})/P(\text{schwarz}) = \frac{24}{26} = \frac{12}{13}.$ Die Wahrscheinlichkeiten addieren sich auf 1.

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.43/5

Statistische Unabhängigkeit

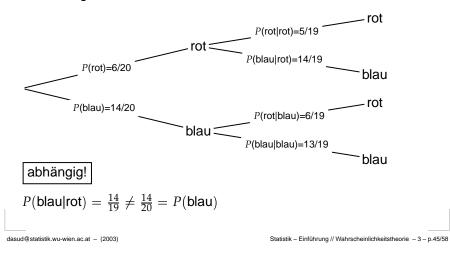
Das Eintreten eines Ereignisses A hat keine Auswirkung auf die Wahrscheinlichkeit des Eintretens eines anderen Ereignisses B.

A und B sind dann (stochastisch) unabhängig.

- Beispiel: Werfen von 2 Münzen
 Das Ergebnis des 2. Wurfs ist vom Ergebnis des 1. Wurfs unabhängig.
- Keine Kausalität!
- Überprüfung, ob A und B unabhängig sind: Es gilt

$$P(A|B) = P(A)$$
 und $P(A \cap B) = P(A) P(B)$

Experiment: Auswählen (ohne Zurücklegen) von 2 aus 20 Kugeln. Sechs Kugeln sind rot, 14 blau.



Statistische Unabhängigkeit // Beispiel

Die folgende Tabelle gibt die Anzahl der (gleichwahrscheinlichen) Elementarereignisse zu jedem Ereignis:

	С	Ō	Gesamt
A	4	2	6
Ā	1	3	4
Gesamt	5	5	10

Berechnen Sie folgende Wahrscheinlichkeiten und stellen sie fest, ob C und \bar{A} unabhängig sind?

$$P(A|\bar{C}) = ?$$

 $P(C|\bar{A}) = ?$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Finführung // Wahrscheinlichkeitstheorie – 3 – p.46/5

Statistische Unabhängigkeit // Lösung

$$P(A|\bar{C}) = \frac{P(A \cap \bar{C})}{P(\bar{C})} = \frac{2/10}{5/10} = \frac{2}{5}$$

$$P(C|\bar{A}) = \frac{P(C \cap \bar{A})}{P(\bar{A})} = \frac{1/10}{4/10} = \frac{1}{4}$$

$$P(C) = \frac{5}{10} \neq \frac{1}{4}$$
 daher nicht unabhängig

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.47/58

Multiplikationsregel

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.48/5

Multiplikationsregel

● Die **Multiplikationsregel** wird verwendet, um Wahrscheinlichkeiten von Durchschnitten von Ereignissen, $A \cap B$, zu berechnen.

$$P(A \text{ und } B) = P(A \cap B) = P(A) P(B|A) = P(B) P(A|B)$$

● Für **unabhängige** Ereignisse, *A*, *B*, gilt

$$P(A \text{ und } B) = P(A \cap B) = P(A) P(B)$$

dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung // \ Wahrscheinlichkeitstheorie \ -3-p.49/58$

Multiplikationsregel // Beispiel

Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe.

Anzahl der Elementarereignisse:

Farbe

		rot	schwarz	Gesamt
Гур	Ass	2	2	4
⊭	nicht-Ass	24	24	48
	Gesamt	26	26	52

$$P(\mathsf{Ass} \ \mathsf{und} \ \mathsf{schwarz}) = P(\mathsf{Ass}) \cdot P(\mathsf{schwarz}|\mathsf{Ass})$$

$$\frac{2}{52} = \frac{4}{52} \cdot \frac{2}{4}$$

 $P(\text{schwarz} \mid \text{Ass}) = P(\text{schwarz})$. Schwarz und Ass sind unabh.!

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.50/58

Die folgende Tabelle gibt die Anzahl der (gleichwahrscheinlichen) Elementarereignisse zu jedem Ereignis:

	С	Ō	Gesamt
A	4	2	6
Ā	1	3	4
Gesamt	5	5	10

Wie groß sind die folgenden Wahrscheinlichkeiten?

$$P(C \cap \bar{A}) = P(C) P(\bar{A}|C) = \frac{5}{10} \cdot \frac{1}{5} = \frac{1}{10}$$

$$P(\bar{A} \cap \bar{C}) = P(\bar{A}) P(\bar{C}|\bar{A}) = \frac{4}{10} \cdot \frac{3}{4} = \frac{3}{10}$$

$$P(A \cap \bar{A}) = 0$$

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Finführung // Wahrscheinlichkeitstheorie - 3 - p.51/5i

Beispiel

Beispiel: Verteilung von Produktbeschwerden

	Grund(G)			
Zeitpunkt(Z)	elektr(e)	mechan(m)	Gehäuse(g)	Gesamt
während	18%	13%	32%	
Garantie(w)				
nach	12%	22%	3%	
Garantie(n)				
Gesamt				

Ergänzen Sie die Tabelle.

dasud@statistik.wu-wien.ac.at - (2003)

Statistik-Einführung // Wahrscheinlichkeitstheorie -3-p.52/58

Beispiel - Fs.

Beispiel: Verteilung von Produktbeschwerden

	Grund(G)			
Zeitpunkt(Z)	elektr(e)	mechan(m)	Gehäuse(g)	Gesamt
während	18%	13%	32%	63%
Garantie(w)				
nach	12%	22%	3%	37%
Garantie(n)				
Gesamt	30%	35%	35%	100%

Bestimmen Sie die Wahrscheinlichkeiten: $P(\{G = e\} \cap \{Z = w\})$,

$$P(Z=w|G=e), \quad P(Z=n|G=e),$$

$$P(Z = w|G = m)$$
, $P(Z = n|G = m)$,

$$P(Z = w | G = g), \quad P(Z = n | G = g).$$
dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung // \ Wahrscheinlichkeitstheorie \ -3-p.53/58$

Beispiel: Verteilung von Produktbeschwerden

	Grund(G)			
Zeitpunkt(Z)	elektr(e)	mechan(m)	Gehäuse(g)	Gesamt
während	18%	13%	32%	63%
Garantie(w)	60%	37%	91%	
nach	12%	22%	3%	37%
Garantie(n)	40%	63%	9%	
Gesamt	30%	35%	35%	100%
	100%	100%	100%	

$$P(G = e \cap Z = w) = 0.18 = 18\%$$

 $P(.|G = e), P(.|G = m), P(.|G = g).$

dasud@statistik.wu-wien.ac.at - (2003)

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.54/58

Beispiel - Fs.

Beispiel: Verteilung von Produktbeschwerden

	Grund(G)			
Zeitpunkt(Z)	elektr(e)	mechan(m)	Gehäuse(g)	Gesamt
während	18%	13%	32%	63%
Garantie(w)				
nach	12%	22%	3%	37%
Garantie(n)				
Gesamt	30%	35%	35%	100%

Wie lauten die bedingten Verteilungen für $\{Z = w\}$ und $\{Z = n\}$:

$$P(G = e|Z = w), \quad P(G = m|Z = w), \quad P(G = g|Z = w),$$

 $P(G = e|Z = n), \quad P(G = m|Z = n), \quad P(G = g|Z = n).$

Statistik-Einführung // Wahrscheinlichkeitstheorie -3-p.55/58

Beispiel - Lösung

Beispiel: Verteilung von Produktbeschwerden

	Grund(G)			
Zeitpunkt(Z)	elektr(e)	mechan(m)	Gehäuse(g)	Gesamt
während	18%	13%	32%	63%
Garantie(w)	28%	21%	51%	100%
nach	12%	22%	3%	37%
Garantie(n)	32%	59%	8%	100%
Gesamt	30%	35%	35%	100%

Hervorgehoben die bedingten Verteilungen für $\{Z=w\}$ und $\{Z=n\}.$

dasud@statistik.wu-wien.ac.at - (2003)

 $Statistik-Einführung // \ Wahrscheinlichkeitstheorie \ -3-p.56/58$

Wie lautet die Verteilung von Zeitpunkt und Grund bei Unabhängigkeit aller Ereignisse (w,n) und (e,m,g)?

		Grund(G)		
Zeitpunkt(Z)	elektr(e)	mechan(m)	Gehäuse(g)	Gesamt
während	18%	13%	32%	63%
Garantie(w)	30*63/100%	35*63/100%	35 *6 3 /100%	
nach	12%	22%	3%	37%
Garantie(n)	30*37/100%	35*37/100%	35 * 37/100%	
Gesamt	30%	35%	35%	100%

$$P(Z = n \cap G = g) =$$
 bei Unabhängigkeit $= P(Z = n) \cdot P(G = g) = \frac{35}{100} \cdot \frac{37}{100} \cdot 100\% = 0.1295 \cdot 100\% = 0.1295\%$ usw.

dasud@statistik.wu-wien.ac.at - (2003)

Statistik - Einführung // Wahrscheinlichkeitstheorie - 3 - p.57/58

Zusammenfassung

- 1. Definierten Experimente, Elementarereignisse, Ereignisse, Ereignisraum und Wahrscheinlichkeit.
- 2. Erklärten wie Wahrscheinlichkeiten Ereignissen zugeordnet werden.
- 3. Verwendeten Kontingenztafel, Venn-Diagramme und Bäume zum Bestimmen von Wahrscheinlichkeiten.
- 4. Beschrieben und verwendeten Regeln die Additions- und Multiplikationsregel.
- 5. Definierten Unabhängigkeit und bedingte Wahrscheinlichkeit.

dasud@statistik.wu-wien.ac.at - (2003)

Statistik – Einführung // Wahrscheinlichkeitstheorie – 3 – p.58/5