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R is free, open-source, cooperatively developed software that implements the S sta-
tistical programming language and computing environment. The current capabilities
of R are extensive, and it is in wide use, especially among statisticians. The sem
package provides basic structural equation modeling facilities in R, including the
ability to fit structural equations in observed variable models by two-stage least
squares, and to fit latent variable models by full information maximum likelihood as-
suming multinormality. This article briefly describes R, and then proceeds to illus-
trate the use of the tsls and sem functions in the sem package. The article also
demonstrates the integration of the sem package with other facilities available in R,
for example for computing polychoric correlations and for bootstrapping.

R (Ihaka & Gentleman, 1996; R Development Core Team, 2005) is a free,
open-source, cooperatively developed implementation of the S statistical program-
ming language and computing environment (Becker, Chambers, & Wilks, 1988;
Chambers, 1998; Chambers & Hastie, 1992).1 Since its introduction in the
mid-1990s, R has rapidly become one of the most widely used facilities for statisti-
cal computing, especially among statisticians, and arguably now has broader cov-
erage of statistical methods than any other statistical software. The basic R system,
with capabilities roughly comparable to (say) a basic installation of SAS, can be
augmented by contributed packages, which now number more than 500. These
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packages, along with the basic R software, are available on the Comprehensive R
Archive Network (CRAN) Web sites, with the main CRAN archive in Vienna (at
http://cran.r-project.org/; see also the R home page, at http://www.r-project.org/).
R runs on all of the major computing platforms, including Linux/UNIX systems,
Microsoft Windows systems, and Macintoshes under OS/X.

This article describes the sem package in R, which provides a basic structural
equation modeling (SEM) facility, including the ability to estimate structural equa-
tions in observed variable models by two-stage least squares (2SLS), and to fit gen-
eral (including latent variable) models by full information maximum likelihood
(FIML) assuming multinormality. There is, in addition, the systemfit package,
not described here, which implements a variety of observed variable structural
equation estimators.

The first section of this article provides a brief introduction to computing in R.
Subsequent sections describe the use of the tsls function for 2SLS estimation
and the sem function for fitting general structural equation models. A concluding
section suggests possible future directions for the sem package.

BACKGROUND: A BRIEF INTRODUCTION TO R

It is not possible within the confines of this article to give more than a cursory in-
troduction to R. The purpose of this section is to provide some background and ori-
enting information. Beyond that, R comes with a complete set of manuals, includ-
ing a good introductory manual; other documentation is available on the R Web
site and in a number of books (e.g., Fox, 2002; Venables & Ripley, 2002). R also
has an extensive online help system, reachable through the help command, ? op-
erator, and some other commands, such as help.search.

Although one can build graphical interfaces to R—for example, the Rcmdr (“R
Commander”) package provides a basic statistics graphical-user interface—R is
fundamentally a command-driven system. The user interacts with the R interpreter
either directly at a command prompt in the R console or through a programming
editor; the Windows version of R incorporates a simple script editor.

Figure 1 shows the main R window as it appears at start-up on a Microsoft Win-
dows XP system. The greater than (>) symbol to the left of the block cursor in the R
console is the command prompt; commands entered at the prompt are statements
in the S language, and may include mathematical and other expressions to be eval-
uated along with function calls.

The following are some examples of simple R commands:

> 1 + 2*3^2 # an arithmetic expression
[1] 19

> c(1, 2, 3)*2 # vectorized arithmetic
[1] 2 4 6
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> 2:5 # the sequence operator
[1] 2 3 4 5

> (2:5)/c(2, 2, 3, 3)
[1] 1.000000 1.500000 1.333333 1.666667

> x <- rnorm(1:10) # random normal numbers
> x # print x
[1]  0.7115833  1.4496708 0.2819413  0.9289971 1.1364372 0.6987258
[7] -2.2418103 -0.2712084 0.1998054 -1.1573525

> mean(x)
[1] 0.1736790

> mean(rnorm(100))
[1] -0.2394827

• The first command is an arithmetic expression representing 1 + 2 × 32; the
normal precedence of arithmetic operators applies, and so exponentiation precedes
multiplication, which precedes addition. The spaces in the command are optional,
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FIGURE 1 The Windows version of R at start-up, showing the main R window and the
R console.



and are meant to clarify the expression. The pound sign (#) is a comment charac-
ter: Everything to its right is ignored by the R interpreter.

• The second command illustrates vectorized arithmetic, in which each ele-
ment of a three-element vector is multiplied by 2; here c is the combine function,
which constructs a vector from its arguments. As is general in S, the arguments to
the c function are specified in parentheses and are separated by commas; argu-
ments may be specified by position or by (abbreviated) name, in which case they
need not appear in order. In many commands, some arguments have default values
and therefore need not be specified explicitly.

• In the third command, the sequence operator (:) is used to generate a vector of
consecutive integers, and in the following command, this vector is divided by a
vector of the same length, with the operation performed element-wise on corre-
sponding entries of the two vectors. As here, parentheses may be used to clarify ex-
pressions, or to alter the normal order of evaluation.

• In the next command, the rnorm function is called with the argument 10 to
sample 10 pseudo-random numbers from the standard normal distribution; the re-
sult is assigned to a variable named x. Enter ?rnorm or help(rnorm) at the
command prompt to see the help page for the rnorm function. The symbol <-,
composed of a less than sign and a hyphen, is the assignment operator; an equals
sign (=) may also be used for assignment. Variables (and other objects) in R can
have names of arbitrary length, composed of uppercase and lowercase letters, nu-
merals, underscores, and periods, but must start with a letter or a period; nonstan-
dard names incorporating other characters are supported, but are less convenient. R
is case-sensitive, and so, for example, the names x and X are distinguished.

• Notice that nothing is printed following an assignment. Subsequently typing
the name of the variable x prints its contents. The number in square brackets at the
start of each line of output gives the index of the first element displayed in the line.

• In the next command, the mean function is used to calculate the average of
the entries in x.

• The final preliminary example shows how the result of one function (100 ran-
dom normal values returned by rnorm) can be passed as an argument to another
function (mean). This style is common in formulating S commands.

Data can be input into R from many different sources: entered directly at the key-
board, read from plain-text files in a variety of formats, imported from other statisti-
cal packages and spreadsheet programs, read from database management systems,
and so on. Case-by-variable data sets can be stored in data frame objects, which are
analogous to internal data sets in statistical packages such as SAS or SPSS.

R also supports many different kinds of data structures (e.g., vectors, matrices,
arrays, lists, and objects created in two object-oriented programming systems) and
types (e.g., numeric, character, and logical data). Indeed, an advantage of working
in a statistical computing environment, as opposed to a traditional statistical pack-
age, is that in the former data are flexibly manipulable by the user, both directly
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and through programs. Moreover, the functions (programs) that the user writes are
syntactically indistinguishable from the functions provided with R.

Related sets of functions, data, and documentation can be collected into R pack-
ages, and either maintained for private use or contributed to CRAN. The sophisti-
cated tools provided for writing, maintaining, building, and checking packages are
one of the strengths of R.

2SLS ESTIMATION OF OBSERVED VARIABLE MODELS

The tsls function in the sem package fits structural equations by two-stage least
squares (2SLS) using the general S “formula” interface. S model formulas imple-
ment a variant of Wilkinson and Rogers’s (1973) notation for linear models; for-
mulas are used in a wide variety of model-fitting functions in R (e.g., the basic lm
and glm functions for fitting linear and generalized linear models, respectively).

2SLS estimation is illustrated using a classical application of SEM in econo-
metrics: Klein’s “Model I” of the U.S. economy (Klein, 1950; see also, e.g.,
Greene, 1993, pp. 581–582). Klein’s data, a time-series data set for the years 1920
to 1941, are included in the data frame Klein in the sem package:

> library(sem)
> data(Klein)
> Klein

Year    C    P Wp I K.lag    X Wg G    T
1  1920 39.8 12.7 28.8  2.7 180.1 44.9 2.2  2.4  3.4
2  1921 41.9 12.4 25.5 -0.2 182.8 45.6 2.7  3.9  7.7
3  1922 45.0 16.9 29.3  1.9 182.6 50.1 2.9  3.2  3.9
. . .
21 1940 65.0 21.1 45.0  3.3 201.2 75.7 8.0  7.4  9.6
22 1941 69.7 23.5 53.3  4.9 204.5 88.4 8.5 13.8 11.6

The library command loads the sem package, and the data command reads
the Klein data set into memory. (The ellipses, … , represent lines elided from the
output.)

Greene (1993, p. 581) wrote Klein’s model as follows:

The last three equations are identities, and do not figure directly in the 2SLS esti-
mation of the model. The variables in the model, again as given by Greene, are C
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(consumption), I (investment), Wp (private wages), Wg (government wages), X
(equilibrium demand), P (private profits), K (capital stock), A (a trend variable, ex-
pressed as year–1931), and G (government nonwage spending). The subscript t in-
dexes observations.

Because the model includes lagged variables that are not directly supplied in the
data set, the observation for the first year, 1920, is effectively lost to estimation.
The lagged variables can be added to the data frame as follows, printing the first
three observations:

> Klein$P.lag <- c(NA, Klein$P[-22])
> Klein$X.lag <- c(NA, Klein$X[-22])
> Klein[1:3,]
Year    C    P Wp I K.lag    X Wg G   T P.lag X.lag

1 1920 39.8 12.7 28.8  2.7 180.1 44.9 2.2 2.4 3.4    NA    NA
2 1921 41.9 12.4 25.5 -0.2 182.8 45.6 2.7 3.9 7.7  12.7  44.9
3 1922 45.0 16.9 29.3  1.9 182.6 50.1 2.9 3.2 3.9  12.4  45.6

In S, NA (not available) represents missing data, and, consistent with standard sta-
tistical notation, a negative subscript, such as -22, drops observations. Square
brackets are used to index objects such as data frames (e.g., Klein[1:3,]), vec-
tors (e.g., Klein$P[-22]), matrices, arrays, and lists. The dollar sign ($) can be
used to index elements of data frames or lists.

The available instrumental variables are the exogenous variables G, T, Wg, A,
and the constant regressor, and the predetermined variables Kt – 1, Pt – 1, and Xt – 1.
Using these instrumental variables, the structural equations can be estimated:

> Klein.eqn1 <- tsls(C ~ P + P.lag + I(Wp + Wg),
+ instruments=~G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag,
+     data=Klein)

> Klein.eqn2 <- tsls(I ~ P + P.lag + K.lag,
+ instruments=~G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag,
+     data=Klein)

> Klein.eqn3 <- tsls(Wp ~ X + X.lag + I(Year - 1931),
+ instruments=~G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag,
+     data=Klein)

• The tsls function returns an object, which, in each case, has been saved in a
variable; forexample,Klein.eqn1 for the first structuralequation.Becauseof the
assignment, no results are printed. We can create a brief printout by entering the
name of the object, or a more complete listing via thesummary function (see later).
If desired, further computation could be performed on the object, such as extracting
residuals or fitted values (via the residuals and fitted.values functions),
or comparing two nested models by an F test (via the anova function). Generic
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functions such as summary, residuals, fitted.values, and anova have
methods for handling tsls objects appropriately. The same generics are used for
other classes of objects, such as linear and generalized linear models.

• We can perform arithmetic operations and function calls within a model for-
mula. Thus I(Wp + Wg) forms a single regressor by summing the two wage vari-
ables; it is necessary to protect this operation with the identify functionI (which re-
turns its argument unchanged) because otherwise an arithmetic operator such as +
would be accorded special meaning in a model formula; specifically,+means add a
term to the model, and therefore, without protection, Wp + Wgwould enter the two
variables into the regression separately. We can read the model formula for Equation
1 as, “RegressConP,P.lag, and the sum ofWp andWc.” Were factors (categorical
predictors) included in the model, R would automatically have generated contrasts
to represent the factors, by default using dummy-coded (0/1) regressors. Interac-
tions, nesting, transformations of variables, etc., can also be specified on the right
side of a model formula, and ordinary arithmetic operations and function calls on the
left side. Unless it is explicitly suppressed (by including -1 on the right side of the
model formula), a constant regressor is included in the model.

• The instruments argument to tsls specifies the instrumental variables
as a one-sided model formula. As in the specification of the structural equation, the
constant variable is automatically included among the instruments.

• When an R command is syntactically incomplete, it is continued to the next
line, as indicated in the listing by the + prompt, which is supplied at the beginning
of each continuation line by the interpreter.

To produce a printed summary for the first structural equation:

> summary(Klein.eqn1)
2SLS Estimates

Model Formula: C ~ P + P.lag + I(Wp + Wg)
Instruments: ~G + T + Wg + I(Year - 1931) + K.lag + P.lag + X.lag

Residuals:
Min.   1st Qu.    Median      Mean  3rd Qu.     Max.

-1.89e+00 -6.16e-01 -2.46e-01 -6.60e-11 8.85e-01 2.00e+00

Estimate Std. Error t value  Pr(>|t|)
(Intercept) 16.55476    1.46798 11.2772 2.587e-09
P            0.01730    0.13120  0.1319 8.966e-01
P.lag        0.21623    0.11922  1.8137 8.741e-02
I(Wp + Wg)   0.81018    0.04474 18.1107 1.505e-12
Residual standard error: 1.1357 on 17 degrees of freedom

To save space, the summaries for Equations 2 and 3 are omitted.
The coefficient estimates are identical to those in Greene (1993), but the coeffi-

cient standard errors differ slightly, because the summary method for tsls ob-
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jects uses residual degrees of freedom (17) rather than the number of observations
(21) to estimate the error variance. To recover Greene’s asymptotic standard errors,
the covariance matrix of the coefficients can be extracted and adjusted, illustrating
a computation on a tsls object:

> sqrt(diag(vcov(Klein.eqn1)*17/21))
(Intercept)           P       P.lag  I(Wp + Wg)
1.32079242  0.11804941  0.10726796  0.04024971

vcov is a generic function that returns a variance–covariance matrix, here for the
tsls objectKlein.eqn1, anddiag extracts the main diagonal of this matrix.

ESTIMATING GENERAL STRUCTURAL
EQUATION MODELS

A Structural Equation Model With Latent Exogenous
and Endogenous Variables

Like Klein’s Model I, Wheaton, Muthén, Alwin, and Summers’s (1977) panel data
on the stability of alienation have been a staple of the SEM literature, making an
appearance, for example, in both the Lisrel manual (Jöreskog & Sörbom, 1989)
and in the documentation for the CALIS procedure in SAS (SAS Institute, 2004).
The path diagram in Figure 2 is for a model fit to the Wheaton et al. data in the
Lisrel manual (Jöreskog & Sörbom, 1989, pp. 169–177). This diagram employs
the usual conventions, representing observed variables by Roman letters enclosed
in rectangles and unobserved variables (including latent variables and errors) by
Greek letters enclosed in ellipses and circles. Directed arrows designate regression
coefficients, and bidirectional arrows signify covariances. The covariances repre-
sented by the two bidirectional arrows with broken lines are not included in an ini-
tial model specified for these data later. The directed arrows are labeled with Greek
letters representing the corresponding regression coefficients.

Anomia and Powerlessness are two subscales of a standard alienation scale,
with data collected on a panel of individuals from rural Illinois in both 1967 and
1971. (In this version of the model, data on these variables from a 1966 wave of the
study are ignored.) Education is measured in years, and SEI represents a socioeco-
nomic index based on the respondent’s occupation. The latent variable SES stands
for socioeconomic status.2
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the literature that specification is retained here.



Using the common Lisrel notation, this model consists of a structural submodel
with two equations for the two latent endogenous variables (Alienation 67 and
Alienation 71), and a measurement submodel with equations for the six indicators
of the latent variables:

Structural submodel

Measurement submodel
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FIGURE 2 Conventional path diagram for Jöreskog and Sörbom’s model for the Wheaton
alienation data. Adapted with permission from Figure 6.5 in Jöreskog and Sörbom (1989, 171).
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In these equations, the variables—observed and unobserved—are expressed
as deviations from their expectations, suppressing the regression constant in
each equation.3 The parameters of the model to be estimated include not just re-
gression coefficients (i.e., structural parameters and factor loadings relating
observed indicators to latent variables), but also the measurement-error vari-
ances, ; the variances of the structural disturbances,

; the variance of the latent exogenous variable, ; and,
in some models considered next, certain measurement-error covariances

. The 1s in the measurement submodel reflect normalizing re-
strictions, establishing the scales of the latent variables.

Internally, the sem function, which is used to fit general structural equation
models in R, employs the recticular action model (RAM) formulation of the
model, due to McArdle (1980) and McArdle and McDonald (1984), and it is there-
fore helpful to understand the structure of this model; the notation used here is
from McDonald and Hartmann (1992).

In the RAM model, the vector v contains indicator variables, directly observed
exogenous variables, and latent exogenous and endogenous variables; the vector u
(which may overlap with v) contains directly observed and latent exogenous vari-
ables, measurement-error variables, and structural-error variables (i.e., the inputs
to the system). Not all classes of variables are present in every model; for example,
there are no directly observed exogenous variables in the Wheaton model.

The v and u vectors are related by the equation v Av u� � , and, therefore, the
matrix A contains regression coefficients (both structural parameters and factor
loadings). For example, for the Wheaton model, we have
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3A model with intercepts can be estimated by the sem function (described later) using a raw (i.e.,
uncorrected) moment matrix of mean sums of squares and cross-products in place of the covariance
matrix among the observed variables in the model. This matrix includes sums of squares and products
with a vector of ones, representing the constant regressor (see, e.g., McArdle & Epstein, 1987). The
raw.moments function in the sem package will compute a raw-moments matrix from a
model formula, numeric data frame, or numeric data matrix. To get correct degrees of freedom, set the
argument raw = TRUE in sem.
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As is typically the case, most of the entries of A are prespecified to be 0, whereas
others are set to 1.

In the RAM formulation, the matrix P contains covariances among the elements
of u. For the Wheaton model:

Once again, as is typically true, the P matrix is very sparse.
Let m represent the number of variables in v, and let the first n entries of v be the

observed variables of the model. Then the m × n selection matrix

picks out the observed variables, where In is an order-n identity matrix and the 0s
are zero matrices of appropriate order. Covariances among the observed variables
are therefore given by

Let S denote the covariances among the observed variables computed directly
from a sample of data. Estimating the parameters of the model—the unconstrained
entries of A and P—entails picking values of the parameters that make C close in
some sense to S. In particular, under the assumption that the latent variables and er-
rors are multinormally distributed, maximum likelihood (ML) estimates of the pa-
rameters minimize the fitting criterion

The sem function minimizes the ML fitting criterion numerically using the
nlm optimizer in R, which employs a Newton-type algorithm;sem by default uses
an analytic gradient, but a numerical gradient may be optionally employed. The
covariance matrix of the parameter estimates is based on the numerical Hessian re-
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turn by nlm. Start values for the parameters may be supplied by the user or are
computed by a slightly modified version of the approach given in McDonald and
Hartmann (1992).

One advantage of the RAM formulation of a structural equation model is that
the elements of the A and P matrices can be read off the path diagram for the
model, with single-headed arrows corresponding to elements of A and dou-
ble-headed arrows to elements of P, taking into account the fact that variances (as
opposed to covariances) of exogenous variables and errors do not appear directly
in the path diagram. To make the variances explicit, it helps to modify the path dia-
gram slightly, as in Figure 3, eliminating the error variables and showing variances
as self-directed double-headed arrows. The names of variables and free parameters
have been replaced with names suitable for specifying the model in R.

Model specification in the sem package is handled most conveniently via the
specify.model function:

> mod.wh.1 <- specify.model()
1:   Alienation67   ->  Anomia67,      NA,      1
2:   Alienation67   ->  Powerless67,   lam1,   NA
3:   Alienation71   ->  Anomia71,      NA,      1
4:   Alienation71   ->  Powerless71,   lam2,   NA
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FIGURE 3 Modified RAM-format path diagram, with variables and parameters labeled for
input to the sem function.



5: SES ->  Education,     NA,      1
6: SES ->  SEI,           lam3,   NA
7:   Alienation67   ->  Alienation71,  beta,   NA
8: SES ->  Alienation67,  gam1,   NA
9: SES ->  Alienation71,  gam2,   NA

10: SES <-> SES,           phi,    NA
11:   Alienation67  <->  Alienation67,  psi1,   NA
12:   Alienation71  <->  Alienation71,  psi2,   NA
13:   Anomia67      <->  Anomia67,      the11,  NA
14:   Powerless67   <->  Powerless67,   the22,  NA
15:   Anomia71      <->  Anomia71,      the33,  NA
16:   Powerless71   <->  Powerless71,   the44,  NA
17:   Education     <->  Education,     thd1,   NA
18:   SEI           <->  SEI,           thd2,   NA
19:
Read 18 records

This specification is largely self-explanatory, but note the following:

• The line-number prompts are supplied by specify.model, which is called here
without any arguments. The entries are terminated by a blank line. The spec-
ify-model function can also read the model specification from a text file.

• There are three entries in each line, separated by commas.
• A single-headed arrow in the first entry indicates a regression coefficient and

corresponds to a single-headed arrow in the path diagram; likewise a dou-
ble-headed arrow represents a variance or covariance and corresponds to a dou-
ble-headed arrow in the modified path diagram in Figure 3 (disregarding for now
the broken arrows labeled the13 and the24 in the diagram).

• The second entry in each line gives the (arbitrary) name of a free parameter to
be estimated. Entering the name NA (missing) indicates that a parameter is to be
fixed to a particular value. Assigning the same name to two or more arrows estab-
lishes an equality constraint between the corresponding parameters. For example,
substituting lam for both lam1 and lam2would imply that these two factor load-
ings are represented by the same parameter and hence are equal.

• The third entry in each line either assigns a value to a fixed parameter or sets a
start value for a free parameter; in the latter case, entering NA causes sem to pick
the start value.

• Finally, a word of caution: A common error in specifying models is to omit
double-headed arrows representing variances of exogenous variables or error vari-
ances.

To estimate the model, the covariance or raw-moment matrix among the ob-
served variables has to be computed. In the case of the Wheaton data, the
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covariances rather than the original data are available, and consequently the
covariance matrix is entered directly:

> S.wh <- matrix(c(
+    11.834,     0,        0,        0,       0,        0,
+     6.947,    9.364,     0,        0,       0,        0,
+     6.819,    5.091,   12.532,     0,       0,        0,
+     4.783,    5.028,    7.495,    9.986,    0,        0,
+    -3.839,   -3.889,   -3.841,   -3.625,   9.610,     0,
+   -21.899,  -18.831,  -21.748,  -18.775,  35.522,  450.288),
+   6, 6, byrow=TRUE)
>
> rownames(S.wh) <- colnames(S.wh) <-
+ c(‘Anomia67’,’Powerless67’,’Anomia71’,’Powerless71’,’Education’,’SEI’)

The covariance matrix has been entered in lower-triangular form: sem will accept a
lower triangular, upper triangular, or symmetric covariance matrix. One can either
assign the names of the observed variables to the rows and columns of the input
covariance matrix, as done here, or pass these names directly to sem; in either
event, variables in the model specification that do not appear in the input
covariance matrix are assumed by sem to be latent variables. One must therefore
be careful in typing these names, because the misspelled name of an observed vari-
able is interpreted as a latent variable, producing an erroneous model.

To estimate the model:

> sem.wh.1 <- sem(mod.wh.1, S.wh, N=932)
> summary(sem.wh.1)

Model Chisquare =  71.47 Df =  6 Pr(>Chisq) = 2.0417e-13
Goodness-of-fit index =  0.97517
Adjusted goodness-of-fit index =  0.91309
RMSEA index =  0.10826   90 % CI: (0.086585, 0.13145)
BIC = 19.695

Normalized Residuals
Min.   1st Qu.   Median      Mean   3rd Qu.     Max.

-1.26e+00 -2.12e-01 -8.35e-05 -1.53e-02 2.44e-01 1.33e+00

Parameter Estimates
Estimate  Std Error z value  Pr(>|z|)

lam1    0.88854  0.043196  20.5699 0.0000e+00 Powerless67 <—- Alienation67

lam2    0.84872  0.041560  20.4215 0.0000e+00 Powerless71 <—- Alienation71

lam3    5.32898  0.430955  12.3655 0.0000e+00 SEI <—- SES

beta    0.70471  0.053393  13.1985 0.0000e+00 Alienation71 <—- Alienation67

gam1   -0.61382  0.056270 -10.9084 0.0000e+00 Alienation67 <—- SES

gam2   -0.17419  0.054244  -3.2113 1.3216e-03 Alienation71 <—- SES

phi     6.66585  0.642394  10.3766 0.0000e+00 SES <—> SES
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psi1    5.30697  0.484105  10.9624 0.0000e+00 Alienation67 <—> Alienation67

psi2    3.74127  0.388844   9.6215 0.0000e+00 Alienation71 <—> Alienation71

the11   4.01554  0.358989  11.1857 0.0000e+00 Anomia67 <—> Anomia67

the22   3.19131  0.283900  11.2410 0.0000e+00 Powerless67 <—> Powerless67

the33   3.70111  0.391894   9.4441 0.0000e+00 Anomia71 <—> Anomia71

the44   3.62481  0.304365  11.9094 0.0000e+00 Powerless71 <—> Powerless71

thd1    2.94419  0.501395   5.8720 4.3057e-09 Education <—> Education

thd2  260.99237 18.278663  14.2785 0.0000e+00 SEI <—> SEI

Iterations = 83

• The first argument to sem is the model-specification object returned by
specify.model.

• The second argument, S.wh, is the input covariance matrix.
• The third argument is the number of observations on which the covariances

are based.
• There are other optional arguments, which are explained in the sem help

page (type ?sem to see it). One other argument is worth mentioning here:
fixed.x takes a vector of quoted names of fixed exogenous variables, ob-
viating the tedious necessity of enumerating the variances and covariances
among these variables in the model specification. In this case, there are no
fixed exogenous variables.

As is typical of R programs, sem returns an object rather than a printed report.
The summary method for sem objects produces the printout shown previously.
One can perform additional computations on sem objects, for example, producing
various kinds of residual covariances or modification indexes4 (e.g., Sörbom,
1989):

> mod.indices(sem.wh.1)

5 largest modification indices, A matrix:
Anomia71:Anomia67    Anomia67:Anomia71 Powerless71:Anomia67

10.378667             9.086581             9.024746
Anomia67:Powerless71 Powerless67:Anomia71

7.712109             7.285830

5 largest modification indices, P matrix:
Anomia71:Anomia67  Powerless71:Anomia67  Anomia71:Powerless67

40.944815             35.377847             32.051155
Powerless71:Powerless67 Education:Powerless67

26.512979              5.878679
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Simply allow the object returned by mod.indices to be printed, which pro-
duces a brief report; the summary method for these objects produces a more
complete report, showing all modification indexes along with approximations to
the estimates that would result were each omitted parameter included in the
model.

Recall that the A matrix contains regression coefficients whereas the P matrix
contains covariances. The modification indexes suggest that a better fit to the data
would be achieved by freeing one or more of the covariances among the measure-
ment errors of the latent endogenous variables; the largest modification index is for
the two anomia measures, corresponding to the broken arrow labeled the13 in
Figure 3. Adding this parameter to the model produces a much better fit (but subse-
quently adding a parameter for the measurement error covariance the24, not
shown, yields little additional improvement):

> mod.wh.2 <- specify.model()
1:    Alienation67   ->   Anomia67,      NA,      1
2:    Alienation67   ->   Powerless67,   lam1,   NA
3:    Alienation71   ->   Anomia71,      NA,      1
4:    Alienation71   ->   Powerless71,   lam2,   NA
5: SES ->   Education,     NA,      1
6: SES ->   SEI,           lam3,   NA
7:    Alienation67   ->   Alienation71,  beta,   NA
8: SES ->   Alienation67,  gam1,   NA
9: SES ->   Alienation71,  gam2,   NA

10: SES <-> SES,           phi,    NA
11:    Alienation67   <->  Alienation67,  psi1,   NA
12:    Alienation71   <->  Alienation71,  psi2,   NA
13:    Anomia67       <->  Anomia67,      the11,  NA
14:    Powerless67    <->  Powerless67,   the22,  NA
15:    Anomia71       <->  Anomia71,      the33,  NA
16:    Powerless71    <->  Powerless71,   the44,  NA
17:    Anomia67       <->  Anomia71,      the13,  NA
18:    Education      <->  Education,     thd1,   NA
19:    SEI            <->  SEI,           thd2,   NA
20:
Read 19 records

> sem.wh.2 <- sem(mod.wh.2, S.wh, 932)
> summary(sem.wh.2)

Model Chisquare =   6.3307 Df =  5 Pr(>Chisq) = 0.27536
Goodness-of-fit index =   0.99773
Adjusted goodness-of-fit  index =  0.99047
RMSEA index =   0.016908   90 % CI: (NA, 0.050905)
BIC = -36.815
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Normalized Residuals
Min.   1st Qu.    Median      Mean  3rd Qu.     Max.

-9.57e-01 -1.34e-01 -4.26e-02 -9.17e-02 1.82e-05 5.46e-01

Parameter Estimates
Estimate Std Error z value  Pr(>|z|)

lam1    1.02653  0.053421  19.2159 0.0000e+00 Powerless67 <—- Alienation67

lam2    0.97092  0.049611  19.5708 0.0000e+00 Powerless71 <—- Alienation71

lam3    5.16275  0.422382  12.2229 0.0000e+00 SEI <—- SES

beta    0.61734  0.049483  12.4759 0.0000e+00 Alienation71 <—- Alienation67

gam1   -0.54975  0.054290 -10.1262 0.0000e+00 Alienation67 <—- SES

gam2   -0.21143  0.049850  -4.2413 2.2220e-05 Alienation71 <—- SES

phi     6.88047  0.659207  10.4375 0.0000e+00 SES <—> SES

psi1    4.70519  0.427546  11.0051 0.0000e+00 Alienation67 <—> Alienation67

psi2    3.86633  0.343950  11.2410 0.0000e+00 Alienation71 <—> Alienation71

the11   5.06528  0.373450  13.5635 0.0000e+00 Anomia67 <—> Anomia67

the22   2.21457  0.319728   6.9264 4.3163e-12 Powerless67 <—> Powerless67

the33   4.81202  0.397357  12.1101 0.0000e+00 Anomia71 <—> Anomia71

the44   2.68302  0.331280   8.0989 4.4409e-16 Powerless71 <—> Powerless71

the13   1.88740  0.241630   7.8111 5.7732e-15 Anomia71 <—> Anomia67

thd1    2.72956  0.517741   5.2721 1.3490e-07 Education <—> Education

thd2  266.89704 18.225397  14.6442 0.0000e+00 SEI <—> SEI

Iterations = 87

Bootstrapping a Simple One-Factor Model
for Ordinal Variables

An advantage of working in an extensive system of statistical software is that one
can leverage other capabilities of the software. In this example, facilities in the
boot package (which is associated with Davidson & Hinkley, 1997, and is part of
the standard R distribution) are used to bootstrap a model fit by sem, and in my
polycor package (a contributed package on CRAN) to compute polychoric cor-
relations among ordinal variables.5 Indeed, the integration of the sem package
with R is more generally advantageous: For example, there are several packages
available for multiple imputation of missing data, and it would be a simple matter
to use these with sem.

The CNES data frame distributed with the sem package includes four variables
from the 1997 Canadian National Election Study (CNES) meant to tap attitude to-
ward “traditional values.” These variables are four-category Likert-type items, and
appear in the data as factors (the S representation of categorical variables), with
levels StronglyDisagree, Disagree, Agree, and StronglyAgree.
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These variables originated as responses to the following statements on the
mail-back component of the election study:

MBSA2: “We should be more tolerant of people who choose to live according to
their own standards, even if they are very different from our own.”
MBSA7: “Newer lifestyles are contributing to the breakdown of our society.”
MBSA8: “The world is always changing and we should adapt our view of moral

behaviour to these changes.”
MBSA9: “This country would have many fewer problems if there were more

emphasis on traditional family values.”

The hetcor function in the polycor package computes heterogeneous cor-
relation matrices among ordinal and numeric variables: the product–moment cor-
relation between two numeric variables, the polychoric correlation between two
factors (assumed to be properly ordered), and the point-polyserial correlation be-
tween a factor and a numeric variable. For the CNES data, for example:

> data(CNES)
> CNES[1:5,] # first 5 observations

MBSA2            MBSA7            MBSA8         MBSA9
1 StronglyAgree Agree         Disagree      Disagree
2         Agree StronglyAgree StronglyDisagree StronglyAgree
3         Agree         Disagree         Disagree         Agree
4 StronglyAgree Agree StronglyDisagree StronglyAgree
5         Agree StronglyDisagree Agree      Disagree

> library(polycor)
> hetcor(CNES, ML=TRUE)

Maximum-Likelihood Estimates

Correlations/Type of Correlation:
MBSA2      MBSA7      MBSA8      MBSA9

MBSA2       1 Polychoric Polychoric Polychoric
MBSA7 -0.3028          1 Polychoric Polychoric
MBSA8  0.2826     -0.344          1 Polychoric
MBSA9 -0.2229     0.5469    -0.3213          1

Standard Errors:
MBSA2   MBSA7  MBSA8

MBSA2
MBSA7 0.02737
MBSA8 0.02773 0.02642
MBSA9 0.02901 0.02193 0.02742

n = 1529
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P-values for Tests of Bivariate Normality:
MBSA2     MBSA7     MBSA8

MBSA2
MBSA7 1.277e-07
MBSA8 1.852e-07 2.631e-23
MBSA9 5.085e-09 2.356e-10 1.500e-19

By default, the hetcor function computes polychoric and polyserial correla-
tions by a relatively quick two-step procedure (see Drasgow, 1986; Olsson, 1979);
specifying the argument ML=TRUE causes hetcor to compute pairwise ML esti-
mates instead; in this instance (and as is typically the case), the two procedures
produce very similar results (see later), so the faster procedure for bootstrapping
was used. The tests of bivariate normality, applied to the contingency table for each
pair of variables, are highly statistically significant, indicating departures from
binormality. Even though a nonparametric bootstrap is employed later, non-
normality suggests that it might not be appropriate to summarize the relations be-
tween the variables with correlations; on the other hand, the sample size (N =
1,529) is fairly large, making these tests quite sensitive.

The hetcor function returns an object with correlations and other informa-
tion, but for fitting and bootstrapping a structural equation model, only the correla-
tion matrix is desired. The following simple function (from the boot.sem help
page), entered at the command prompt, does the trick:

> hcor <- function(data) hetcor(data, std.err=FALSE)$correlations
> R.CNES <- hcor(CNES)
> R.CNES

MBSA2      MBSA7      MBSA8      MBSA9
MBSA2  1.0000000 -0.3017953  0.2820608 -0.2230010
MBSA7 -0.3017953  1.0000000 -0.3422176  0.5449886
MBSA8  0.2820608 -0.3422176  1.0000000 -0.3206524
MBSA9 -0.2230010  0.5449886 -0.3206524  1.0000000

Using sem to fit a one-factor confirmatory factor analysis model to the poly-
choric correlations produces these results:

> model.CNES <- specify.model()
1: F -> MBSA2, lam1, NA
2: F -> MBSA7, lam2, NA
3: F -> MBSA8, lam3, NA
4: F -> MBSA9, lam4, NA
5: F <-> F, NA, 1
6: MBSA2 <-> MBSA2, the1, NA
7: MBSA7 <-> MBSA7, the2, NA
8: MBSA8 <-> MBSA8, the3, NA
9: MBSA9 <-> MBSA9, the4, NA

10:
Read 9 records
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> sem.CNES <- sem(model.CNES, R.CNES, N=1529)
> summary(sem. CNES)

Model Chisquare =  33.211 Df =  2 Pr(>Chisq) = 6.1407e-08
Goodness-of-fit index =  0.98934
Adjusted goodness-of-fit index =  0.94668
RMSEA index =  0.10106   90 % CI: (0.07261, 0.13261)
BIC =  15.774

Normalized Residuals
Min.  1st Qu.   Median     Mean  3rd Qu.     Max.

-1.76e-05 3.00e-02 2.08e-01 8.48e-01 1.04e+00 3.83e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

lam1 -0.38933 0.028901  -13.471 0       MBSA2 <--- F
lam2  0.77792 0.029357   26.498 0       MBSA7 <--- F
lam3 -0.46868 0.028845  -16.248 0       MBSA8 <--- F
lam4  0.68680 0.028409   24.176 0       MBSA9 <--- F
the1  0.84842 0.032900   25.788 0       MBSA2 <--> MBSA2
the2  0.39485 0.034436   11.466 0       MBSA7 <--> MBSA7
the3  0.78033 0.031887   24.472 0       MBSA8 <--> MBSA8
the4  0.52831 0.030737   17.188 0       MBSA9 <--> MBSA9
Iterations = 12

The model fit here is

with ξ represented by F (for factor) in the sem specification of the model.
Using the ML fitting criterion with polychoric correlations produces consistent

estimators of the parameters of the model (e.g., Bollen, 1989, p. 443), but the stan-
dard errors of the estimators cannot be trusted. Consequently, the boot.sem
function is used to compute bootstrap standard errors6:

> system.time(boot.CNES <- boot.sem(CNES, sem.CNES, R=100, cov=hcor),

+ gcFirst=TRUE)

Loading required package: boot

[1] 113.16   0.08 113.77     NA     NA

> summary(boot.CNES, type=“norm”)

Call: boot.sem(data = CNES, model = sem.CNES, R = 100, cov = hcor)
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Lower and upper limits are for the 95 percent norm confidence interval

Estimate         Bias  Std.Error      Lower      Upper

lam1 -0.3893278  0.003473333 0.03203950 -0.4555973 -0.3300048

lam2  0.7779153  0.008113908 0.03728210  0.6967299  0.8428730

lam3 -0.4686838  0.007162961 0.03258827 -0.5397186 -0.4119749

lam4  0.6867992 -0.001208898 0.03160963  0.6260544  0.7499619

the1  0.8484245  0.001675460 0.02456932  0.7985941  0.8949041

the2  0.3948479 -0.014065971 0.05897530  0.2933244  0.5245034

the3  0.7803349  0.005612135 0.03004934  0.7158271  0.8336184

the4  0.5283057  0.000671089 0.04377695  0.4418334  0.6134359

The system.time function was used to time the computation, which took
114 sec on a 3 GHz Windows XP machine; the argument gcFirst=TRUE speci-
fies that “garbage collection” take place just before the command is executed, pro-
ducing a more accurate timing. Notice that boot.sem automatically loads the
boot package. The arguments to boot.sem include the data set to be resampled
(CNES), the sem object for the model (sem.CNES), the number of bootstrap rep-
lications (R=100, which should be sufficient for standard errors and nor-
mal-theory confidence intervals), and the function to be used in computing a
covariance matrix from the resampled data (here, the hcor function). The boot-
strap standard errors are mostly somewhat larger than the standard errors assuming
multinormal numeric variables computed by sem.

FURTHER DEVELOPMENT OF THE sem PACKAGE

The latent variable modeling facility provided by the sem function is relatively ba-
sic compared to special-purpose structural equation software such as AMOS,
EQS, LISREL, or Mplus. One possible future direction for the sem package,
therefore, would be to expand capabilities in areas such as multiple-group models
and alternative fitting functions. Some enhancements—for example, multi-
ple-group model—should be relatively straightforward, whereas others—for ex-
ample, Browne’s (1984) asymptotically distribution-free estimator—would likely
require implementation in compiled code to achieve acceptable levels of perfor-
mance. At present, the sem package is coded entirely in R, but R makes provisions
for the incorporation of portable compiled code in C and Fortran.

A second area in which the sem package could be improved is the user inter-
face: It would be desirable to provide a graphical interface in which the user speci-
fies a model via its path diagram. Currently, the path.diagram function in sem
provides only the inverse facility, producing a description of the path diagram from
a fitted model, which subsequently can be rendered by the graph-drawing program
dot (Gansner, Koutsofios, & North, 2002). Although R provides tools for the con-
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struction of graphical interfaces, making a path-drawing interface feasible, imple-
menting such an interface would be a substantial undertaking.

The specific future trajectory of the sem package, and the rapidity with which it
is developed, will depend on user interest.
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