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General Form of the Linear Model General Form of the Linear Model
Model in Matrix Form
@ The general linear model is given by the equation
Yi = By + Byxin + Boxio + - -+ Bixik + € @ For a sample of n observations,
@ Collecting the regressors into a row vector, appending a 1 for the Y1 1 X11 ot Xik By €1
constant, and placing the corresponding parameters in a column Yo 1 Xp1 ot Xok By €
vector, - +
[ :BO ] Yn 1 Xp1 0 Xnk ﬁk €n
B y = X B + €
x1 (n><k+1) k+1x1 (I'IX].)
Y = [1,x1, X2, ..., xi] | B2 | +ei (mx1) (k1)
: @ With suitable specification of the contents of X, called the model
| B, ] matrix, this equation serves not only for multiple regression, but for
= X B +e linear models generally.
(I1xk+1)(k+1x1)
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General Form of the Linear Model

Assumptions of the Linear Model

@ The errors are assumed to be independent and normally distributed
with zero expectation and common variance: € ~ N,(0, 0l,).

@ The distribution of y follows:
Expectation: u = E(y) = E(XB+¢€) = XB + E(e)

= Xﬁ
Covariance Matrix: V(y) = E[(y —u)(y — F‘)l]

= E[(y = XB)(y — XB)'] = E(e€’)
=72,

» Because it is simply a translation of € to a different expectation, y is
also normally distributed: y ~ N,(XB, 021,).
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Estimating the Linear Model

Least-Squares Fit

@ The fitted linear model is
y=Xb+e

@ The least-squares estimates of the coefficients are the solution to the
normal equations
X'Xb = X'y

@ If the model matrix X is of full rank, then

b= (X'X)"'Xy
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Estimating the Linear Model

Distribution of the Least-Squares Coefficients

@ Under the assumptions of the linear model,
b~ Nea[B, o2(X'X) 7]

o Estimating the error variance as Sz = e’e/(n — k — 1), the estimated
covariance matrix of the coefficients is

ee

(xx) "

@ The standard error SE(B;) of the coefficient B; is the square root of
the jth diagonal entry of V(b).
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Inference for Regression Coefficients

Individual Coefficients

o To test the hypothesis Hp: ; = BJ(.O), calculate the test statistic

0
t:%—@)
T SE(B)

comparing the obtained value of ty with the quantiles of t, , 1.

o Likewise, a 100(1 — a)% confidence interval for B, is given by

B; = Bj £ tay2,n-k-15E(B))

where t,/5 ,_x_1 is the critical value of t,_x_; with a probability of
a/2 to the right.
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Inference for Regression Coefficients

Several Coefficients
@ To test Hp: 51:---:‘Bq=0forq§k, fit

@ the full model
Y =P +prxat-+pexkte

with residual sum of squares RSS and
@ the null model

Y =P+ 0x+- - +0xg+Bgixge1+ -+ Ppxx e
=PBo+Bgr1Xg+1+ T Pxk e
with residual sum of squares RSSg.
@ Then, under Hy, the incremental F-statistic

r _ (RSSy —RSS)/q
T RSS/(n—k—1)

is distributed as F with g and n — k — 1 df.
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Inference for Regression Coefficients

Several Coefficients

@ This test statistic can also be written
Fo = b{V by / qS¢

where V13 represents the square submatrix consisting of the entries in
the g rows and g columns of (X’X)~! that pertain to the coefficients
in b1 = [Bl, ey Bq]l.
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Inference for Regression Coefficients

General Linear Hypothesis
@ More generally, to test

Ho: L = c
O(qu+1)(k+lfx1) (gx1)

where L and c contain pre-specified constants, and the hypothesis
matrix L is of full row rank g < k + 1:

(Lb —c) [L(X'X)~IL]71 (Lb —¢)

Fy =
qS%

with g and n— k — 1 df.

@ For example, to test the omnibus null hypothesis Hy: B, = B, = 0 in
the model Y = B, + B;x1 + B,x2, take

0o 1 o0
"_{001]
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Dummy Regression

Dummy Regression Model
@ The model matrices for dummy-regression and analysis-of-variance

models are strongly patterned.

@ A dummy-regression model for a dichotomous factor:
Yi =a+ Bxi +ydi + 5(X,'d,‘) + €

where, e.g., Y is income, x is years of education, and the dummy
regressor d is coded 1 for men and 0 for women.

@ Then:

Women: Y; = a+ BX;+7(0)+d(X;-0) +¢;
= a+BXi+e¢
Men: Y; = Dé—i—IBX,'—I-’)/(].)—f—(S(X;'].)—I-S,'
(@+7)+(B+0)Xi +e
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Dummy Regression
Geometry of the Dummy Regression Model
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Dummy Regression

Dummy Regression in Matrix Form

@ In matrix form:

Yl 1 X1 0 0 €1
: : : : : o
Yn, _ 1 xn 0 0 B n €n,
Yo +1 I Xpm+1 1 Xppn1 Y €n+1
: : : : . 5 .
Y ] | 1 Xn 1 Xn ] | €n |
y=Xpg+e

» To emphasize the pattern of the model matrix, the n; observations for
women (for whom d and hence xd are 0) precede the n — n;
observations for men.
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Dummy Regression
Principle of Marginality

@ Following Nelder (1977), we say that the separate partial effects, or
main effects, of education and gender are marginal to the
education-by-gender interaction.

@ We neither test nor interpret the main effects of explanatory variables
that interact.

@ If we can rule out interaction either on theoretical or on empirical
grounds, then we can proceed to test, estimate, and interpret the
main effects.

@ It is generally not sensible to fit a model that includes an interaction
but omits a main effect marginal to the interaction.
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Dummy Regression
Hypothesis Tests

@ The principle of marginality leads to “Type-II" F-tests:

» To test the null hypothesis Hy: No gender main effect, compare the
model that includes both the gender and education main effects to the
model that includes only the education main effect. The interaction is
absent from both models.

» To test the null hypothesis Hy: No education main effect, compare the
model that includes both the gender and education main effects to the
model that includes only the gender main effect.

» To test the null hypothesis Hy: No gender X education interaction,
compare the full model with the model that includes only the gender
and education main effects (but not the interaction).

» The estimated error variance in the denominator of all F-statistics is
based on the largest model fit to the data (here, the model with both
main effects and interactions).
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Dummy Regression

Polytomous Factors
@ A polytomous factor is represented by a set of dummy regressors, one
fewer than the number of Jevels (categories) of the factor.

> One level, say the first level of an m-level factor, is arbitrarily selected
as the “baseline” level, to which others are compared:

Category | Dy Dy -+ Dp_1
1 0 o - 0
2 1 o - 0
m 0 o - 1

» For example, for a three-level factor:

Category | D1 Dy
Blue-collar 0 0
White-collar 1 0
Professional and Managerial | 0 1
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One-Way Analysis of Variance

@ The over-parametrized one-way analysis-of-variance model:
Yi=u-+a;j+e; forgroupsj=1....m

» Thus the population mean for group j is

u=E(Yj) =pu+a
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Y11 1 1 €11
Ynl,l 1 enl,l
Y12 0 €12
| | M
X1
Y, 2 1 0 €y, 2
1%
Y1 m-1 1 0 €1, m-1
. . am_l .
: X m
Yim1, m—1 0 €np_1,m-1
Ylm 0 €1m
L Ynmvm i L 1 0 enmym
y=Xp+e
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One-Way Analysis of Variance

Producing a Full-Rank Model Matrix by Dummy Coding

@ The model matrix is of rank m, one less than the number of columns,
because the first column of X is the sum of the others.

@ One solution is to delete a column, implicitly setting the
corresponding parameter to 0.

» Deleting the last column of the model matrix, for example, sets
am = 0, establishing the last category as the baseline for a
dummy-coding scheme.
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One-Way Analysis of Variance

Producing a Full-Rank Model Matrix by Deviation Coding [ (;u) (‘xl) (0‘2) e (D‘m—l) |
1 1 0 0
1 0 0
0 1 0
@ Alternatively, imposing the sigma constraint ZJ’-":l «; = 0 on the 1 0 1 0
parameters leads to the following full-rank model matrix Xg, XF = :
composed of deviation-coded regressors: (m>xm) :
1 0 0 1
0 0 1
—1 -1 -1
|1 -1 -1 -1
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One-Way Analysis of Variance One-Way Analysis of Variance
Parametric Equation Parameters as a Function of Group Means

@ The relationship between the group means y = {;uj} and the

: @ By construction, the m X m matrix Xg is of full column rank and
parameters of the constrained model: . . . .
hence non-singular, allowing us to invert Xg and solve uniquely for
fu, ] 1 1 0 --- 01 [ n T the constrained parameters in terms of the group means: B, = Xgly:
oy 1 0 1 - 0 o _ - _ -
; =1 : : : : 3 # #-
; ; : ; : : a0y uy — .
[T 1 0 o - 1 : 02 = | Ko™ K
u, |1 1 -1 -1 -+ =1 | ap-1 | : .
B = Xg B —
(mx1)  (mxm)(mx1) [ &m—1 ] [ Hm—1 — B ]
where m
» Xp is the row basis of the full-rank model matrix, consisting of the m j=1H;
unique rows of Xg, one for each group - m

> Br is the parameter vector associated with the full-rank model matrix.
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Two-Way Analysis of Variance

@ The two-way Anova model.

Yik = WAag+ Pt vt e
wa = E(Yi) =n+aj+ B +vi
where
> for j =1,...,r are the main effects of the row factor
» B for k =1,..., c are the main effects of the column factor

> 7jk are interaction effects
> Hj are population cell means
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Two-Way Analysis of Variance

Absence and Presence of Interaction

@ For the simple case of r = c = 2:

(b) Interaction

(a) No Interaction

Here, e.g., u.1 = (7/‘11 + :u21)/2 is the marginal mean in column 1.
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Two-Way Analysis of Variance

Sigma Constraints

@ Each set of parameters is constrained to sum to zero over (each of)
its coordinates:
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Two-Way Analysis of Variance

Parametric Equation with Sigma Constraints

@ The two-way ANOVA model with interactions, for r = 2 categories of
the row factor and ¢ = 3 categories of the column factor:

[y, 1 1 1 0 1 0][wu
My 1 1 0 1 0 1||m
na | 11 -1 -1 -1 -1 || By
wy | 1 -1 1 0 -1 0] B
Hoo 1 -1 0 1 0 -1 Y11

L Moz 1 -1 -1 —1 1 L] L7

B = Xg B
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Two-Way Analysis of Variance

Parameters as a Function of Cell Means

@ The row basis of the full-rank model matrix is non-singular by
construction, yielding the following solution for the parameters in
terms of the cell means:

Writing Model Formulas in R

@ R implements a version of the Rogers and Wilkinson notation for
linear-models formulas.
» Model formulas, specified as the first argument to 1m(), are of the form

left-hand-side ~ right-hand-side

» On the right-hand side of a model formula the arithmetic operators

" B have special meaning:
o Hy-— M.
Pr | _ | H1— ke
B, U2 — W.. Expression | Interpretation Example
Y11 Pyp — Hq- — H1+ 1. A+ B include both A and B income + education
L Y10 | Hyp — Hq-— M2+ .. ] A-B exclude B from A a*xbxd - a:b:d
A:B all interactions of A and B type:education
where, e.g., . A*B A+ B+ A:B typexeducation
u. = M B %in)% A | B nested within A education %inj% type
j=1k=1 A/B A + B %in% A type/education
A"k all effects crossed up to order k | (a + b + d) "2
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Writing Model Formulas in R

@ To perform arithmetic on the right-hand side of a model formula,
“protect” the expression via a call to the identity function, I(): e.g.,
I(a + b).

» Expression involving a function call, such as log(a + b) do not
require protection.

» On the left-hand side of a formula, the arithmetic operators have their
conventional meaning: e.g., a + b ~ c adds a and b and regresses
their sum on c.

@ Model formulas are used for many other kinds of statistical models in
R, such as generalized linear models fit by glm().
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