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Unusual Data

Leverage, Outlyingness, and Influence

() (b)

@ (a) Outlier not at a high
leverage point and hence

. not influential.
Kos ¥o)
o2 / @ (b) Outlier at a

high-leverage point and
X X hence influential.

© @ (c) In-line at a high
leverage point and hence
not influential.

@ Influence on coefficients
= Leverage x Outlyingness
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Unusual Data
Leverage: Hat-Matrix

@ Recall the linear model, y = X8 + €, the fitted model, y = Xb +-e,
and the least-squares estimates, b = (X'X)~1X'y.

@ The least-squares fitted values are therefore a linear function of the
observed response:

§ = Xb = X(X'X) X'y = Hy

o H = X(X'X)"1X’ is the hat-matrix, so named because it transforms
y into y.
» The hat matrix is symmetric (H = H’) and idempotent (H?> = H)
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Unusual Data

Leverage: Hat-Values

@ The diagonal entries of the hat-matrix h; = h;;, called the hat-values,
are
n
hi=hh =Y W=+ h
Jj=1 J#i
where (because of symmetry) the elements of h; comprise both the
ith row and the ith column of H.

@ This result implies that 0 < h; < 1. If the model matrix X includes
the constant regressor, then 1/n < h; .

@ Because H is a projection matrix, projecting y orthogonally onto the
(k + 1)-dimensional subipace spanned by the columns of X,
Y hi=k+1, and thus h=(k+1)/n.

» Rough rule-of-thumb: Hat-values exceeding 2h or 3h are considered
noteworthy.
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Unusual Data

Leverage: Hat-Values

o Interpretation: Observations with large hat-values are multivariate
outliers in the X-space.

» Contours of constant leverage with two X's:

Xz [ ]

Xy
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Unusual Data
Regression Outliers: Studentized Residuals

@ The least-squares residuals e = {E;} do not have equal variances
even when the errors € = {¢;} do:

V(E) =02(1—h)

» The standardized residuals

E!:L

" SEV1-—h;
are not t-distributed, however.

@ The studentized residuals follow t-distributions with n — k — 2 df
when the model holds:

E
Ef—— =1

" SpaVI—h
where Sg(_j) is the residual standard error computed deleting the ith
observation from the regression.
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Unusual Data

Regression Outliers: Studentized Residuals

@ Bonferroni outlier test:

> Let E,, represent the largest of the |E|.
> Let p’ = Pr( tp—x—2 > Efax)-
» The two-sided Bonferroni p-value for the largest absolute studentized

residuals is then p = 2np’.
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Unusual Data
Influential Observations: DFBETA and DFBETAS

@ The impact on the regression coefficients of omitting observation i:

DFBETA; = —b_;

= (X'X)x,
( ) xll_hi

e Standardizing each entry of DFBETA; by a deleted estimate of the
coefficient standard error produces

DFBETA;
DFBETAS; = —
SE—i(B))
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Unusual Data

Influential Observations: Cook's Distances

@ Cook’s distances summarize the impact on all regression coefficients
of deleting obervation i:Cook’s D; is the F-statistic for testing the
“hypothesis” that B = b_j:

5 _ (b=br))XX(b—b;)

e (k+1)S2
_ =9n) =)
(k+1)S
@ Cook's D can also be written as
E? h;
D; = ! X ’
"OSE(k+1) T (1= hy)?
E,-’2 h;
= X
k+1 1—h
i.e., outlyingness X leverage.
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Unusual Data
Jointly Influential Data

(a) (b)

e Jointly influential
observations can mask
each other's presence, as
in (a).

@ This can happen even if
the points are widely
separated, as in (b).

@ Points can also offset
each other’s influence, as

in (c).
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Unusual Data
Jointly Influential Data: Added-Variable Plots

o Added-variable plots (also called partial-regression plots) can often
detect jointly influential points.

» Added-variable plots show leverage and influence on individual
regression coefficients.

@ To draw the added-variable plot for Xi:
© Regress Y on all of the X's except Xi:

Y, = AW 4 B Xy + -+ BU Xy + v
@ Regress X on all of the other X's:
Xit = € + DXy + -+ + D Xy + X

@ Plot the residuals Yl-(l) against the residuals Xl-(l) to form the
added-variable plot

@ This procedure is repeated for each regressor, including if desired the
constant regressor xo = {1}.
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Unusual Data
Jointly Influential Data: Added-Variable Plots

@ The added-variable plot has the following properties:

© The slope from the least-squares regression of Y™ on X is the
slope B; from the full multiple regression.

@ The residuals from the simple regression of Y1) on X() are the same
as those from the full regression; that is,

vy =B x\V 4+ E

@ The variation of X(!) is the conditional variation of X; holding the
other X's constant.
» Thus, the standard error of By in the auxiliary simple regression

Se

A /ZXI(1)2

is the same as the multiple-regression standard error of Bj.
> Unless X is uncorrelated with the other X’s, its conditional variation is
smaller than its marginal variation ¥(Xi1 — X1)?.

SE(By) =
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Non-Normal Errors
Why Worry?

@ The central-limit theorem suggests that the validity of least-squares
inference is robust with respect to departures from normality, so why
worry about non-normal errors?

» The efficiency of least-squares estimation is not robust when the error
distribution is heavy-tailed.

» Least-squares estimates a conditional mean, which is not a reasonable
summary of the conditional centre of the distribution of Y when the
error distribution is skewed.

» A multi-modal error distributions suggests the omission of a factor
dividing the data into groups.
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Non-Normal Errors

Quantile-Comparison Plot of Residuals

@ To diagnose non-normal errors we can plot the ordered studentized
residuals against the corresponding quantiles of N(0,1) or t,_x_o.

@ Postively skewed residuals can be “corrected” by moving Y down the
ladder of powers and roots—e.g., (for positive Y) to VY, log(Y), or
y-1.

> log is treated as the “Oth” power.

o Negatively skewed residuals (less common) can be “corrected” by
moving Y up the ladder of powers and roots—e.g., to X2 or X3.

@ Heavy-tailed residuals can be dealt with by robust estimation.
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Non-Normal Errors

Parametric-Bootstrap Confidence Envelope

@ The studentized residuals are not independent and have a complex
joint distribution.

O Fit the regression model obtaining fitted values Y; and the estimated
standard error Sg.

@ Construct m samples, each consisting of n simulated Y'-values; for the
Jjth such sample, Y2 = V, + SeZjj, where Zj; is a random draw from

ij
the unit-normal distribution.

© Regress the Y7 on the Xs in the original sample, obtaining simulated

studentized residuals, 1*J 2*J cey E:j.
@ Order the studentized residuals for sample j from smallest to largest,
Ly =@ = (n)ie

@ To construct an estimated (100 — a)% confidence interval for E(*I.),
find the a/2 and 1 — a/2 empirical quantiles of the m simulated
values E*\,, E*.,, ..., EX\ .

(N1 =(0)2 (i)m
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Non-Constant Error Variance
Why Worry?

@ One of the assumptions of the regression model is that the variation
of the response around the regression surface—the error variance—is
everywhere the same:

Vie) = V(Y|xt,...,xx) =02

@ Non-constant error variance is often termed heteroscedasticity;
constant error variance is termed homoscedasticity.

@ The least-squares estimator is unbiased and consistent even when the
error variance is not constant, but:

> The efficiency of the least-squares estimator is impaired.

» The usual formulas for coefficient standard errors are inaccurate.

» Seriousness depends on the degree to which error variances differ, the
sample size, and the configuration of X-values.

Non-Constant Error Variance
Dealing With Non-Constant Error Variance

@ When the error variance increases systematically with the level of Y,
as is often the case, it can often be stabilized by power transformation
down the ladder of powers and roots.

» This pattern can be detected in a plgt of residuals (e.g., studentized
residuals, E") against fitted values, Y;.

» The common heteroscedastic pattern is for the residuals to “fan out”
as the fitted values increase.

@ If the error variance is known up to a constant of proportionality, then
weighted-least-squares (WLS) estimation can be used in place of
ordinary least-squares (OLS).
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Non-Constant Error Variance Nonlinearity
Dealing With Non-Constant Error Variance What Is It?

@ If there is an unknown pattern of estimation then the usual coefficient
standard errors can be replaced by so-called White standard
errors—also called heteroscedasticity-consistant standard errors or
sandwich estimates.

@ Because the data are in general high-dimensional, it is not possible to
check graphically for completely general patterns of non-constant
error variance.
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@ The assumption of linearity in the broad sense is that the average
error, E(€), is everywhere 0

» This implies that the specified regression surface accurately reflects the
dependency of the conditional average value of Y on the X's.

> Violating the assumption of linearity implies that the model fails to
capture the systematic pattern of relationship between the response
and explanatory variables.

» Because the data are high dimensional, it is not generally possible to
check graphically for nonlinearity in the broad sense.

@ Nonlinearity in the narrow sense is the assumption that the partial
relationship between Y and a particular Xj is captured by the term

B.X;.
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Nonlinearity
Inadequacy of Plotting Residuals Against Each X

@ Monotone nonlinearity, as
at the left, can often be
corrected by a power
transformation of X (or
Y or both): e.g.,

Y = A+ Blog(X).

% @ Non-monotone
nonlinearity, as at the
right, requires another
approach: e.g.,

Y = A+ B X+ B X2

@ The residual plots (at the
bottom) do not
distinguish the two cases.

Nonlinearity
Component+Residual Plots

@ Component+residual plots can be used to detect nonlinearity in the
narrow sense.

» These plots are also called partial-residual plots (not to be confused
with partial-regression, i.e., added-variable, plots).

@ The partial residual for the jth explanatory variable is
EY = E + B;X;

@ Then plot EU) versus X;.
» By construction, the multiple-regression coefficient B; is the slope of
the simple linear regression of EU) on X;.
> Nonlinearity may be apparent in the plot as well.
@ One such plot is constructed for each (quantitative) X.
@ Component+residual plots can be generalized to more complex fits,
such as polynomial-regression models, and to models with
interactions.
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Nonlinearity Nonlinearity
What To Do? Mosteller and Tukey's “Bulging Rule”

e Simple monotone nonlinearity: Transform X (or possibly Y).
@ Other strategies:

» Polynomial regression—quadratic, cubic, etc. (but high-degree
polynomials are usually a bad idea).

> Regression splines.

» Binning (categorizing) X.

» Nonparametric regression.
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@ Follow the direction of the
Y up: “bulge” to decide whether
to move up or down the
latter of powers and roots
for X (and/or Y).

@ In multiple regression,
unless there is a common
pattern to all of the
partial relationships, we
generally prefer to

X down: Xup:
log(X), VX Toxz X3

Y down:
Y transform an X.
log(Y)
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Nonlinearity

Simple Monotone Nonlinearity

(a) (b)

@ The bulging rule works for
simple monotone
nonlinearity, as in (a).

@ (b) Monotone but not
simple.

@ (c) Simple but
non-monotone.

Collinearity

Nature of the Problem
@ When the explanatory variables in a regression are very highly
correlated, the regression coefficients are imprecisely estimated.
@ The sampling variance of B; is

2
1 O¢

= X
1-— Rj2 (n— 1)51-2

V(B))

where

> F\’j2 is the squared multiple correlation for the regression of X; on the
other X's;

> (Tg is the error variance;

> nis the sample size;

> 5}.2 = Y(Xj — YJ-)Q/(n — 1) is the variance of X;.

@ The formula reveals the sources of imprecision in regression:
collinearity but also weak relationships, small samples, and
homegenous X's.
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Collinearity

Variance-Inflation Factors

@ The term 1/(1 — RJQ) is called the variance-inflation factor (VIF;).

@ The square-root of the VIF expresses the impact of collinearity on the
coefficient standard error and hence on the width of the confidence
interval for ‘Bj'

@ R; has to get very large before the precision of estimation is seriously
degraded; e.g., for R; = .8,

f—— [ 1

@ Variance-inflation factors can be extended to sets of related regressors
(e.g., sets of dummy regressors or polynomial regressors) by
considering the size of the confidence region for the coefficients.
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