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Learning Outcomes

▶ Fundamental mathematical methods

Depending on your prior knowledge:

▶ Repetition of mathematical notions and methods.

▶ Learning of new methods.
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Static Analysis of Equilibria

▶ At which price do we have market equilibrium?

Find a price where demand and supply function coincide.

▶ Which amounts of goods have to be produced in a national
economy such that consumers’ needs are satisfied?

Find the inverse of the matrix in a Leontief input-output model.

▶ How can a consumer optimize his or her utility?

Find the absolute maximum of a utility function.

▶ What is the optimal production program for a company?

Find the absolute maximum of a revenue function.

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 3 / 29



Comparative-Statistic Analysis

▶ When market equilibrium is distorted, what happens to the price?

Determine the derivative of the price as a function of time.

▶ What is the marginal production vector when demand changes in a
Leontief model?

Compute the derivative of a vector-valued function.

▶ How does the optimal utility of a consumer change, if income or
prices change?

Compute the derivative of the maximal utility w.r.t. exogenous
parameters.
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Dynamic Analysis

▶ Assume we know the rate of change of a price w.r.t. time.
How does the price evolve?

Solve a difference equation or differential equation, resp.

▶ Which political program optimizes economic growth of a state?

Determine the parameters of a differential equation, such that the
terminal point of a solution curve is maximal.

▶ What is the optimal investment and consumption strategy of a
consumer who wants to maximize her intertemporal utility?

Determine the rate of savings (as a function of time) which
maximizes the sum of discounted consumption.
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Learning Outcomes – Basic Concepts

▶ Linear Algebra:

matrix and vector · matrix algebra · vector space · rank and linear
dependency · inverse matrix · determinant · eigenvalues ·
quadratic form · definiteness and principle minors

▶ Univariate Analysis:

function · graph · one-to-one and onto · limit · continuity ·
differential quotient and derivative · monotonicity · convex and
concave

▶ Multivariate Analysis:

partial derivative · gradient and Jacobian matrix · total differential ·
implicit and inverse function · Hessian matrix · Taylor series
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Learning Outcomes – Optimization

▶ Static Optimization:

local and global extremum · saddle point · convex and concave ·
Lagrange function · Kuhn-Tucker conditions · envelope theorem

▶ Dynamic Analysis:

integration · differential equation · difference equation · stable and
unstable equilibrium point · difference equations · cobweb diagram
· control theory · Hamiltonian and transversality condition
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Course Organization

▶ Course based on slides.
Download for handouts available.

▶ Reading and preparation of new chapters in self-study (handouts).

▶ Presentation of new concepts and examples.

▶ Homework problems.

▶ Discussion of students’ solutions of homework problems.

▶ Short online quizzes in each course unit.

▶ Question time for final test.

▶ Final test.
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Course Material

All information and course materials can be found and downloaded via
the the CANVAS (see Downloads).

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 9 / 29



Literature

▶ ALPHA C. CHIANG, KEVIN WAINWRIGHT

Fundamental Methods of Mathematical Economics
McGraw-Hill, 2005.

▶ KNUT SYDSÆTER, PETER HAMMOND

Essential Mathematics for Economics Analysis
Prentice Hall, 3rd ed., 2008.

▶ KNUT SYDSÆTER, PETER HAMMOND, ATLE SEIERSTAD, ARNE

STRØM

Further Mathematics for Economics Analysis
Prentice Hall, 2005.

▶ JOSEF LEYDOLD

Mathematik für Ökonomen
3. Auflage, Oldenbourg Verlag, München, 2003 (in German).
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Further Exercises

Books from Schaum’s Outline Series (McGraw Hill) offer many example
problems with detailed explanations. In particular:

▶ SEYMOUR LIPSCHUTZ, MARC LIPSON

Linear Algebra, 4th ed., McGraw Hill, 2009.

▶ RICHARD BRONSON

Matrix Operations, 2nd ed., McGraw Hill, 2011.

▶ ELLIOT MENDELSON

Beginning Calculus, 3rd ed., McGraw Hill, 2003.

▶ ROBERT WREDE, MURRAY R. SPIEGEL

Advanced Calculus, 3rd ed., McGraw Hill, 2010.

▶ ELLIOTT MENDELSON

3,000 Solved Problems in Calculus, McGraw Hill, 1988.
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Prerequisites∗

Knowledge about fundamental concepts and tools (like terms, sets,
equations, sequences, limits, univariate functions, derivatives,
integration) is obligatory for this course. These are (should have been)
already known from high school and mathematical courses in your
Bachelor program.

For the case of knowledge gaps we refer to the Bridging Course
Mathematics. A link to learning materials for that course can be found
on the web page.

Some slides still cover these topics and are marked by symbol ∗ in the
title of the slide.
However, we will discuss these slide only on request.
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Prerequisites – Issues∗

The following problems may cause issues:

▶ Drawing (or sketching) of graphs of functions.

▶ Transform equations into equivalent ones.

▶ Handling inequalities.

▶ Correct handling of fractions.

▶ Calculations with exponents and logarithms.

▶ Obstructive multiplying of factors.

▶ Usage of mathematical notation.

Presented “solutions” of such calculation subtasks are surprisingly
often wrong.
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Über die mathematische Methode

Man kann also gar nicht prinzipieller Gegner der
mathematischen Denkformen sein, sonst müßte man das
Denken auf diesem Gebiete überhaupt aufgeben. Was man
meint, wenn man die mathematische Methode ablehnt, ist
vielmehr die höhere Mathematik. Man hilft sich, wo es absolut
nötig ist, lieber mit schematischen Darstellungen und
ähnlichen primitiven Behelfen, als mit der angemessenen
Methode.
Das ist nun aber natürlich unzulässig.

Joseph Schumpeter (1906)

Über die mathematische Methode der theoretischen Ökonomie, Zeitschrift für
Volkswirtschaft, Sozialpolitik und Verwaltung Bd. 15, S. 30–49 (1906).
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About the Mathematical Method

One cannot be an opponent of mathematical forms of thought
as a matter of principle, since otherwise one has to stop
thinking in this field at all. What one means, if someone
refuses the mathematical method, is in fact higher
mathematics. One uses a schematic representation or other
primitive makeshift methods where absolutely required rather
than the appropriate method.
However, this is of course not allowed.

Joseph Schumpeter (1906)

Über die mathematische Methode der theoretischen Ökonomie, Zeitschrift für
Volkswirtschaft, Sozialpolitik und Verwaltung Bd. 15, S. 30–49 (1906).
Translation by JL.
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Science Track

▶ Discuss basics of mathematical reasoning.

▶ Extend our tool box of mathematical methods for static
optimization and dynamic optimization.

▶ For more information see the corresponding web pages for the
courses Mathematics I and Mathematics II.

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 16 / 29



Computer Algebra System (CAS)

Maxima is a so called Computer Algebra System (CAS), i.e., one can
▶ manipulate algebraic expressions,
▶ solve equations,
▶ differentiate and integrate functions symbolically,
▶ perform abstract matrix algebra,
▶ draw graphs of functions in one or two variables,
▶ . . .

wxMaxima is an IDE for this system:

http://wxmaxima.sourceforge.net/

You find an Introduction to Maxima for Economics on the web page of
this course.

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 17 / 29

http://wxmaxima.sourceforge.net/


Table of Contents – I – Propedeutics

Logic, Sets and Maps
Logic
Sets
Basic Set Operations
Maps
Summary

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 18 / 29



Table of Contents – II – Linear Algebra

Matrix Algebra
Prolog
Matrix
Computations with Matrices
Vectors
Epilog
Summary

Linear Equations
System of Linear Equations
Gaussian Elimination
Gauss-Jordan Elimination
Summary

Vector Space
Vector Space
Rank of a Matrix

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 19 / 29



Table of Contents – II – Linear Algebra / 2

Basis and Dimension
Linear Map
Summary

Determinant
Definition and Properties
Computation
Cramer’s Rule
Summary

Eigenvalues
Eigenvalues and Eigenvectors
Diagonalization
Quadratic Forms
Principle Component Analysis
Summary

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 20 / 29



Table of Contents – III – Analysis

Real Functions
Real Functions
Graph of a Function
Bijectivity
Special Functions
Elementary Functions
Multivariate Functions
Indifference Curves
Paths
Generalized Real Functions

Limits
Sequences
Limit of a Sequence
Series
Limit of a Function

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 21 / 29



Table of Contents – III – Analysis / 2

Continuity

Derivatives
Differential Quotient
Derivative
The Differential
Elasticity
Partial Derivatives
Gradient
Directional Derivative
Total Differential
Hessian Matrix
Jacobian Matrix
L’Hôpital’s Rule
Summary

Inverse and Implicit Functions

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 22 / 29



Table of Contents – III – Analysis / 3

Inverse Functions
Implicit Functions
Summary

Taylor Series
Taylor Series
Convergence
Calculations with Taylor Series
Multivariate Functions
Summary

Integration
Antiderivative
Riemann Integral
Fundamental Theorem of Calculus
Improper Integral
Differentiation under the Integral Sign

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 23 / 29



Table of Contents – III – Analysis / 4

Double Integral
Summary

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 24 / 29



Table of Contents – IV – Static Optimization

Convex and Concave
Monotone Functions
Convex Set
Convex and Concave Functions
Univariate Functions
Multivariate Functions
Quasi-Convex and Quasi-Concave
Summary

Extrema
Extrema
Global Extrema
Local Extrema
Multivariate Functions
Envelope Theorem
Summary

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 25 / 29



Table of Contents – IV – Static Optimization / 2

Lagrange Function
Constraint Optimization
Lagrange Approach
Many Variables and Constraints
Global Extrema
Envelope Theorem
Summary

Kuhn Tucker Conditions
Graphical Solution
Optimization with Inequality Constraints
Kuhn-Tucker Conditions
Kuhn-Tucker Theorem
Summary

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 26 / 29



Table of Contents – V – Dynamic Analysis

Differential Equation
A Simple Growth Model
What is a Differential Equation?
Simple Methods
Special Differential Equations
Linear Differential Equation of Second Order
Qualitative Analysis
Summary

Difference Equation
What is a Difference Equation?
Linear Difference Equation of First Order
A Cobweb Model
Linear Difference Equation of Second Order
Qualitative Analysis
Summary

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 27 / 29



Table of Contents – V – Dynamic Analysis / 2

Control Theory
The Standard Problem
Summary

Josef Leydold – Foundations of Mathematics – WS 2024/25 Introduction – 28 / 29



May you do well!

Viel Erfolg!
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Chapter 1

Logic, Sets and Maps
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Proposition

We need some elementary knowledge about logic for doing
mathematics. The central notion is “proposition”.

A proposition is a sentence with is

either true (T) or false (F).

▶ “Vienna is located at river Danube.” is a true proposition.
▶ “Bill Clinton was president of Austria.” is a false proposition.
▶ “19 is a prime number.” is a true proposition.
▶ “This statement is false.” is not a proposition.
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Logical Connectives

We get compound propositions by connecting (simpler) propositions by
using logical connectives.

This is done by means of words “and”, “or”, “not”, or “if . . . then”, known
from everyday language.

Connective Symbol Name

not P ¬P negation

P and Q P ∧Q conjunction

P or Q P ∨Q disjunction

if P then Q P⇒ Q implication

P if and only if Q P⇔ Q equivalence
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Truth Table

Truth values of logical connectives.

P Q ¬P P ∧Q P ∨Q P⇒ Q P⇔ Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Let P = “x is divisible by 2” and Q = “x is divisible by 3”.
Proposition P ∧Q is true if and only if x is divisible by 2 and 3
(i.e., by 6).
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Negation and Disjunction

▶ Negation ¬P is not the “opposite” of proposition P.

Negation of P = “all cats are black”
is ¬P = “Not all cats are black”

(And not “all cats are not black” or even “all cats are white”!)

▶ Disjunction P ∨Q is in a non-exclusive sense:

P ∨Q is true if and only if
▶ P is true, or
▶ Q is true, or
▶ both P and Q are true.
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Implication

The truth value of implication P⇒ Q seems a bit mysterious.

Note that P⇒ Q does not make any proposition about the truth value
of P or Q!

Which of the following propositions is true?
▶ “If Bill Clinton is Austrian citizen, then he can be elected for

Austrian president.”
▶ “If Karl (born 1970) is Austrian citizen, then he can be elected for

Austrian president.”
▶ “If x is a prime number larger than 2, then x is odd.”

Implication P⇒ Q is equivalent to ¬P ∨Q:

(P⇒ Q)⇔ (¬P ∨Q)

Josef Leydold – Foundations of Mathematics – WS 2024/25 1 – Logic, Sets and Maps – 6 / 30



A Simple Logical Proof

We can derive the truth value of proposition (P⇒ Q)⇔ (¬P ∨Q) by
means of a truth table:

P Q ¬P (¬P ∨Q) (P⇒ Q) (P⇒ Q)⇔ (¬P ∨Q)

T T F T T T

T F F F F T

F T T T T T

F F T T T T

That is, proposition (P⇒ Q)⇔ (¬P ∨Q) is always true
independently from the truth values for P and Q.

It is a so called tautology.
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Theorems

Mathematics consists of propositions of the form: P implies Q,
but you never ask whether P is true. (Bertrand Russell)

A mathematical statement (theorem, proposition, lemma, corollary ) is
a proposition of the form P⇒ Q.

P is called a sufficient condition for Q.

A sufficient condition P guarantees that proposition Q is true. However,
Q can be true even if P is false.

Q is called a necessary condition for P, Q⇐ P.

A necessary condition Q must be true to allow P to be true. It does not
guarantee that P is true.

Necessary conditions often are used to find candidates for valid
answers to our problems.
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Quantors

Mathematical texts often use the expressions “for all” and “there exists”,
resp.

In formal notation the following symbols are used:

Quantor Symbol

for all ∀
there exists a ∃
there exists exactly one ∃!
there does not exists ∄
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Set∗

The notion of set is fundamental in modern mathematics.

We use a simple definition from naïve set theory:

A set is a collection of distinct objects.

An object a of a set A is called an element of the set. We write:

a ∈ A

Sets are defined by enumerating or a description of their elements
within curly brackets

{
. . .
}

.

A = {1, 2, 3, 4, 5, 6} B = {x | x is an integer divisible by 2}
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Important Sets∗

Symbol Description

∅ empty set sometimes: {}
N natural numbers {1, 2, 3, . . .}
Z integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Q rational numbers { k

n | k, n ∈ Z, n ̸= 0}
R real numbers

[ a, b ] closed interval {x ∈ R | a ≤ x ≤ b}
( a, b ) open intervala {x ∈ R | a < x < b}
[ a, b ) half-open interval {x ∈ R | a ≤ x < b}
C complex numbers {a + bi | a, b ∈ R, i2 = −1}

aalso: ] a, b [
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Venn Diagram∗

We assume that all sets are subsets of some universal superset Ω.

Sets can be represented by Venn diagrams where Ω is a rectangle
and sets are depicted as circles or ovals.

Ω

A
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Subset and Superset∗

Set A is a subset of B, A ⊆ B , if all elements of A also belong to B,

x ∈ A⇒ x ∈ B.

Ω

B

A ⊆ B

Vice versa, B is then called a superset of A, B ⊇ A .

Set A is a proper subset of B, A ⊂ B (or: A ⫋ B),
if A ⊆ B and A ̸= B.
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Basic Set Operations∗

Symbol Definition Name

A ∩ B {x|x ∈ A and x ∈ B} intersection

A ∪ B {x|x ∈ A or x ∈ B} union

A \ B {x|x ∈ A and x ̸∈ B} set-theoretic differencea

A Ω \ A complement

aalso: A− B

Two sets A and B are disjoint if A ∩ B = ∅.
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Basic Set Operations∗

Ω

A B

A ∩ B

Ω

A B

A ∪ B

Ω

A B

A \ B

Ω

A
A
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Rules for Basic Operations∗

Rule Name

A ∪ A = A ∩ A = A Idempotence

A ∪∅ = A and A ∩∅ = ∅ Identity

(A ∪ B) ∪ C = A ∪ (B ∪ C) and

(A ∩ B) ∩ C = A ∩ (B ∩ C)
Associativity

A ∪ B = B ∪ A and A ∩ B = B ∩ A Commutativity

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
Distributivity

A ∪ A = Ω and A ∩ A = ∅ and A = A

Josef Leydold – Foundations of Mathematics – WS 2024/25 1 – Logic, Sets and Maps – 16 / 30



De Morgan’s Law∗

(A ∪ B) = A ∩ B and (A ∩ B) = A ∪ B

Ω

A B

Ω

A B

A union B complemented is the
equivalent of A complemented
intersected with B complemented.
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Cartesian Product∗

The set

A× B = {(x, y)|x ∈ A, y ∈ B}

is called the Cartesian product of sets A and B.

Given two sets A and B the Cartesian product A× B is the set of all
unique ordered pairs where the first element is from set A and the
second element is from set B.

In general we have A× B ̸= B× A.
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Cartesian Product∗

The Cartesian product of A = {0, 1} and B = {2, 3, 4} is

A× B = {(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)}.

A× B 2 3 4
0 (0, 2) (0, 3) (0, 4)
1 (1, 2) (1, 3) (1, 4)
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Cartesian Product∗

The Cartesian product of A = [2, 4] and B = [1, 3] is

A× B = {(x, y) | x ∈ [2, 4] and y ∈ [1, 3]}.

0 1 2 3 4

1

2

3

A = [2, 4]

B = [1, 3] A × B
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Map∗

A map (or mapping) f is defined by

(i) a domain D f ,

(ii) a codomain (target set) W f and

(iii) a rule, that maps each element of D to exactly one element of W.

f : D →W, x 7→ y = f (x)

▶ x is called the independent variable, y the dependent variable.
▶ y is the image of x, x is the preimage of y.
▶ f (x) is the function term, x is called the argument of f .
▶ f (D) = {y ∈W : y = f (x) for some x ∈ D}

is the image (or range) of f .

Other names: function, transformation
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Injective · Surjective · Bijective∗

Each argument has exactly one image.
Each y ∈W, however, may have any number of preimages.
Thus we can characterize maps by their possible number of preimages.

▶ A map f is called one-to-one (or injective), if each element in the
codomain has at most one preimage.

▶ It is called onto (or surjective), if each element in the codomain
has at least one preimage.

▶ It is called bijective, if it is both one-to-one and onto, i.e., if each
element in the codomain has exactly one preimage.

Injections have the important property

f (x) ̸= f (y) ⇔ x ̸= y
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Injective · Surjective · Bijective∗

Maps can be visualized by means of arrows.

D f W f D f W f D f W f

one-to-one onto one-to-one and onto

(not onto) (not one-to-one) (bijective)
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Function Composition∗

Let f : D f →W f and g : Dg →Wg be functions with W f ⊆ Dg.

Function

g ◦ f : D f →Wg, x 7→ (g ◦ f )(x) = g( f (x))

is called composite function.
(read: “g composed with f ”, “g circle f ”, or “g after f ”)

D f W f ⊆ Dg Wg

f g

g ◦ f
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Inverse Map∗

If f : D f →W f is a bijection, then every y ∈W f can be uniquely
mapped to its preimage x ∈ D f .

Thus we get a map

f−1 : W f → D f , y 7→ x = f−1(y)

which is called the inverse map of f .

We obviously have for all x ∈ D f and y ∈W f ,

f−1( f (x)) = f−1(y) = x and f ( f−1(y)) = f (x) = y .
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Inverse Map∗

D f
W f−1

W f
D f−1

f

f−1
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Identity∗

The most elementary function is the identity map id,
which maps its argument to itself, i.e.,

id : D →W = D, x 7→ x

D

1
2
3
4

W = D

1
2
3
4

id
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Identity∗

The identity map has a similar role for compositions of functions as 1
has for multiplications of numbers:

f ◦ id = f and id ◦ f = f

Moreover,

f−1 ◦ f = id : D f → D f and f ◦ f−1 = id : W f →W f

Josef Leydold – Foundations of Mathematics – WS 2024/25 1 – Logic, Sets and Maps – 28 / 30



Real-valued Functions∗

Maps where domain and codomain are (subsets of) real numbers are
called real-valued functions,

f : R→ R, x 7→ f (x)

and are the most important kind of functions.

The term function is often exclusively used for real-valued maps.

We will discuss such functions in more details later.
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Summary

▶ mathematical logic
▶ theorem
▶ necessary and sufficient condition
▶ sets, subsets and supersets
▶ Venn diagram
▶ basic set operations
▶ de Morgan’s law
▶ Cartesian product
▶ maps
▶ one-to-one and onto
▶ inverse map and identity
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Chapter 2

Matrix Algebra
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A Very Simplistic Leontief Model

A community operates the services PUBLIC TRANSPORT, ELECTRICITY

and GAS.

Technology matrix and weekly demand (in unit values):

expenditure of

for
transport electricity gas demand

transport 0.0 0.2 0.2 7.0

electricity 0.4 0.2 0.1 12.5

gas 0.0 0.5 0.1 16.5

What is the weekly production that satisfies the demand
(but does not create excess)?
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A Very Simplistic Leontief Model

We denote the unknown units of production of TRANSPORT,
ELECTRICITY and GAS by x1, x2,and x3, resp.
For our production we must have:

demand = production − internal expenditur

7.0 = x1 − (0.0 x1 + 0.2 x2 + 0.2 x3)

12.5 = x2 − (0.4 x1 + 0.2 x2 + 0.1 x3)

16.5 = x3 − (0.0 x1 + 0.5 x2 + 0.1 x3)

Transformation into an equivalent system of equations yields:

1.0 x1 − 0.2 x2 − 0.2 x3 = 7.0
−0.4 x1 + 0.8 x2 − 0.1 x3 = 12.5

0.0 x1 − 0.5 x2 + 0.9 x3 = 16.5

Which values for x1, x2, and x3 solves these equations simultaneously?
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Matrix

An m × n matrix is a rectangular array of mathematical expressions
(e.g., numbers) that consists of m rows and n columns.

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 = (aij)

Alternative notation: square brackets [aij].

The terms aij are called elements or coefficients of matrix A,
the integers i and j are called row index and column index, resp.

Matrices are denoted by bold upper case Latin letters,
its coefficients by the corresponding lower case Latin letters.
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Vector

▶ A (column) vector is an n× 1 matrix: x =


x1
...

xn


▶ A row vector is a 1× n-Matrix: xT = (x1, . . . , xn)

▶ The i-th unit vector ei is a vector where the i-th component is
equal to 1 and all other components are 0.

Vectors are denoted by bold lower case Latin letters.

We write A = (a1, . . . , an) for a matrix with columns a1, . . . , an.

Josef Leydold – Foundations of Mathematics – WS 2024/25 2 – Matrix Algebra – 5 / 36



Elements of a Matrix

We use the symbol [
A
]

ij = aij

to denote the coefficient with respective row and column index i and j.

The convenient symbol

δij =

{
1, if i = j,
0, if i ̸= j.

is called the Kronecker symbol.

Example of its usage: [I]ij = δij.
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Special Matrices

▶ An n× n matrix is called square matrix.

▶ An upper triangular matrix is a square matrix where all elements
below the main diagonal are zero.

U =

−1 −3 1
0 2 3
0 0 −2


Formally:
Matrix U is an upper triangular matrix if

[U]ij = 0 whenever i > j.
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Special Matrices

▶ A lower triangular matrix is a square matrix where all elements
above the main diagonal are zero.

L =

1 0 0
2 3 0
0 4 0


Formally:
Matrix L is a lower triangular matrix if

[L]ij = 0 whenever i < j.
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Special Matrices

▶ A diagonal matrix is a square matrix where all elements outside
the main diagonal are zero.

D =

1 0 0
0 2 0
0 0 3


Formally:
Matrix D is a diagonal matrix if

[D]ij = 0 whenever i ̸= j.
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Special Matrices

▶ A matrix where all its coefficients are zero is called a zero matrix
and is denoted by On,m or 0.

▶ An identity matrix is a diagonal matrix where all its diagonal
entries are equal to 1. It is denoted by In or I.
(In German literature also symbol E is used.)

I3 =

1 0 0
0 1 0
0 0 1


Remark: Both identity matrix In and zero matrix On,n are examples of
upper and lower triangular matrices and of a diagonal matrix.
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Transposed Matrix

We get the transposed AT of matrix A by exchanging rows and
columns: [

AT
]

ij
= [A]ji

(
1 2 3
4 5 6

)T

=

1 4
2 5
3 6


Alternative notation: A′
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Symmetric Matrix

A matrix A is called symmetric if

AT = A

i.e., if

[A]ij = [A]ji for all i, j.

Obviously every symmetric matrix is a square matrix.

Matrix

1 2 3
2 4 5
3 5 6

 is symmetric.
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Scalar Multiplication

A matrix A can be multiplied by a constant (scalar) α ∈ R

component-wise:

[α ·A]ij = α [A]ij

3 ·
(

1 2
3 4

)
=

(
3 6
9 12

)
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Addition of Matrices

Two m× n matrices A and B are added component-wise:

[A + B]ij = [A]ij + [B]ij

Addition of two matrices is only possible if their numbers of rows and
columns coincide!

(
1 2
3 4

)
+

(
5 6
7 8

)
=

(
1 + 5 2 + 6
3 + 7 4 + 8

)
=

(
6 8
10 12

)
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Multiplication of Matrices

The product A · B of two matrices A and B is defined only if the
number of columns of the first factor A coincides with the number of
rows of the second factor B.

That is, if A is an m× n matrix, then B must be an n× k matrix.
The product C = A · B then is an m× k matrix.

Element [A · B]ij is then the product of the ith row of A and the jth
column of B (in the sense of a scalar product):

[A · B]ij =
n

∑
s=1

ais · bsj

Matrix multiplication is not commutative!
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Falk’s Scheme

A · B →
↓

1 2
3 4
5 6

1 2 3
4 5 6
7 8 9

c11 c12

c21 c22

c31 c32

c21 = 1 · 4 + 5 · 3 + 6 · 5 = 49

A · B =

1 2 3
4 5 6
7 8 9

 ·
1 2

3 4
5 6

 =

22 28
49 64
76 100


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Non-Commutativity

Beware!

Matrix multiplication is not commutative!

In general we have

A · B ̸= B ·A
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Non-Commutativity

(
1 2
3 4

)
·
(

1 2 3
4 5 6

)
=

(
9 12 15
19 26 33

)
while (

1 2 3
4 5 6

)
·
(

1 2
3 4

)
is not defined

1 2
3 4
5 6

 ·(1 2 3
4 5 6

)
=

 9 12 15
19 26 33
29 40 51


while (

1 2 3
4 5 6

)
·

1 2
3 4
5 6

 =

(
22 28
49 64

)
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Non-Commutativity

(
1 2
3 4

)
·
(

2 3
4 5

)
=

(
10 13
22 29

)
while (

2 3
4 5

)
·
(

1 2
3 4

)
=

(
11 16
19 28

)
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Powers of a Matrix

A2 = A ·A
A3 = A ·A ·A

...

An = A · . . . ·A︸ ︷︷ ︸
n times
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Inverse Matrix

Let A be some square matrix.
If there exists a matrix A−1 with property

A ·A−1 = A−1 ·A = I

then A−1 is called the inverse matrix of A.

Matrix A is called invertible if it has an inverse matrix.
Otherwise it is called singular.

Beware!
Our definition implies that every invertible matrix must be a square
matrix.

Remark: For any two square matrices A and B,

A · B = I implies B ·A = I.
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Calculation Rules for Matrices

A + B = B + A
(A + B) + C = A + (B + C)

A + 0 = A

(A · B) · C = A · (B · C)

I ·A = A · I = A

(α A) · B = α(A · B)
A · (α B) = α(A · B)

C · (A + B) = C ·A + C · B
(A + B) ·D = A ·D + B ·D

A and B invertible
⇒ A · B invertible

(A · B)−1 = B−1 ·A−1

(A−1)−1 = A

(A · B)T = BT ·AT

(AT)T = A
(AT)−1 = (A−1)T

Beware!

In general we have

A · B ̸= B ·A
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Computations with Matrices

For appropriate matrices we have similar calculation rules as for real
numbers.
However, we have to keep in mind:

▶ A zero matrix 0 is the analog to number 0.

▶ An identity matrix I corresponds to number 1.

▶ Matrix multiplication is not commutative!
In general we have A · B ̸= B ·A.

▶ There is no such thing like division by matrices!
Use multiplication by the inverse matrix instead.
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Example – Computations with Matrices

(A + B)2 = (A + B) · (A + B) = A2 + A · B + B ·A + B2

A−1 · (A + B) · B−1 x =

= (A−1 ·A + A−1B) · B−1 x

= (I + A−1B) · B−1 x =

= (B−1 + A−1 · B B−1)x

= (B−1 + A−1)x

= B−1 x + A−1 x
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Equations with Matrices

If we multiply an equation with matrices by some matrix A we have to
take care that multiplication is not commutative.
That is, A must be either the first or the second factor of the
multiplication on either side of the equality sign!

Beware!
There is no such thing like division by matrices!

We have to multiply by the inverse matrix instead.
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Example – Equations with Matrices

Let B + A X = 2A where A and B are known matrices.
Find matrix X?

B + A X = 2 A | − B

A X = 2 A− B | A−1 ·

A−1 ·A X = A−1 · (2 A− B)

I · X = 2 A−1A−A−1 · B

X = 2 I−A−1 · B

We have to take care that all matrix operations are defined.
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Geometric Interpretation I

We have introduced vectors as special cases of matrices.

However, vector (x1
x2
) can also be seen as a geometrical object.

It can be interpreted as

▶ a point (x1, x2) in the xy-plain.
▶ an arrow from the origin (0, 0) to point

(x1, x2) (position vector).
▶ any arrow of the same length, direction

and orientation as the position vector.
(equivalence class of arrows)

x1

x2

(2, 3)

We always choose the representation that fits our needs.

These pictures help us to think about these objects (“thinking crutch”).
However, we need formulas to verify our conjectures!
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Geometric Interpretation II

Vector addition

x1

x2

x

y

x

x + y

Multiplication by a scalar

x1

x2

y

2y

− 2
3 y
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Scalar Product

The inner product (or scalar product) of two vectors x and y:

xT y =
n

∑
i=1

xi yi

Two vectors are called orthogonal to each other, if xT y = 0 .

We also say that these vectors are normal or perpendicular or in a right
angle to each other.

The inner product of x =

1
2
3

 and y =

4
5
6

 is given by

xT y = 1 · 4 + 2 · 5 + 3 · 6 = 32
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Norm

The (Euclidean) norm ∥x∥ of vector x:

∥x∥ =
√

xT x =

√
n

∑
i=1

x2
i

A vector x is called normalized, if ∥x∥ = 1.

The norm of x =

1
2
3

 is given by

∥x∥ =
√

12 + 22 + 32 =
√

14
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Geometric Interpretation

The norm of a vector can be interpreted as its length:

∥x∥2

x2
1

x2
2

Pythagorean theorem:

∥x∥2 = x2
1 + x2

2

The inner product measures angles between two vectors:

cos∢(x, y) =
xT y

∥x∥ · ∥y∥
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Properties of the Norm

(i) ∥x∥ ≥ 0.

(ii) ∥x∥ = 0 ⇔ x = 0.

(iii) ∥αx∥ = |α| · ∥x∥ for all α ∈ R.

(iv) ∥x + y∥ ≤ ∥x∥+ ∥y∥. (Triangle inequality)
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Inequalities

▶ Cauchy-Schwarz inequality

|xTy| ≤ ∥x∥ · ∥y∥

▶ Minkowski inequality (triangle inequality)

∥x + y∥ ≤ ∥x∥+ ∥y∥

▶ Pythagorean theorem

For orthogonal vectors x and y we have

∥x + y∥2 = ∥x∥2 + ∥y∥2
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Leontief Model

A . . . technology matrix

x . . . production vector

b . . . demand vector

p . . . prices for goods

w . . . wages

Prices must cover production costs:

pj = ∑n
i=1 aij pi + wj = a1j p1 + a2j p2 + · · ·+ anj pn + wj

p = ATp + w

So for fixed wages we find:

p = (I−AT)−1w

Moreover, for the input-output model we have:

x = Ax + b
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Leontief Model

Demand is given by the wages for produced goods:

demand = w1x1 + w2x2 + · · ·+ wnxn = wTx

Supply is given by prices for demanded goods:

supply = p1b1 + p2b2 + · · ·+ pnbn = pTb

If the following equations hold in a input-output model

x = Ax + b and p = ATp + w

then we have market equilibrium, i.e., wTx = pTb.

Proof:

wTx = (pT − pTA)x = pT(I−A)x = pT(x−Ax) = pTb
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Summary

▶ matrix and vector
▶ triangular and diagonal matrix
▶ zero matrix and identity matrix
▶ transposed and symmetric matrix
▶ inverse matrix
▶ computations with matrices (matrix algebra)
▶ equations with matrices
▶ norm and inner product of vectors
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Chapter 3

Linear Equations
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System of Linear Equations

System of m linear equations in n unknowns:

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2
...

...
. . .

...
...

am1 x1 + am2 x2 + · · · + amn xn = bm
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


︸ ︷︷ ︸

coefficient matrix

·


x1

x2
...

xn


︸ ︷︷ ︸
variables

=


b1

b2
...

bm


︸ ︷︷ ︸

vector of constants

A · x = b
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Matrix Representation

Advantages of matrix representation:

▶ Short and compact notation.

Compare

A · x = b

to
n

∑
j=1

aijxj = bi , for i = 1, . . . , m

▶ We can transform equations by means of matrix algebra.

▶ We can use names for parts of the equation, like PRODUCTION

VECTOR, DEMAND VECTOR, TECHNOLOGY MATRIX, etc. in the case
of a Leontief model.
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Leontief Model

Input-output model with

A . . . technology matrix

x . . . production vector x = Ax + b
b . . . demand vector

For a given output b we get the corresponding input x by

x = Ax + b | −Ax

x−Ax = b

(I−A)x = b | (I−A)−1·

x = (I−A)−1b
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Solutions of a System of Linear Equations

Three possibilities:
▶ The system of equations has exactly one solution.

▶ The system of equations is inconsistent(not solvable).

▶ The system of equations has infinitely many solutions.

In Gaussian elimination the augmented coefficient matrix (A, b) is
transformed into row echelon form.

Then the solution set is obtained by back substitution.

It is not possible to determine the number of solutions from the numbers
of equations and unknowns. We have to transform the system first.
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Row Echelon Form

In row echelon form the number of leading zeros strictly increases
from one row to the row below.


1 a12 a13 a14 a15

0 1 a23 a24 a25

0 0 0 1 a35

0 0 0 0 1



For our purposes it is not required that the first nonzero entries are
equal to 1 .
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Steps in Gaussian Elimination

We (have to) obtain the row echelon form (only) by means of following
transformations which do not change the set of solutions:

▶ Multiplication of a row by some nonzero constant.

▶ Addition of the multiple of some row to another row.

▶ Exchange of two rows.
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Example – Gaussian Elimination

1.0 −0.2 −0.2 7.0
−0.4 0.8 −0.1 12.5

0.0 −0.5 0.9 16.5

We first add 0.4 times the first row to the second row.
We denote this operation by

R2 ← R2 + 0.4× R1

1 −0.20 −0.20 7.0
0 0.72 −0.18 15.3
0 −0.50 0.90 16.5
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Example – Gaussian Elimination

R3 ← R3 +
0.5

0.72
× R2

1 −0.20 −0.20 7.0
0 0.72 −0.18 15.3
0 0 0.775 27.125
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Example – Back Substitution

1 −0.20 −0.20 7.0
0 0.72 −0.18 15.3
0 0 0.775 27.125

From the third row we immediately get:

0.775 · x3 = 27.125 ⇒ x3 = 35

We obtain the remaining variables x2 and x1 by back substitution:

0.72 · x2 − 0.18 · 35 = 15.3 ⇒ x2 = 30

x1 − 0.2 · 30− 0.2 · 35 = 7 ⇒ x1 = 20

The solution is unique: x = (20, 30, 35)T
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Example 2

Find the solution of equation

3 x1 + 4 x2 + 5 x3 = 1
x1 + x2 − x3 = 2

5 x1 + 6 x2 + 3 x3 = 4

3 4 5 1
1 1 −1 2
5 6 3 4

R2 ← 3× R2 − R1, R3 ← 3× R3 − 5× R1

3 4 5 1
0 −1 −8 5
0 −2 −16 7
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Example 2

R3 ← R3 − 2× R2

3 4 5 1
0 −1 −8 5
0 0 0 −3

The third row implies 0 = −3 , a contradiction.

This system of equations is inconsistent; solution set L = ∅.
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Example 3

Find the solution of equation

2 x1 + 8 x2 + 10 x3 + 10 x4 = 0
x1 + 5 x2 + 2 x3 + 9 x4 = 1

−3 x1 − 10 x2 − 21 x3 − 6 x4 = −4

2 8 10 10 0
1 5 2 9 1
−3 −10 −21 −6 −4

R2 ← 2× R2 − R1, R3 ← 2× R3 + 3× R1

2 8 10 10 0
0 2 −6 8 2
0 4 −12 18 −8
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Example 3

R3 ← R3 − 2× R2

2 8 10 10 0
0 2 −6 8 2
0 0 0 2 −12

This equation has infinitely many solutions.
This can be seen from the row echelon form as there are more
variables than nonzero rows.
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Example 3

The third row immediately implies

2 · x4 = −12 ⇒ x4 = −6

Back substitution yields

2 · x2 − 6 · x3 + 8 · (−6) = 2

In this case we use pseudo solution x3 = α , α ∈ R, and get

x2 − 3 · α + 4 · (−6) = 1 ⇒ x2 = 25 + 3 α

2 · x1 + 8 · (25 + 3 · α) + 10 · α + 10 · (−6) = 0

⇒ x1 = −70− 17 · α
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Example 3

We obtain a solution for each value of α. Using vector notation we
obtain

x =


x1

x2

x3

x4

 =


−70− 17 · α

25 + 3 α

α

−6

 =


−70
25
0
−6

+ α


−17

3
1
0


Thus the solution set of this equation is

L =

x =


−70
25
0
−6

+ α


−17

3
1
0


∣∣∣∣∣∣∣∣∣∣

α ∈ R


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Equivalent Representation of Solutions

In Example 3 we also could use x2 = α′ (instead of x3 = α).
Then back substitution yields

L′ =

x =


x1

x2

x3

x4

 =


− 215

3

0
− 25

3

−6

+ α′


− 17

3

1
1
3

0


∣∣∣∣∣∣∣∣∣∣

α ∈ R


However, these two solution sets are equal, L′ = L!

We thus have two different – but equivalent – representations of the
same set.

The solution set is unique, its representation is not!
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Equivalent Representation of Solutions

The set of solution points in Example 3 can be interpreted as a line in a
(4-dimensional) space.

The representations in L and L′ are thus parametric curves in R4 with
the same image.

x1

x2

L = L′
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A Non-Example

Find the solution of equation

2 x1 + x2 = 1
−2 x1 + 2 x2 − 2 x3 = 4

4 x1 + 9 x2 − 3 x3 = 9

2 1 0 1
−2 2 −2 4

4 9 −3 9

R2 ← R2 + R1, R3 ← R3 − 2× R1

2 1 0 1
0 3 −2 5
0 7 −3 7
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A Non-Example

Now one could find R3 ← R3 − 7× R1 convenient. However,

2 1 0 1
0 3 −2 5

−14 0 −3 0

destroys the already created row echelon form in the first column!

Much better: R3 ← 3× R3 − 7× R2

2 1 0 1
0 3 −2 5
0 0 5 −14
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Reduced Row Echelon Form

In Gauss-Jordan elimination the augmented matrix is transformed
into reduce row echelon form, i.e.,
▶ It is in row echelon form.
▶ The leading entry in each nonzero row is a 1 .

▶ Each column containing a leading 1 has 0 s everywhere else.


1 0 a13 0 0
0 1 a23 0 0
0 0 0 1 0
0 0 0 0 1


Back substitution is then simpler.
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Gauss-Jordan Elimination / Example 3

Find the solution of equation

2 x1 + 8 x2 + 10 x3 + 10 x4 = 0
x1 + 5 x2 + 2 x3 + 9 x4 = 1

−3 x1 − 10 x2 − 21 x3 − 6 x4 = −4

2 8 10 10 0
1 5 2 9 1
−3 −10 −21 −6 −4

R1 ←
1
2
× R1, R2 ← 2× R2 − R1, R3 ← 2× R3 + 3× R1

1 4 5 5 0
0 2 −6 8 2
0 4 −12 18 −8
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Gauss-Jordan Elimination / Example 3

R1 ← R1 − 2× R2, R2 ←
1
2
× R2, R3 ← R3 − 2× R2

1 0 17 −11 −4
0 1 −3 4 1
0 0 0 2 −12

R1 ← R1 +
11
2
× R3, R2 ← R2 − 2× R3, R3 ←

1
2
× R3,

1 0 17 0 −70
0 1 −3 0 25
0 0 0 1 −6
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Gauss-Jordan Elimination / Example 3

1 0 17 0 −70
0 1 −3 0 25
0 0 0 1 −6

The third row immediately implies x4 = −6

Set pseudo solution x3 = α , α ∈ R.

Back substitution yields x2 = 25 + 3 α

and x1 = −70− 17 · α
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Gauss-Jordan Elimination / Example 3

Thus the solution set of this equation is

L =

x =


−70
25
0
−6

+ α


−17

3
1
0


∣∣∣∣∣∣∣∣∣∣

α ∈ R


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Gauss-Jordan Elimination / Example 3

Compare

1 0 17 0 −70
0 1 −3 0 25
0 0 0 1 −6

and x =


−70
25
0
−6

+ α


−17

3
1
0


The positional vector (−70, 25, 0,−6)T follows from the r.h.s. of the
reduced row echelon while the direction vector (−17, 3, 1, 0)T is given
by the column without leading 1 .
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Inverse of a Matrix

Computation of the inverse A−1 of matrix A
by Gauss-Jordan elimination:

(1) Augment matrix A by the corresponding identity matrix to the
right.

(2) Transform the augmented matrix such that the identity matrix
appears on the left hand side by means of the transformation
steps of Gaussian elimination.

(3) Either the procedure is successful. Then we obtain the
inverse matrix A−1 on the right hand side.

(4) Or the procedure aborts (because we obtain a row of zeros
on the l.h.s.). Then the matrix is singular.
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Example 1

Compute the inverse of

A =

 3 2 6
1 1 3
−3 −2 −5


(1) Augment matrix A: 3 2 6 1 0 0

1 1 3 0 1 0
−3 −2 −5 0 0 1


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Example 1

(2) Transform:

R1 ← 1
3 × R1, R2 ← 3× R2 − R1, R3 ← R3 + R1 1 2

3 2 1
3 0 0

0 1 3 −1 3 0
0 0 1 1 0 1


R1 ← R1 − 2

3 × R2 1 0 0 1 −2 0
0 1 3 −1 3 0
0 0 1 1 0 1



Josef Leydold – Foundations of Mathematics – WS 2024/25 3 – Linear Equations – 29 / 33



Example 1

R2 ← R2 − 3× R3

 1 0 0 1 −2 0
0 1 0 −4 3 −3
0 0 1 1 0 1


(3) Matrix A is invertible with inverse

A−1 =

 1 −2 0
−4 3 −3
1 0 1



Josef Leydold – Foundations of Mathematics – WS 2024/25 3 – Linear Equations – 30 / 33



Example 2

Compute the inverse of

A =

3 1 3
2 4 1
5 5 4


(1) Augment matrix A:  3 1 3 1 0 0

2 4 1 0 1 0
5 5 4 0 0 1


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Example 2

(2) Transform:

R1 ← 1
3 × R1, R2 ← 3× R2 − 2× R1, R3 ← 3× R3 − 5× R1 1 1

3 1 1
3 0 0

0 10 −3 −2 3 0
0 10 −3 −5 0 5


R1 ← R1 − 1

30 × R2, R2 ← 1
10 × R2, R3 ← R3 − R2 1 0 11

10
4
10 − 1

10 0
0 1 − 3

10 − 2
10

3
10 0

0 0 0 −3 −3 5


(4) Matrix A is not invertible.
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Summary

▶ system of linear equations
▶ Gaussian elimination
▶ Gauss-Jordan elimination
▶ computation of inverse matrix
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Chapter 4

Vector Space
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Real Vector Space

The set of all vectors x with n components is denoted by

Rn =




x1
...

xn


∣∣∣∣∣∣∣∣ xi ∈ R, 1 ≤ i ≤ n


It is the prototype example of an n-dimensional (real) vector space.

Definition:
A vector space V is a set of objects which may be added together and
multiplied by numbers, called scalars.
Elements of a vector space are called vectors.

For details see course “Mathematics 1”.
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Example – Vector Space

The set of all 2× 2 matrices

R2×2 =

{(
a11 a12

a21 a22

)∣∣∣∣∣ aij ∈ R, i, j ∈ {1, 2}
}

together with matrix addition and scalar multiplication forms a vector
space.

Similarly the set of all m× n matrices

Rm×n =




a11 . . . a1n
...

. . .
...

am1 . . . amn


∣∣∣∣∣∣∣∣ aij ∈ R, i = 1, . . . , m, j = 1, . . . n


forms a vector space.
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A More Abstract Example

Let Pn = {∑n
i=0 aixi|ai ∈ R} be the set of all polynomials in x of

degree less than or equal to n.

Obviously we can multiply a polynomial by a scalar:

3 · (4x2 − 2x + 5) = 12x2 − 6x + 15 ∈ P2

and add them point-wise:

(4x2 − 2x + 5) + (−4x2 + 5x− 2) = 3x + 3 ∈ P2

So for every p(x), q(x) ∈ Pn and α ∈ R we find

αp(x) ∈ Pn and p(x) + q(x) ∈ Pn .

Thus Pn together with point-wise addition and scalar multiplication
forms a vector space.
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Linear Combination

Let v1, . . . , vk ∈ Rn be vectors and c1, . . . , ck ∈ R arbitrary numbers.
Then we get a new vector by a linear combination of these vectors:

x = c1 v1 + · · ·+ ck vk =
k

∑
i=1

ci vi

Let v1 =

1
2
3

, v2 =

4
5
6

, v3 =

−2
−2
−2

, v4 =

−1
0
−3

.

Then the following are linear combinations of vectors v1, v2, v3, and v4:

x = 1 v1 + 0 v2 + 3 v3 − 2 v4 = (−3,−4, 3)T,

y = −v1 + v2 − 2 v3 + 3 v4 = (4, 7,−2)T, and

z = 2 v1 − 2 v2 − 3 v3 + 0 v4 = (0, 0, 0)T = 0
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Subspace

A Subspace S of a vector space V is a subset of V which itself forms a
vector space (with the same rules for addition and scalar multiplication).

In order to verify that a subset S ⊆ V is a subspace of V we have to
verify that for all x, y ∈ S and all α, β ∈ R

αx + βy ∈ S

We say that S is closed under linear combinations.

Equivalently: We have to verify that

(i) if x, y ∈ S , then x + y ∈ S ; and

(ii) if x ∈ S and α ∈ R, then αx ∈ S .
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Example – Subspace


x1

x2

0

 : xi ∈ R, 1 ≤ i ≤ 2

 ⊂ R3 is a subspace of R3.

x = α

1
2
3

 : α ∈ R

 ⊂ R3 is a subspace of R3.


x1

x2

x3

 : xi ≥ 0, 1 ≤ i ≤ 3

 ⊂ R3 is not a subspace of R3.
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Example – Homogeneous Linear Equation

Let A be an m× n matrix.
The solution set L of the homogeneous linear equation

Ax = 0

forms a subspace of Rn:

Let x, y ∈ L ⊆ Rn, i.e., Ax = 0 and Ay = 0, and α, β ∈ R.

Then a straightforward computation yields

A(αx + βy) = αAx + βAy = α0 + β0 = 0

i.e., αx + βy solves the linear equation and hence αx + βy ∈ L.

Therefore L is a subspace of Rn.
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Example – Subspace

{(
a11 0
0 a22

)∣∣∣∣∣ aii ∈ R, i ∈ {1, 2}
}

is a subspace of R2×2.

{(
a −b
b a

)∣∣∣∣∣ a, b ∈ R

}
is a subspace of R2×2.

{
A ∈ R2×2

∣∣A is invertible
}

is not a subspace of R2×2.

Josef Leydold – Foundations of Mathematics – WS 2024/25 4 – Vector Space – 9 / 55



Linear Span

The set of all linear combinations of vectors v1, . . . , vk ∈ V

span(v1, v2, . . . , vk) =

{
k

∑
i=1

civi

∣∣∣∣∣ ci ∈ R, i = 1, . . . , k

}

forms a subspace of V and is called the linear span of v1, . . . , vk.
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Linear Span

Let x, y ∈ S = span(v1, v2, . . . , vk) and α, β ∈ R.

Then there exist ai, bi ∈ R, i = 1, . . . , k, such that

x =
k

∑
i=1

aivi and y =
k

∑
i=1

bivi .

But then

αx + βy = α
k

∑
i=1

aivi + β
k

∑
i=1

bivi =
k

∑
i=1

(αai + βbi)︸ ︷︷ ︸
∈R

vi ∈ S

as the last summation is a linear combination of vectors v1, . . . , vk.

Hence S = span(v1, v2, . . . , vk) is a subspace of V .
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Example – Linear Span

Let v1 =

1
2
3

, v2 =

4
5
6

, v3 =

−2
−2
−2

, v4 =

−1
0
−3

.

span (v1) = {c v1 : c ∈ R} is a straight line in R3 through the origin.

span (v1, v2) is a plane in R3 through the origin.

span (v1, v2, v3) = span (v1, v2)

span(v1, v2, v3, v4) = R3.
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Linear Independency

Every vector x ∈ span(v1, . . . , vk) can be written as a linear
combination of v1, . . . , vk.

Let v1 =

1
2
3

, v2 =

4
5
6

, v3 =

−2
−2
−2

, v4 =

−1
0
−3

.

x =

−3
−4
3

 = 1 v1 + 0 v2 + 3 v3− 2 v4 = −1 v1 + 2 v2 + 6 v3− 2 v4

The representation in this example is not unique!

Reason: 2 v1 − 2 v2 − 3 v3 + 0 v4 = 0
One of the vectors seems to be needless:

span (v1, v2, v3, v4) = span (v1, v2, v4)
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Linear Independency

Vectors v1, . . . , vk are called linearly independent if the
homogeneous system of equations

c1 v1 + c2 v2 + · · ·+ ck vk = 0

has the unique solution c1 = c2 = · · · = ck = 0. They are called
linearly dependent if these equations have other (non-zero) solutions.

If vectors are linearly dependent then some vector (but not necessarily
each of these!) can be written as a linear combination of the other
vectors.

2 v1 − 2 v2 − 3 v3 + 0 v4 = 0 ⇔ v3 = 2
3 v1 − 2

3 v2

Hence span(v1, v2, v3) = span(v1, v2).
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Linear Independency

Determine linear (in)dependency

(1) Create matrix V = (v1, . . . , vk).

(2) Transform V into row echelon form by means of Gaussian
elimination.

(3) Count the number of non-zero rows.

(4) If this is equal to k (the number of vectors),
then these vectors are linearly Independence.

If it is smaller, then the vectors or linearly dependent.

This procedure checks whether the linear equation V · c = 0 has a
unique solution.
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Example – Linearly Independent

Are the vectors

v1 =

3
2
2

 , v2 =

1
4
1

 , v3 =

3
1
1


linearly independent?

(1) Create a matrix:  3 1 3
2 4 1
2 1 1


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Example – Linearly Independent

(2) Transform: 3 1 3
2 4 1
2 1 1

 ⇝

 3 1 3
0 10 −3
0 1 −3

 ⇝

 3 1 3
0 10 −3
0 0 −27



(3) We count 3 non-zero rows.

(4) The number of non-zero rows coincides with
the number of vectors (= 3).

Thus the three vectors v1, v2, and v3 are linearly independent.
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Example – Linearly Dependent

Are vectors v1 =

3
2
5

 , v2 =

1
4
5

 , v3 =

3
1
4


linearly independent?

(1) Create a matrix . . . (2) and transform: 3 1 3
2 4 1
5 5 4

 ⇝

 3 1 3
0 10 −3
0 10 −3

 ⇝

 3 1 3
0 10 −3
0 0 0


(3) We count 2 non-zero rows.

(4) The number of non-zero rows (= 2) is less than the number of
vectors (= 3).

Thus the three vectors v1, v2, and v3 are linearly dependent.
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Rank of a Matrix

The rank of matrix A is the maximal number of linearly independent
columns.

We have: rank(AT) = rank(A)

The rank of an n× k matrix is at most min(n, k).

An n× n matrix is called regular, if it has full rank,
i.e. if rank(A) = n.
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Rank of a Matrix

Computation of the rank:

(1) Transform matrix A into row echelon form by means of
Gaussian elimination.

(2) Then rank(A) is given by the number of non-zero rows.

 3 1 3
2 4 1
2 1 1

 ⇝

 3 1 3
0 10 −3
0 0 −27

 ⇒ rank(A) = 3

 3 1 3
2 4 1
5 5 4

 ⇝

 3 1 3
0 10 −3
0 0 0

 ⇒ rank(A) = 2
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Invertible and Regular

An n× n matrix A is invertible, if and only if it is regular.

The following 3× 3 matrix

3 1 3
2 4 1
2 1 1

 has full rank (3).

Thus it is regular and hence invertible.

The following 3× 3 matrix

3 1 3
2 4 1
5 5 4

 has only rank 2.

Thus it is not regular and hence singular (i.e., not invertible).
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Basis

A set of vectors {v1, . . . , vd} spans (or generates) a vector space V , if

span(v1, . . . , vd) = V

This set is thus called a generating set for the vector space.

If these vectors are linearly independent, then this set is called a basis
of the vector space.

The basis of a vector space is not uniquely determined!

However, the number of vectors in a basis is uniquely determined.
It is called the dimension of the vector space.

dim(V) = d
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Characterizations of a Basis

There are several equivalent characterizations of a basis.

A basis B of vector space V is a

▶ linearly independent generating set of V

▶ minimal generating set of V
(i.e., every proper subset of B does not span V )

▶ maximal linearly independent set
(i.e., every proper superset of B is linearly dependent)
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Example – Basis

The so called canonical basis of the Rn consists of the n unit vectors:

B0 = {e1, . . . , en} ⊂ Rn

Thus we can conclude that

dim(Rn) = n

an that every basis of Rn consists of n (linearly independent) vectors.

Another basis of the R3:
3

2
2

 ,

1
4
1

 ,

3
1
1



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Non-Example – Basis

The following are not bases of the R3:
1

2
3

 ,

4
5
6

 ,

−2
−2
−2

 ,

−1
0
−3




is not linearly independent (because it has too many vectors).
3

2
3

 ,

2
4
1




does not span R3 (because it has too few vectors).

Beware: Three vectors need not necessarily form a basis of R3.
They might be linearly dependent.
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Example – Basis

The canonical basis of R2×2 consists of the four matrices(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
, and

(
0 0
0 1

)
and hence

dim(R2×2) = 4 .
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Example – Basis

The simplest basis of vector space P2 = {∑2
i=0 aixi|ai ∈ R} is given

by {
1, x, x2}

and hence
dim(P2) = 3 .
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Coordinates of a Vector

Let B = {v1, . . . , vn} be a basis of vector space V .
Then for every ci ∈ R we get a vector

x =
n

∑
i=1

civi

On the other hand for a given vector x we can find (unique) numbers
ci(x) ∈ R such that

x =
n

∑
i=1

ci(x)vi

The numbers ci(x) are called the coefficients of x w.r.t. basis B.
The vector

c(x) = (c1(x, . . . , cn(x))

is called the coefficient vector of x w.r.t. basis B.
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Space of Coordinate Vectors

For a fixed basis B the coefficient vector c(x) of x is unique and

c(x) ∈ Rn = Rdim(V) .

So we have a bijection

V → Rn, x 7→ c(x)

with the nice (structure preserving) property
▶ c(αx) = αc(x)
▶ c(x + y) = c(x) + c(y)

for all x, y ∈ V and all α ∈ R.

That is, instead of dealing with vectors in V we can fix a basis B and do
all computations with coefficient vectors in Rn.

Thus every n-dimensional vector space V is isomorphic to (i.e., looks
like) an Rn.
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Coordinates of Vectors in Rn

Let B = {v1, . . . , vn} be a basis of Rn.
We obtain the coordinate vector c(x) of x ∈ Rn w.r.t. B by solving the
linear equation

c1v1 + c2v2 + · · ·+ cnvn = x .

In matrix notation with V = (v1, . . . , vn):

V · c = x ⇒ c = V−1x

By construction V has full rank.

Observe that components x1, . . . , xn of vector x can be seen as its
coordinate w.r.t. the canonical basis.
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Example – Coordinate Vector

Compute the coordinates c of x =

 1
−1
2


w.r.t. basis B =


1

2
3

 ,

1
3
5

 ,

1
3
6




We have to solve equation Vc = x:1 1 1
2 3 3
3 5 6

 ·
c1

c2

c3

 =

 1
−1
2

 ⇝

 1 1 1 1
2 3 3 −1
3 5 6 2


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Example – Coordinate Vector

 1 1 1 1
2 3 3 −1
3 5 6 2

 ⇝
 1 1 1 1

0 1 1 −3
0 2 3 −1

 ⇝
 1 1 1 1

0 1 1 −3
0 0 1 5


Back substitution yields c1 = 4, c2 = −8 and c3 = 5.

The coordinate vector of x w.r.t. basis B is thus

c(x) =

 4
−8
5



Alternatively we could compute V−1 and get as c = V−1x.
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Change of Basis

Let c1 and c2 be the coordinate vectors of x ∈ V w.r.t. bases
B1 = {v1, v2, . . . , vn} and B2 = {w1, w2, . . . , wn}, resp.

Consequently c2(x) = W−1x = W−1Vc1(x) .

Such a transformation of a coordinate vector w.r.t. one basis into that of
another one is called a change of basis.

Matrix

U = W−1V

is called the transformation matrix for this change from basis B1 to
B2.
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Example – Change of Basis

Let

B1 =


1

1
1

 ,

−2
1
1

 ,

3
5
6


 and B2 =


1

2
3

 ,

1
3
5

 ,

1
3
6




two bases of R3.

Transformation matrix for the change of basis from B1 to B2:
U = W−1 ·V.

W =

1 1 1
2 3 3
3 5 6

 ⇒ W−1 =

 3 −1 0
−3 3 −1
1 −2 1



V =

1 −2 3
1 1 5
1 1 6


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Example – Change of Basis

Transformation matrix for the change of basis from B1 to B2:

U = W−1 ·V =

 3 −1 0
−3 3 −1
1 −2 1

 ·
1 −2 3

1 1 5
1 1 6

 =

 2 −7 4
−1 8 0
0 −3 −1



Let c1 = (3, 2, 1)T be the coordinate vector of x w.r.t. basis B1.
Then the coordinate vector c2 w.r.t. basis B2 is given by

c2 = Uc1 =

 2 −7 4
−1 8 0
0 −3 −1

 ·
3

2
1

 =

−4
13
−7



Josef Leydold – Foundations of Mathematics – WS 2024/25 4 – Vector Space – 35 / 55



Linear Map

A map φ from vector space V intoW

φ : V → W , x 7→ y = φ(x)

is called linear, if for all x, y ∈ V and α ∈ R

(i) φ(x + y) = φ(x) + φ(y)
(ii) φ(α x) = α φ(x)

We already have seen such a map: V → Rn, x 7→ c(x)
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Linear Map

Let A be an m× n matrix. Then map
φ : Rn → Rm, x 7→ φA(x) = A · x is linear:

φA(x + y) = A · (x + y) = A · x + A · y = φA(x) + φA(y)

φA(α x) = A · (α x) = α (A · x) = α φA(x)

Vice versa every linear map φ : Rn → Rm can be represented by an
appropriate m× n matrix Aφ: φ(x) = Aφ x.

Matrices represent all possible linear maps Rn → Rm.

More generally they represent linear maps between any vector space
once we have bases for these and do all computations with their
coordinate vectors.

In this sense, matrices “are” linear maps.
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Geometric Interpretation of Linear Maps

We have the following “elementary” maps:
▶ lengthening / shortening in some direction
▶ shear in some direction
▶ projection into a subspace
▶ rotation
▶ reflection at a subspace

These maps can be combined into more complex ones.
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Lengthening / Shortening

Map φ : x 7→
(

2 0
0 1

2

)
x

lengthens the x-coordinate by factor 2 and
shortens the y-coordinate by factor 1

2 .

φ
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Shear

Map φ : x 7→
(

1 1
0 1

)
x

shears the rectangle into the x-coordinate.

φ
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Projection

Map φ : x 7→
(

1
2

1
2

1
2

1
2

)
x

projects a point x orthogonally into the subspace generated by vector
(1, 1)T, i.e., span

(
(1, 1)T

)
.

φ
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Rotation

Map φ : x 7→
( √

2
2

√
2

2
−
√

2
2

√
2

2

)
x

rotates a point x clock-wise by 45° around the origin.

φ
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Reflection

Map φ : x 7→
(
−1 0
0 1

)
x

reflects a point x at the y-axis.

φ
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Image and Kernel

Let φ : Rn → Rm, x 7→ φ(x) = A · x be a linear map.

The image of φ is a subspace of Rm.

Im(φ) = {φ(v) : v ∈ Rn} ⊆ Rm

The kernel (or null space) of φ is a subspace of Rn.

Ker(φ) = {v ∈ Rn : φ(v) = 0} ⊆ Rn

The kernel is the preimage of 0.

Image Im(A) and kernel Ker(A) of a matrix A are the respective
image and kernel of the corresponding linear map.
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Generating Set of the Image

Let A = (a1, . . . , an), x ∈ Rn an arbitrary vector, and φ(x) = Ax.

We can write x as a linear combination of the canonical basis:

x =
n

∑
i=1

xi ei

Recall that Aei = ai.
So we can write φ(x) as a linear combination of the columns of A:

φ(x) = A · x = A ·
n

∑
i=1

xi ei =
n

∑
i=1

xi Aei =
n

∑
i=1

xi ai

That is, the columns ai of A span (generate) Im(φ).
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Basis of the Kernel

Let A = (a1, . . . , an) and φ(x) = Ax.

If y, z ∈ Ker(φ) and α, β ∈ R, then

φ(αy + βz) = αφ(y) + βφ(z) = α0 + β0 = 0

Thus Ker(φ) is closed under linear combination,
i.e., Ker(φ) is a subspace.

We obtain a basis of Ker(φ) by solving the homogeneous linear
equation A · x = 0 by means of Gaussian elimination.
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Dimension of Image and Kernel

Rank-nullity theorem:

dimV = dim Im(φ) + dim Ker(φ)
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Example – Dimension of Image and Kern

Map φ : R2 → R2, x 7→
(

1 0
0 0

)
x

projects a point x orthogonally onto the x axis.

Ker(φ)
φ

Im(φ)

dim R2 = 2, dim Ker(φ) = 1 dim Im(φ) = 1
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Linear Map and Rank

The rank of matrix A = (a1, . . . , an) is (per definition) the dimension of
span(a1, . . . , an).

Hence it is the dimension of the image of the corresponding linear map.

dim Im(φA) = rank(A)

The dimension of the solution set L of a homogeneous linear equation
A x = 0 is then the kernel of this map.

dimL = dim Ker(φA) = dim Rn − dim Im(φA) = n− rank(A)
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Matrix Multiplication

By multiplying two matrices A and B we obtain the matrix of a
compound linear map:

(φA ◦ φB)(x) = φA(φB(x)) = A (B x) = (A · B) x

Rn Rm
RkB A

AB

x Bx ABx

This point of view implies:

rank(A · B) ≤ min {rank(A), rank(B)}
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Non-Commutative Matrix Multiplication

A =

(
1 0
0 1

3

)
represents a shortening of the y-coordinate.

B =

(
0 1
−1 0

)
represents a clock-wise rotation about 90°.

A B
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Non-Commutative Matrix Multiplication

A B

BAx

B A

ABx
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Inverse Matrix

The inverse matrix A−1 of A exists if and only if map φA(x) = A x is
one-to-one and onto, i.e., if and only if

φA(x) = x1 a1 + · · ·+ xn an = 0 ⇔ x = 0

i.e., if and only ifA is regular.

From this point of view implies (A · B)−1 = B−1 ·A−1

Rn Rm
RkB A

AB

x Bx ABx
B−1A−1z A−1z z

B−1A−1
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Similar Matrices

The basis of a vector space and thus the coordinates of a vector are not
uniquely determined. Matrix Aφ of a linear map φ : Rn → Rn also
depends on the chosen bases.
Let A be the matrix w.r.t. basis B1.
Which matrix represents linear map φ if we use basis B2 instead?

basis B1 U x A−→ A U x

U
x yU−1

basis B2 x C−→ U−1 A U x

and thus C x = U−1 A U x

Two n× n matrices A and C are called similar, if there exists a regular
matrix U such that

C = U−1 A U
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Summary

▶ vector space and subspace
▶ linear independency and rank
▶ basis and dimension
▶ coordinate vector
▶ change of basis
▶ linear map
▶ image and kernel
▶ similar matrices
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Chapter 5

Determinant
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What is a Determinant?

We want to “compute” whether n vectors in Rn are linearly dependent
and measure “how far” they are from being linearly dependent, resp.

Idea:

Two vectors in R2 span a parallelogram:

vectors are linearly dependent ⇔ area is zero

We use the n-dimensional volume of the created parallelepiped for our
function that “measures” linear dependency.
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Properties of a Volume

We define our function indirectly by the properties of this volume.

▶ Multiplication of a vector by a scalar α yields the α-fold volume.

▶ Adding some vector to another one does not change the volume.

▶ If two vectors coincide, then the volume is zero.

▶ The volume of a unit cube is one.
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Determinant

The determinant is a function which maps an n× n matrix
A = (a1, . . . , an) into a real number det(A) with the following
properties:

(D1) The determinant is linear in each column:

det(. . . , ai + bi, . . .) = det(. . . , ai, . . .) + det(. . . , bi, . . .)

det(. . . , α ai, . . .) = α det(. . . , ai, . . .)

(D2) The determinant is zero, if two columns coincide:

det(. . . , ai, . . . , ai, . . .) = 0

(D3) The determinant is normalized:

det(I) = 1

Notations: det(A) = |A|
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Example – Properties

(D1) ∣∣∣∣∣∣∣
1 2 + 10 3
4 5 + 11 6
7 8 + 12 9

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

1 10 3
4 11 6
7 12 9

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 3 · 2 3
4 3 · 5 6
7 3 · 8 9

∣∣∣∣∣∣∣ = 3 ·

∣∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣
(D2) ∣∣∣∣∣∣∣

1 2 1
4 5 4
7 8 7

∣∣∣∣∣∣∣ = 0
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Determinant – Remarks

▶ Properties (D1)–(D3) define a function uniquely.
(I.e., such a function does exist and two functions with these
properties are identical.)

▶ The determinant as defined above can be negative.
So it can be seen as “signed volume”.

▶ We derive more properties of the determinant below.

▶ Take care about the notation:
Do not mix up |A| with the absolute value of a number |x|.

▶ The determinant is a so called normalized alternating multi-linear
form.
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Further Properties

(D4) The determinant is alternating:

det(. . . , ai, . . . , ak, . . .) = −det(. . . , ak, . . . , ai, . . .)

∣∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣∣

1 3 2
4 6 5
7 9 8

∣∣∣∣∣∣∣
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Further Properties

(D5) The determinant does not change if we add some multiple of a
column to another column:

det(. . . , ai + α ak, . . . , ak, . . .) = det(. . . , ai, . . . , ak, . . .)

∣∣∣∣∣∣∣
1 2 + 2 · 1 3
4 5 + 2 · 4 6
7 8 + 2 · 7 9

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣
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Further Properties

(D6) The determinant does not change if we transpose a matrix:

det(AT) = det(A)

Consequently,
all statements about columns hold analogously for rows.

∣∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣∣
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Further Properties

(D7) det(A) ̸= 0 ⇔ columns (rows) of A are linearly independent

⇔ A ist regular

⇔ A ist invertible

(D8) The determinant of the product of two matrices is equal to the
product of their determinants:

det(A · B) = det(A) · det(B)

(D9) The determinant if the inverse matrix is equal to the reciprocal of
the determinant of the matrix:

det(A−1) =
1

det(A)
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Further Properties

(10) The determinant of a triangular matrix is the product of its diagonal
elements:∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n
...

...
...

. . .
...

0 0 0 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
= a11 · a22 · a33 · . . . · ann

(11) The absolute value of the determinant |det(a1, . . . , an)| is the
volume of the parallelepiped spanned by the column vectors
a1, . . . , an.
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2 × 2 Matrix

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11 · a22 − a12 · a21

∣∣∣∣∣1 2
3 4

∣∣∣∣∣ = 1 · 4− 2 · 3 = −2
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3 × 3 Matrix: Sarrus’ Rule

1 2 3 1 2
4 5 6 4 5
7 8 9 7 8

=
1 · 5 · 9 + 2 · 6 · 7 + 3 · 4 · 8
−7 · 5 · 3− 8 · 6 · 1− 9 · 4 · 2 = 0
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Source of Error

Determinants of 4× 4 matrices must be computed by means of
transformation into a triangular matrix or by Laplace expansion.

There is no such thing like Sarrus’ rule for 4× 4 matrices.

Josef Leydold – Foundations of Mathematics – WS 2024/25 5 – Determinant – 14 / 29



Transform into Triangular Matrix

(1) Transform into upper triangular matrix similar to Gaussian
elimination.

▶ Add a multiple of a row to another row. (D5)

▶ Multiply a row by some scalar α ̸= 0 and the determinant by the
reciprocal 1

α . (D1)

▶ Exchange two rows and switch the sign of the determinant. (D4)

(2) Compute the determinant as the product of its diagonal elements.
(Property D10)
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Example – Transform into Triangular Matrix

∣∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 2 3
0 −3 −6
7 8 9

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 2 3
0 −3 −6
0 −6 −12

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 2 3
0 −3 −6
0 0 0

∣∣∣∣∣∣∣ = 1 · (−3) · 0 = 0

∣∣∣∣∣∣∣
0 2 4
1 2 3
2 5 6

∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣∣

1 2 3
0 2 4
2 5 6

∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣∣

1 2 3
0 2 4
0 1 0

∣∣∣∣∣∣∣
= −1

2
·

∣∣∣∣∣∣∣
1 2 3
0 2 4
0 0 −4

∣∣∣∣∣∣∣ = −
1
2
· 1 · 2 · (−4) = 4
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Laplace Expansion

Laplace expansion along the k-th column and i-th row, resp.:

det(A) =
n

∑
i=1

aik · (−1)i+k Mik =
n

∑
k=1

aik · (−1)i+k Mik

where Mik is the determinant of the (n− 1)× (n− 1) submatrix
which we obtain by deleting the i-th row and the k-th column of A.
It is called a minor of A.

We get the signs (−1)i+k by means of a chessboard pattern:∣∣∣∣∣∣∣
+ − +

− + −
+ − +

∣∣∣∣∣∣∣
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Expansion along the First Row

∣∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣ = 1 · (−1)1+1 ·
∣∣∣∣∣ 5 6

8 9

∣∣∣∣∣
+ 2 · (−1)1+2 ·

∣∣∣∣∣ 4 6
7 9

∣∣∣∣∣
+ 3 · (−1)1+3 ·

∣∣∣∣∣ 4 5
7 8

∣∣∣∣∣
= 1 · (−3)− 2 · (−6) + 3 · (−3)

= 0
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Expansion along the Second Column

∣∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣ = 2 · (−1)1+2 ·
∣∣∣∣∣ 4 6

7 9

∣∣∣∣∣
+ 5 · (−1)2+2 ·

∣∣∣∣∣ 1 3
7 9

∣∣∣∣∣
+ 8 · (−1)3+2 ·

∣∣∣∣∣ 1 3
4 6

∣∣∣∣∣
= −2 · (−6) + 5 · (−12)− 8 · (−6)

= 0
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Laplace and Leibzig Formula

Laplace expansion allows to compute the determinant recursively :

The deterimant of a k× k matrix is expanded into a sum of k
determinants of (k− 1)× (k− 1) matrices.

For an n× n matrices we can repeat this recursion step n times and
yield a summation of n! products of n numbers each:

det(A) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

aσ(i),i

where Sn is the permutation group of order n.

This formula is shown here just for completeness.
Its explanation is out of the scope of this course.
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Adjugate Matrix

In Laplace expansion the factors Aik = (−1)i+k Mik are called the

cofactors of aik:

det(A) =
n

∑
i=1

aik · Aik

The matrix formed by these cofactors is called the cofactor matrix A∗.

Its transpose A∗T is called the adjugate of A.

adj(A) = A∗T =


A11 A21 . . . An1

A12 A22 . . . An2
...

...
. . .

...

A1n A2n . . . Ann


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Product A · A∗T

A ·A∗T =

 0 2 4
1 2 3
2 5 6

 ·



∣∣∣∣∣2 3
5 6

∣∣∣∣∣ −
∣∣∣∣∣2 4
5 6

∣∣∣∣∣
∣∣∣∣∣2 4
2 3

∣∣∣∣∣
−
∣∣∣∣∣1 3
2 6

∣∣∣∣∣
∣∣∣∣∣0 4
2 6

∣∣∣∣∣ −
∣∣∣∣∣0 4
1 3

∣∣∣∣∣∣∣∣∣∣1 2
2 5

∣∣∣∣∣ −
∣∣∣∣∣0 2
2 5

∣∣∣∣∣
∣∣∣∣∣0 2
1 2

∣∣∣∣∣



=

 0 2 4
1 2 3
2 5 6

 ·
 −3 8 −2

0 −8 4
1 4 −2

 =

 4 0 0
0 4 0
0 0 4

 = |A| · I
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Product A · A∗T

Product of the k-th row of A∗T by the j-th column of A = (a1, . . . , an):[
A∗T ·A

]
kj
=

n

∑
i=1

Aik · aij =
n

∑
i=1

aij · (−1)i+k Mik

[expansion along k-th column] = det(a1, . . . , aj︸︷︷︸
k-th column

, . . . , an)

=

{
|A| if j = k
0 if j ̸= k

= |A|δkj

Hence A∗T ·A = |A| · I ⇒ A−1 =
1
|A| ·A

∗T
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Cramer’s Rule for the Inverse Matrix

We get a formula for the inverse of Matrix A:

A−1 =
1
|A| ·A

∗T

This formula is not practical for inverting a matrix . . .

. . . except for 2× 2 matrices where it is very convenient:

(
a11 a12

a21 a22

)−1

=
1
|A| ·

(
a22 −a12

−a21 a11

)
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Example – Inverse Matrix

0 2 4
1 2 3
2 5 6


−1

=
1
4
·

−3 8 −2
0 −8 4
1 4 −2

 =

−
3
4 2 − 1

2

0 −2 1
1
4 1 − 1

2



(
1 2
3 4

)−1

=
1
−2
·
(

4 −2
−3 1

)
=

(
−2 1

3
2 − 1

2

)
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Cramer’s Rule for Linear Equations

We want to solve linear equation

A · x = b

If A is regular (i.e., |A| ̸= 0), then we find

x = A−1 · b =
1
|A| A∗T · b

So we get for xk

xk =
1
|A|

n

∑
i=1

Aik · bi =
1
|A|

n

∑
i=1

bi · (−1)i+k Mik

=
1
|A| det(a1, . . . , b︸︷︷︸

k-th column

, . . . , an)
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Cramer’s Rule for Linear Equations

Let Ak be the matrix where the k-th column of A is replaced by b.

If A is an invertible matrix, then the solution of

A · x = b

is given by

x =
1
|A|


|A1|

...

|An|



This procedure does not work if A is not regular.
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Example – Cramer’s Rule

Compute the solution of equation9 11 3
9 13 4
2 3 1

 ·
x1

x2

x3

 =

 1
2
3



Solution:

x =
1
|A|

|A1|
|A2|
|A3|

 =

 12
−22
45



|A| =

∣∣∣∣∣∣∣
9 11 3
9 13 4
2 3 1

∣∣∣∣∣∣∣ = 1

|A1| =

∣∣∣∣∣∣∣
1 11 3
2 13 4
3 3 1

∣∣∣∣∣∣∣ = 12

|A2| =

∣∣∣∣∣∣∣
9 1 3
9 2 4
2 3 1

∣∣∣∣∣∣∣ = −22

|A3| =

∣∣∣∣∣∣∣
9 11 1
9 13 2
2 3 3

∣∣∣∣∣∣∣ = 45
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Summary

▶ definition of determinant
▶ properties
▶ relation between determinant and regularity
▶ volume of a parallelepiped
▶ compuation of the determinant

(Sarrus’ rule, transformation into triangular matrix)
▶ Laplace expansion
▶ Cramer’s rule

Josef Leydold – Foundations of Mathematics – WS 2024/25 5 – Determinant – 29 / 29



Chapter 6

Eigenvalues
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Closed Leontief Model

In a closed Leontief input-output-model consumption and production
coincide, i.e.,

V · x = x = 1 · x

Is this possible for the given technology matrix V?

This is a special case of a so called eigenvalue problem.
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Eigenvalue and Eigenvector

A vector x ∈ Rn, x ̸= 0, is called eigenvector of an n× n matrix A
corresponding to eigenvalue λ ∈ R, if

A · x = λ · x

The eigenvalues of matrix A are all numbers λ for which an eigenvector
does exist.
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Example – Eigenvalue and Eigenvector

For a 3× 3 diagonal matrix we find

A · e1 =

a11 0 0
0 a22 0
0 0 a33

 ·
1

0
0

 =

a11

0
0

 = a11 · e1

Thus e1 is a eigenvector corresponding to eigenvalue λ = a11.

Analogously we find for an n× n diagonal matrix

A · ei = aii · ei

So the eigenvalue of a diagonal matrix are its diagonal elements with
unit vectors ei as the corresponding eigenvectors.
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Computation of Eigenvalues

In order to find eigenvectors of an n× n matrix A we have to solve
equation

A x = λx = λIx ⇔ (A− λI)x = 0 .

If (A− λI) is invertible then we get

x = (A− λI)−10 = 0 .

However, x = 0 cannot be an eigenvector (by definition)
and hence λ cannot be an eigenvalue.

Thus λ is an eigenvalue of A if and only if (A− λI) is not invertible,
i.e., if and only if

det(A− λI) = 0
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Example – Eigenvalues

Compute the eigenvalues of matrix A =

(
1 −2
1 4

)
.

We have to find all λ ∈ R where |A− λI| vanishes.

det(A− λI) =

∣∣∣∣∣
(

1 −2
1 4

)
− λ

(
1 0
0 1

)∣∣∣∣∣ =∣∣∣∣∣
(

1 −2
1 4

)
−
(

λ 0
0 λ

)∣∣∣∣∣ =
∣∣∣∣∣1− λ −2

1 4− λ

∣∣∣∣∣ = λ2 − 5λ + 6 = 0.

The roots of this quadratic equation are

λ1 = 2 and λ2 = 3.

Thus matrix A has eigenvalues 2 and 3.
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Characteristic Polynomial

For an n× n matrix A
det(A− λI)

is a polynomial of degree n in λ.
It is called the characteristic polynomial of matrix A.

The eigenvalues are then the roots of the characteristic polynomial.

For that reason eigenvalues and eigenvectors are sometimes called the
characteristic roots and characteristic vectors, resp., of A.

The set of all eigenvalues of A is called the spectrum of A.
Spectral methods make use of eigenvalues.

Remark:
It may happen that characteristic roots are complex (λ ∈ C).
These are then called complex eigenvalues.
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Computation of Eigenvectors

Eigenvectors x corresponding to a known eigenvalue λ0 can be
computed by solving linear equation (A− λ0I)x = 0.

Eigenvectors of A =

(
1 −2
1 4

)
corresponding to λ1 = 2:

(A− λ1I)x =

(
−1 −2
1 2

)(
x1

x2

)
=

(
0
0

)

Gaussian elimination yields: x2 = α and x1 = −2α

v1 = α

(
−2
1

)
for an α ∈ R \ {0}.
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Eigenspace

If x is an eigenvector corresponding to eigenvalue λ, then each multiple
αx is an eigenvector, too:

A · (αx) = α(A · x) = αλ · x = λ · (αx)

If x and y are eigenvectors corresponding to the same eigenvalue λ,
then x + y is an eigenvector, too:

A · (x + y) = A · x + A · y = λ · x + λ · y = λ · (x + y)

The set of all eigenvectors corresponding to eigenvalue λ (including
zero vector 0) is thus a subspace of Rn and is called the eigenspace
corresponding to λ.

Computer programs return bases of eigenspaces.
(Beware: Bases are not uniquely determined!)
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Example – Eigenspace

Let A =

(
1 −2
1 4

)
.

Eigenvector corresponding to eigenvalue λ1 = 2: v1 =

(
−2
1

)

Eigenvector corresponding to eigenvalue λ2 = 3: v2 =

(
−1
1

)

Eigenvectors corresponding to eigenvalue λi are all non-vanishing (i.e.,
non-zero) multiples of vi.

Computer programs often return normalized eigenvectors:

v1 =

(
− 2√

5
1√
5

)
and v2 =

(
− 1√

2
1√
2

)
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Example

Eigenvalues and Eigenvectors of A =

2 0 1
0 3 1
0 6 2

 .

Create the characteristic polynomial and compute its roots:

det(A− λI) =

∣∣∣∣∣∣∣
2− λ 0 1

0 3− λ 1
0 6 2− λ

∣∣∣∣∣∣∣ = (2− λ) · λ · (λ− 5) = 0

Eigenvalues:
λ1 = 2, λ2 = 0, and λ3 = 5 .

Josef Leydold – Foundations of Mathematics – WS 2024/25 6 – Eigenvalues – 11 / 45



Example

Eigenvector(s) corresponding to eigenvalue λ3 = 5:

(A− λ3I)x =

(2− 5) 0 1
0 (3− 5) 1
0 6 (2− 5)


x1

x2

x3

 = 0

Gaussian elimination yields −3 0 1 0
0 −2 1 0
0 6 −3 0

 ⇝

 −3 0 1 0
0 −2 1 0
0 0 0 0


Thus x3 = α, x2 = 1

2 α, and x1 = 1
3 α for arbitrary α ∈ R \ {0}.

Eigenvector v3 = (2, 3, 6)T.
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Example

Eigenvector corresponding to

▶ λ1 = 2: v1 =

1
0
0



▶ λ2 = 0: v2 =

−3
−2
6



▶ λ3 = 5: v3 =

2
3
6


Eigenvectors corresponding to eigenvalue λi are all non-vanishing
multiples of vi.
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Properties of Eigenvalues

1. A and AT have the same eigenvalues.

2. Let A and B be n× n-matrices.
Then A · B and B ·A have the same eigenvalues.

3. If x is an eigenvector of A corresponding to λ,
then x is an eigenvector of Ak corresponding to eigenvalue λk.

4. If x is an eigenvector of regular matrix A corresponding to λ,
then x is an eigenvector of A−1 corresponding to eigenvalue 1

λ .
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Properties of Eigenvalues

5. The product of all eigenvalues λi of an n× n matrix A is equal to
the determinant of A:

det(A) =
n

∏
i=1

λi

This implies:
A is regular if and only if all its eigenvalues are non-zero.

6. The sum of all eigenvalues λi of an n× n matrix A is equal to the
sum of the diagonal elements of A (called the trace of A).

tr(A) =
n

∑
i=1

aii =
n

∑
i=1

λi
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Eigenvalues of Similar Matrices

Let U be a transformation matrix and C = U−1 A U.

If x is an eigenvector of A corresponding to eigenvalue λ,
then U−1x is an eigenvector of C corresponding to λ:

C · (U−1x) = (U−1AU)U−1x = U−1Ax = U−1λx = λ · (U−1x)

Similar matrices A and C have the same eigenvalues and (if we
consider change of basis) the same eigenvectors.

We want to choose a basis such that the matrix that represents the
given linear map becomes as simple as possible.
The simplest matrices are diagonal matrices.

Can we find a basis where the corresponding linear map is represented
by a diagonal matrix?

Unfortunately not in the general case. But . . .

Josef Leydold – Foundations of Mathematics – WS 2024/25 6 – Eigenvalues – 16 / 45



Symmetric Matrix

An n× n matrix A is called symmetric, if AT = A .

For a symmetric matrix A we find:

▶ All n eigenvalues are real.

▶ Eigenvectors ui corresponding to distinct eigenvalues λi are
orthogonal (i.e., uT

i · uj = 0 if i ̸= j).

▶ There exists an orthonormal basis {u1, . . . , un} (i.e. the vectors
ui are normalized and mutually orthogonal) that consists of
eigenvectors of A,

Matrix U = (u1, . . . , un) is then an orthogonal matrix:

UT ·U = I ⇔ U−1 = UT
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Diagonalization

For the i-th unit vector ei we find

UT A U · ei = UT A ui = UT λi ui = λi UT ui = λi · ei

and thus

UT A U = D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn


Every symmetric matrix A becomes a diagonal matrix with the
eigenvalues of A as its entries if we use the orthonormal basis of
eigenvectors.

This procedure is called diagonalization of matrix A.
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Example – Diagonalization

We want to diagonalize A =

(
1 2
2 1

)
.

Eigenvalues
λ1 = −1 and λ2 = 3

with respective normalized eigenvectors

u1 =

(
− 1√

2
1√
2

)
and u2 =

(
1√
2

1√
2

)

With respect to basis {u1, u2} matrix A becomes diagonal matrix(
−1 0
0 3

)
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A Geometric Interpretation I

Function x 7→ Ax =

(
1 2
2 1

)
x maps the unit circle in R2 into an

ellipsis.
The two semi-axes of the ellipsis are given by λ1v1 and λ2v2, resp.

v1 v2

A

−v1

3v2
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Quadratic Form

Let A be a symmetric matrix. Then function

qA : Rn → R, x 7→ qA(x) = xT ·A · x

is called a quadratic form.

Let A =

1 0 0
0 2 0
0 0 3

. Then

qA(x) =

x1

x2

x3


T

·

1 0 0
0 2 0
0 0 3

 ·
x1

x2

x3

 = x2
1 + 2 x2

2 + 3 x2
3
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Example – Quadratic Form

In general we find for n× n matrix A = (aij):

qA(x) =
n

∑
i=1

n

∑
j=1

aij xixj

qA(x) =

x1

x2

x3


T

·

 1 1 −2
1 2 3
−2 3 1

 ·
x1

x2

x3



=

x1

x2

x3


T

·

 x1 + x2 − 2x3

x1 + 2x2 + 3x3

−2x1 + 3x2 + x3


= x2

1 + 2x1x2 − 4x1x3 + 2x2
2 + 6x2x3 + x2

3
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Definiteness

A quadratic form qA is called

▶ positive definite, if for all x ̸= 0, qA(x) > 0.
▶ positive semidefinite, if for all x, qA(x) ≥ 0.

▶ negative definite, if for all x ̸= 0, qA(x) < 0.
▶ negative semidefinite, if for all x, qA(x) ≤ 0.

▶ indefinite in all other cases.

A matrix A is called positive (negative) definite (semidefinite), if the
corresponding quadratic form is positive (negative) definite
(semidefinite).
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Definiteness

Every symmetric matrix is diagonalizable. Let {u1, . . . , un} be the
orthonormal basis of eigenvectors of A. Then for every x:

x =
n

∑
i=1

ci(x)ui = Uc(x)

U = (u1, . . . , un) is the transformation matrix for the orthonormal
basis, c the corresponding coefficient vector.

So if D is the diagonal matrix of eigenvalues λi of A we find

qA(x) = xT ·A · x = (Uc)T ·A ·Uc = cT ·UTAU · c = cT ·D · c

and thus

qA(x) =
n

∑
i=1

c2
i (x)λi
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Definiteness and Eigenvalues

Equation qA(x) = ∑n
i=1 c2

i (x)λi immediately implies:

Let λi be the eigenvalues of symmetric matrix A.
Then A (the quadratic form qA) is
▶ positive definite, if all λi > 0.
▶ positive semidefinite, if all λi ≥ 0.

▶ negative definite, if all λi < 0.
▶ negative semidefinite, if all λi ≤ 0.

▶ indefinite, if there exist λi > 0 and λj < 0.
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Example – Definiteness and Eigenvalues

▶ The eigenvalues of

(
2 −2
−2 5

)
are λ1 = 6 and λ2 = 1.

Thus the matrix is positive definite.

▶ The eigenvalues of

 5 −1 4
−1 2 1
4 1 5

 are

λ1 = 0, λ2 = 3, and λ3 = 9. The matrix is positive semidefinite.

▶ The eigenvalues of

 7 −5 4
−5 7 4
4 4 −2

 are

λ1 = −6, λ2 = 6 and λ3 = 12. Thus the matrix is indefinite.
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Leading Principle Minors

The definiteness of a matrix can also be determined by means of
minors.

Let A = (aij) be a symmetric n× n matrix.
Then the determinant of submatrix

Ak =

∣∣∣∣∣∣∣∣
a11 . . . a1k
...

. . .
...

ak1 . . . akk

∣∣∣∣∣∣∣∣
is called the k-th leading principle minor of A.
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Leading Principle Minors and Definiteness

A symmetric Matrix A is

▶ positive definite, if and only if all Ak > 0.

▶ negative definite, if and only if (−1)k Ak > 0 for all k.

▶ indefinite, if |A| ̸= 0 and none of the two cases holds.

(−1)k Ak > 0 means that
▶ A1, A3, A5, . . . < 0, and
▶ A2, A4, A6, . . . > 0.
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Example – Leading Principle Minors

Definiteness of matrix

A =

 2 1 0
1 3 −1
0 −1 2



A and qA are positive
definite.

A1 = det(a11) = a11 = 2 > 0

A2 =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ =
∣∣∣∣∣2 1
1 3

∣∣∣∣∣ = 5 > 0

A3 = |A| =

∣∣∣∣∣∣∣
2 1 0
1 3 −1
0 −1 2

∣∣∣∣∣∣∣ = 8 > 0
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Example – Leading Principle Minors

Definiteness of matrix

A =

 1 1 −2
1 2 3
−2 3 1



A and qA are indefinite.

A1 = det(a11) = a11 = 1 > 0

A2 =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ =
∣∣∣∣∣1 1
1 2

∣∣∣∣∣ = 1 > 0

A3 = |A| =

∣∣∣∣∣∣∣
1 1 −2
1 2 3
−2 3 1

∣∣∣∣∣∣∣ = −28 < 0
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Principle Minors

Unfortunately the condition for semidefiniteness is more tedious.

Let A = (aij) be a symmetric n× n matrix.
Then the determinant of submatrix

Ai1,...,ik =

∣∣∣∣∣∣∣∣
ai1,i1 . . . ai1,ik

...
. . .

...

aik ,i1 . . . aik ,ik

∣∣∣∣∣∣∣∣ 1 ≤ i1 < . . . < ik ≤ n.

is called a principle minor of order k of A.
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Principle Minors and Semidefiniteness

A symmetric matrix A is

▶ positive semidefinite, if and only if all Ai1,...,ik ≥ 0.

▶ negative semidefinite, if and only if (−1)k Ai1,...,ik ≥ 0 for all k.

▶ indefinite in all other cases.

(−1)k Ai1,...,ik ≥ 0 means that
▶ Ai1,...,ik ≥ 0, if k is even, and
▶ Ai1,...,ik ≤ 0, if k is odd.
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Example – Principle Minors

Definiteness of matrix

A =

 5 −1 4
−1 2 1
4 1 5



The matrix is
positive semidefinite.

(But not positive definite!)

principle minors of order 1:
A1 = 5 ≥ 0 A2 = 2 ≥ 0
A3 = 5 ≥ 0

principle minors of order 2:

A1,2 =

∣∣∣∣∣ 5 −1
−1 2

∣∣∣∣∣ = 9 ≥ 0

A1,3 =

∣∣∣∣∣5 4
4 5

∣∣∣∣∣ = 9 ≥ 0

A2,3 =

∣∣∣∣∣2 1
1 5

∣∣∣∣∣ = 9 ≥ 0

principle minors of order 3:
A1,2,3 = |A| = 0 ≥ 0
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Example – Principle Minors

Definiteness of matrix

A =

 −5 1 −4
1 −2 −1
−4 −1 −5



The matrix is
negative semidefinite.

(But not negative definite!)

principle minors of order 1:
A1 = −5 ≤ 0 A2 = −2 ≤ 0
A3 = −5 ≤ 0

principle minors of order 2:

A1,2 =

∣∣∣∣∣−5 1
1 −2

∣∣∣∣∣ = 9 ≥ 0

A1,3 =

∣∣∣∣∣−5 −4
−4 −5

∣∣∣∣∣ = 9 ≥ 0

A2,3 =

∣∣∣∣∣−2 −1
−1 −5

∣∣∣∣∣ = 9 ≥ 0

principle minors of order 3:
A1,2,3 = |A| = 0 ≤ 0
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Leading Principle Minors and Semidefiniteness

Obviously every positive definite matrix is also positive semidefinite
(but not necessarily the other way round).

Matrix

A =

2 1 0
1 3 −1
0 −1 2


is positive definite as all leading principle minors are positive
(see above).

Therefore A is also positive semidefinite.

In this case there is no need to compute the non-leading principle
minors.
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Recipe for Semidefiniteness

Recipe for finding semidefiniteness of matrix A:

1. Compute all leading principle minors:
▶ If the condition for positive definiteness holds, then

A is positive definite and thus positive semidefinite.
▶ Else if the condition for negative definiteness holds, then

A is negative definite and thus negative semidefinite.
▶ Else if det(A) ̸= 0, then

A is indefinite.

2. Else also compute all non-leading principle minors:
▶ If the condition for positive semidefiniteness holds, then

A is positive semidefinite.
▶ Else if the condition for negative semidefiniteness holds, then

A is negative semidefinite.
▶ Else

A is indefinite.
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Ellipse

Equation
ax2 + by2 = 1 , a, b > 0

describes an ellipse in canonical form.

1/
√

b

1/
√

a

The semi-axes have length 1√
a and 1√

b
, resp.
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A Geometric Interpretation II

Term ax2 + by2 is a quadratic form with matrix

A =

(
a 0
0 b

)

It has eigenvalues and normalized eigenvectors

λ1 = a with v1 = e1 and λ2 = b with v2 = e2 .

1√
λ2

v2

1√
λ1

v1

These eigenvectors coincide with
the semi-axes of the ellipse.
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A Geometric Interpretation II

Now let A be a symmetric 2× 2 matrix with positive eigenvalues.
Equation

xTAx = 1

describes an ellipse where the semi-axes (principle axes) coincide with
the normalized eigenvectors of A.

1√
λ2

v2 1√
λ1

v1
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A Geometric Interpretation II

By a change of basis from {e1, e2} to {v1, v2} using transformation
U = (v1, v2) this ellipse is rotated into canonical form.

1√
λ2

v2 1√
λ1

v1

UT

1√
λ2

e2

1√
λ1

e1

(That is, we diagonalize matrix A.)
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An Application in Statistics

Suppose we have n observations of k metric attributes X1, . . . , Xk
which we combine into a vector:

xi = (xi1, . . . , xik) ∈ Rk

The arithmetic mean then is given by

x =
1
n

n

∑
i=1

xi = (x1, . . . , xk)

The total sum of squares is a measure for the statistical dispersion

TSS =
n

∑
i=1
∥xi − x∥2 =

k

∑
j=1

(
n

∑
i=1
|xij − xj|2

)
=

k

∑
j=1

TSSj

It can be computed component-wise.
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An Application in Statistics

A change of basis by means of an orthogonal matrix does not change
TSS.

However, it changes the contributions of each of the components.

Can we find a basis such that a few components contribute much more
to the TSS than the remaining ones?
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Principle Component Analysis (PCA)

Assumptions:
▶ The data are approximately multinormal distributed.

Procedure:

1. Compute the covariance matrix Σ.

2. Compute all eigenvalues and normalized eigenvectors of Σ.

3. Sort eigenvalues such that

λ1 ≥ λ2 ≥ . . . ≥ λk .

4. Use corresponding eigenvectors v1, . . . , vk as new basis.

5. The contribution of the first m components in this basis to TSS is

∑m
j=1 TSSj

∑k
j=1 TSSj

≈
∑m

j=1 λj

∑k
j=1 λj

.
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Principle Component Analysis (PCA)

By means of PCA it is possible to reduce the number of dimensions
without reducing the TSS substantially.
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Summary

▶ eigenvalues and eigenvectors
▶ characteristic polynomial
▶ eigenspace
▶ properties of eigenvalues
▶ symmetric matrices and diagonalization
▶ quadratic forms
▶ definitness
▶ principle minors
▶ principle component analysis
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Chapter 7

Real Functions
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Real Function∗

Real functions are maps where both domain and codomain are
(unions of) intervals in R.

Often only function terms are given but neither domain nor codomain.
Then domain and codomain are implicitly given as following:

▶ Domain of the function is the largest sensible subset of the domain
of the function terms (i.e., where the terms are defined).

▶ Codomain is the image (range) of the function

f (D) = {y | y = f (x) for ein x ∈ D f } .
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Implicit Domain∗

Production function f (x) =
√

x is an abbreviation for

f : [0, ∞)→ [0, ∞), x 7→ f (x) =
√

x

(There are no negative amounts of goods.
Moreover,

√
x is not real for x < 0.)

Its derivative f ′(x) = 1
2
√

x is an abbreviation for

f ′ : (0, ∞)→ (0, ∞), x 7→ f ′(x) =
1

2
√

x

(Note the open interval (0, ∞); 1
2
√

x is not defined for x = 0.)
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Graph of a Function∗

Each tuple (x, f (x)) corresponds to a point in the xy-plane.
The set of all these points forms a curve called the graph of function f .

G f = {(x, y) | x ∈ D f , y = f (x)}

Graphs can be used to visualize functions.
They allow to detect many properties of the given function.

x

f (x)

0 1 2 3 4 5
0

1

2

3

4

5

f (x) = x− ln(x)
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How to Draw a Graph∗

1. Get an idea about the possible shape of the graph. One should be
able to sketch graphs of elementary functions by heart.

2. Find an appropriate range for the x-axis.
(It should show a characteristic detail of the graph.)

3. Create a table of function values and draw the corresponding
points into the xy-plane.

If known, use characteristic points like local extrema or
inflection points.

4. Check if the curve can be constructed from the drawn points.
If not add adapted points to your table of function values.

5. Fit the curve of the graph through given points in a proper way.
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Example – How to Draw a Graph∗

x

f (x)

0 1 2 3 4 5
0

1

2

3

4

5

Graph of function

f (x) = x− ln x

Table of values:

x f (x)
0 ERROR
1 1
2 1.307
3 1.901
4 2.614
5 3.391
0.5 1.193
0.25 1.636
0.1 2.403
0.05 3.046
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Sources of Errors

Most frequent errors when drawing function graphs:

▶ Table of values is too small:
It is not possible to construct the curve from the computed function
values.

▶ Important points are ignored:
Ideally extrema and inflection points should be known and used.

▶ Range for x and y-axes not suitable:
The graph is tiny or important details vanish in the “noise” of
handwritten lines (or pixel size in case of a computer program).
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Sources of Errors∗

Graph of function f (x) = 1
3 x3 − x in interval [−2, 2]:

−2 −1 1 2

−1

1Wrong!

−2 −1 1 2

−1

1
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Sources of Errors∗

Graph of f (x) = x3 has slope 0 in x = 0:

−2 −1 1 2

−2

−1

1

2

Wrong!

−2 −1 1 2

−2

−1

1

2
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Sources of Errors∗

Function f (x) = exp( 1
3 x3 + 1

2 x2) has a local maximum in x = −1:

−3 −2 −1 1 2 3

10

50

100

Wrong!

−3 −2 −1 1 2 3

1

5
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Sources of Errors∗

Graph of function f (x) = 1
3 x3 − x in interval [−2, 2]:

−10 −5 5 10

−10

−5

5

10

Wrong!

−2 −1 1 2

−1

1
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Sources of Errors∗

Graph of function f (x) = 1
3 x3 − x in interval [0, 2]: (not in [−2, 2]!)

−2 −1 1 2

−1

1Wrong!

−2 −1 1 2

−1

1
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Extrema and Inflection Points∗

Graph of function f (x) = 1
15 (3x5 − 20x3):

−2 −1 1 2

−5

−1

1

5 inflection points
maximum

minimum
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Sources of Errors

It is important that one already has an idea of the shape of the function
graph before drawing the curve.

Even a graph drawn by means of a computer program can differ
significantly from the true curve.

1

−1

0

1

f (x) = sin( 1
x )
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Sources of Errors∗

f (x) = sin( 1
x )

0.001

−1

0

1
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Sketch of a Function Graph∗

Often a sketch of the graph is sufficient. Then the exact function values
are not so important. Axes may not have scales.

However, it is important that the sketch clearly shows all characteristic
details of the graph (like extrema or important function values).

Sketches can also be drawn like a caricature:
They stress prominent parts and properties of the function.

Josef Leydold – Foundations of Mathematics – WS 2024/25 7 – Real Functions – 16 / 52



Piece-wise Defined Functions∗

The function term can be defined differently in subintervals of the
domain.

At the boundary points of these subintervals we have to mark which
points belong to the graph and which do not:

• (belongs) and ◦ (does not belong).

x

f (x)

−1 1 2

1

2

f (x) =


1, for x < 0,

1− x2

2 , for 0 ≤ x < 1,

x, for x ≥ 1.
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Bijectivity∗

Recall that each argument has exactly one image and that the number
of preimages of an element in the codomain can vary.
Thus we can characterize maps by their possible number of preimages.

▶ A map f is called one-to-one (or injective), if each element in the
codomain has at most one preimage.

▶ It is called onto (or surjective), if each element in the codomain
has at least one preimage.

▶ It is called bijective, if it is both one-to-one and onto, i.e.,
if each element in the codomain has exactly one preimage.

Also recall that a function has an inverse if and only if it is one-to-one
and onto (i.e., bijective).
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A Simple Horizontal Test∗

How can we determine whether a real function is one-to-one or onto?
I.e., how many preimage may a y ∈W f have?

(1) Draw the graph of the given function.

(2) Mark some y ∈W on the y-axis and draw a line parallel to the
x-axis (horizontal) through this point.

(3) The number of intersection points of horizontal line and graph
coincides with the number of preimages of y.

(4) Repeat Steps (2) and (3) for a representative set of y-values.

(5) Interpretation: If all horizontal lines intersect the graph in
(a) at most one point, then f is one-to-one;
(b) at least one point, then f is onto;
(c) exactly one point, then f is bijective.

Josef Leydold – Foundations of Mathematics – WS 2024/25 7 – Real Functions – 19 / 52



Example – Horizontal Test∗

−1 1 2

1

2

3

4

5
f : [−1, 2]→ R, x 7→ x2

▶ is not one-to-one;
▶ is not onto.

f : [0, 2]→ R, x 7→ x2

▶ is one-to-one;
▶ is not onto.

f : [0, 2]→ [0, 4], x 7→ x2

▶ is one-to-one and onto.

Beware! Domain and codomain
are part of the function!
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Function Composition∗

Let f : D f →W f and g : Dg →Wg be functions with W f ⊆ Dg.

g ◦ f : D f →Wg, x 7→ (g ◦ f )(x) = g( f (x))

is called composite function.
(read: “g composed with f ”, “g circle f ”, or “g after f ”)

Let g : R→ [0, ∞), x 7→ g(x) = x2,

f : R→ R, x 7→ f (x) = 3x− 2.

Then (g ◦ f ) : R→ [0, ∞),
x 7→ (g ◦ f )(x) = g( f (x)) = g(3x− 2) = (3x− 2)2

and ( f ◦ g) : R→ R,
x 7→ ( f ◦ g)(x) = f (g(x)) = f (x2) = 3x2 − 2
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Inverse Function∗

If f : D f →W f is a bijection, then there exists a so called
inverse function

f−1 : W f → D f , y 7→ x = f−1(y)

with the property

f−1 ◦ f = id and f ◦ f−1 = id

We get the function term of the inverse by interchanging the roles of
argument x and image y.
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Example – Inverse Function∗

We get the term for the inverse function by expressing x as function of y

We need the inverse function of

y = f (x) = 2x− 1

By rearranging we obtain

y = 2x− 1 ⇔ y + 1 = 2x ⇔ 1
2
(y + 1) = x

Thus the term of the inverse function is f−1(y) = 1
2 (y + 1).

Arguments are usually denoted by x. So we write

f−1(x) =
1
2
(x + 1) .

The inverse function of f (x) = x3 is f−1(x) = 3
√

x.
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Geometric Interpretation∗

Interchanging of x and y corresponds to reflection across the median
between x and y-axis.

median
f (x)

(x, y)

f−1(x)

(y, x)

(Graph of function f (x) = x3 and its inverse.)
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Linear Function and Absolute Value∗

▶ Linear function

f (x) = k x + d

k . . . slope
d . . . intercept

d

k

1

▶ Absolute value (or modulus)

f (x) = |x| =
{

x for x ≥ 0
−x for x < 0
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Power Function∗

Power function with integer exponents:

f : x 7→ xn, n ∈ Z D =

{
R for n ≥ 0
R \ {0} for n < 0

−1

1

−1

1

n = 1n = 3

n = −1
n = −3

−1 1

1
n = 0

n = 2
n = 4

n = −2
n = −4
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Calculation Rule for Powers and Roots∗

x−n =
1
xn x0 = 1 (x ̸= 0)

xn+m = xn · xm x
1
m = m

√
x (x ≥ 0)

xn−m =
xn

xm x
n
m = m

√
xn (x ≥ 0)

(x · y)n = xn · yn x−
n
m =

1
m
√

xn
(x ≥ 0)

(xn)m = xn·m

Important!

00 is not defined!
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Sources of Errors

Important!

▶ −x2 is not equal to (−x)2 !

▶ (x + y)n is not equal to xn + yn !

▶ xn + yn cannot be simplified (in general)!
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Power Function∗

Power function with real exponents:

f : x 7→ xα α ∈ R D =

{
[0, ∞) for α ≥ 0
(0, ∞) for α < 0

1

1

α = 1α > 1α = ∞

0 < α < 1
α = 0

α < 0
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Polynomial and Rational Functions∗

▶ Polynomial of degree n:

f (x) =
n

∑
k=0

ak xk

ai ∈ R, for i = 1, . . . , n, an ̸= 0.

▶ Rational Function:

D → R, x 7→ p(x)
q(x)

p(x) and q(x) are polynomials
D = R \ {roots of q}
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Calculation Rule for Fractions and Rational Terms∗

Let b, c, e ̸= 0.

c · a
c · b =

a
b

Reduce

a
b
=

c · a
c · b Expand

a
b
· d

c
=

a · d
b · c Multiplying

a
b

:
e
c
=

a
b
· c

e
Dividing

a
b
e
c

=
a · c
b · e Compound fraction
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Calculation Rule for Fractions and Rational Terms∗

Let b, c ̸= 0.

a
b
+

d
b
=

a + d
b

Addition with common denominator

a
b
+

d
c
=

a · c + d · b
b · c Addition

Very important! Really!
You have to expand fractions such that they have a common
denominator before you add them!
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Sources of Errors

Very Important! Really!

a + c
b + c

is not equal to
a
b

x
a
+

y
b

is not equal to
x + y
a + b

a
b + c

is not equal to
a
b
+

a
c

x + 2
y + 2

̸= x
y

1
2
+

1
3
̸= 1

5
.

1
x2 + y2 ̸=

1
x2 +

1
y2
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Exponential Function∗

▶ Exponential function:

R→ R+, x 7→ exp(x) = ex

e = 2, 7182818 . . . Euler’s number

▶ Generalized exponential function:

R→ R+, x 7→ ax a > 0

1

1

a
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Logarithm Function∗

▶ Logarithm:

Inverse function of exponential function.

R+ → R, x 7→ log(x) = ln(x)

▶ Generalized Logarithm to basis a:

R+ → R, x 7→ loga(x)

1

1

a
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Exponent and Logarithm∗

A number y is called the logarithm to basis a, if ay = x.
The logarithm is the exponent of a number to basis a.
We write

y = loga(x) ⇔ x = ay

Important logarithms:
▶ natural logarithm ln(x) with basis e = 2.7182818 . . .

(sometimes called Euler’s number )
▶ common logarithm lg(x) with basis 10

(sometimes called decadic or decimal logarithm)
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Calculations with Exponent and Logarithm∗

Conversation formula:

ax = ex ln(a) loga(x) =
ln(x)
ln(a)

Important:
Often one can see log(x) without a basis.

In this case the basis is (should be) implicitly given by the context of the
book or article.

▶ In mathematics: natural logarithm
financial mathematics, programs like R, Mathematica, Maxima, . . .

▶ In applied sciences: common logarithm
economics, pocket calculator, Excel, . . .
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Calculation Rules for Exponent and Logarithm∗

ax+y = ax · ay loga(x · y) = loga(x) + loga(y)

ax−y = ax

ay loga(
x
y ) = loga(x)− loga(y)

(ax)y = ax·y loga(xβ) = β · loga(x)

(a · b)x = ax · bx

aloga(x) = x loga(ax) = x

a0 = 1 loga(1) = 0

loga(x) has (as real-valued function) domain x > 0!
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Trigonometric Functions∗

▶ Sine:

R→ [−1, 1], x 7→ sin(x)

▶ Cosine:

R→ [−1, 1], x 7→ cos(x)

1

−1

π
2

π 3π
2

2π

sin(x)

cos(x)

Beware!
These functions use radian for their arguments, i.e., angles are
measured by means of the length of arcs on the unit circle and not by
degrees. A right angle then corresponds to x = π/2.
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Sine and Cosine∗

α

1
sin α

cos α

(cos α, sin α)
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Sine and Cosine∗

Important formulas:

Periodic: For all k ∈ Z,

sin(x + 2kπ) = sin(x)

cos(x + 2kπ) = cos(x)

Relation between sin and cos:

sin2(x) + cos2(x) = 1
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Multivariate Functions∗

A function of several variables (or multivariate function)
is a function with more than one argument which evaluates to a real
number.

f : Rn → R, x 7→ f (x) = f (x1, x2, . . . , xn)

Arguments xi are the variables of function f .

f (x, y) = exp(−x2 − 2y2)

is a bivariate function in variables x and y.

p(x1, x2, x3) = x2
1 + x1x2 − x2

2 + 5x1x3 − 2x2x3

is a function in the three variables x1, x2, and x3.
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Graphs of Bivariate Functions∗

Bivariate functions (i.e., of two variables) can be visualized by its graph:

G f = {(x, y, z) | z = f (x, y) for x, y ∈ R}

It can be seen as the two dimensional surface of a three dimensional
landscape.

The notion of graph exists analogously for functions of three or more
variables.

G f = {(x, y) | y = f (x) for an x ∈ Rn}

However, it can hardly be used to visualize such functions.
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Graphs of Bivariate Functions

f (x, y) = exp(−x2 − 2y2)

x

y

z

x

y

z
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Contour Lines of Bivariate Functions∗

Let c ∈ R be fixed. Then the set of all points (x, y) in the real plane
with f (x, y) = c is called contour line of function f .

Obviously function f is constant on each of its contour lines.

Other names:
▶ Indifference curve
▶ Isoquants
▶ Level set (is a generalization of a contour line for functions of any

number of variables.)

A collection of contour lines can be seen as a kind of “hiking map” for
the “landscape” of the function.
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Contour Lines of Bivariate Functions∗

x

y

z

x

y

graph contour lines

f (x, y) = exp(−x2 − 2y2)
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Indifference Curves∗

Indifference curves are determined by an equation

F(x, y) = 0

We can (try to) draw such curves by expressing one of the variables as
function of the other one
(i.e., solve the equation w.r.t. one of the two variables).

So we may get an univariate function. The graph of this function
coincides with the indifference curve.

We then draw the graph of this univariate function by the method
described above.
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Example – Cobb-Douglas-Function∗

We want to draw indifference curve

x
1
3 y

2
3 = 1 , x, y > 0.

Expressing x by y yields:

x =
1
y2

Alternatively we can express y by x:

y =
1√
x

x

y

0 1 2 3 4
0

1

2

3

4

Josef Leydold – Foundations of Mathematics – WS 2024/25 7 – Real Functions – 48 / 52



Example – CES-Function∗

We want to draw indifference curve(
x

1
2 + y

1
2

)2
= 4 , x, y > 0.

Expressing x by y yields:

y =
(

2− x
1
2

)2

(Take care about the domain of this
curve!)

x

y

0 1 2 3 4
0

1

2

3

4
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Paths∗

A function

s : R→ Rn, t 7→ s(t) =


s1(t)

...

sn(t)


is called a path in Rn.
Variable t is often interpreted as time.

[0, ∞)→ R2, t 7→
(

cos(t)
sin(t)

)
x1

x2

t = 0

t = 13
12 π
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Vector-valued Functions∗

Generalized vector-valued function:

f : Rn → Rm, x 7→ y = f(x) =


f1(x)

...

fm(x)

 =


f1(x1, . . . , xn)

...

fm(x1, . . . , xn)


▶ Univariate functions:

R→ R, x 7→ y = x2

▶ Multivariate functions:
R2 → R, x 7→ y = x2

1 + x2
2

▶ Paths:
[0, 1)→ Rn, s 7→ (s, s2)T

▶ Linear maps:
Rn → Rm, x 7→ y = Ax A . . . m× n-Matrix
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Summary

▶ real functions
▶ implicit domain
▶ graph of a function
▶ sources of errors
▶ piece-wise defined functions
▶ one-to-one and onto
▶ function composition
▶ inverse function
▶ elementary functions
▶ multivariate functions
▶ paths
▶ vector-valued functions
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Chapter 8

Limits

Josef Leydold – Foundations of Mathematics – WS 2024/25 8 – Limits – 1 / 34



Sequences∗

A sequence is an enumerated collection of objects in which repetitions
are allowed. These objects are called members or terms of the
sequence.

In this chapter we are interested in sequences of numbers.

Formally a sequence is a special case of a map:

a : N→ R, n 7→ an

Sequences are denoted by
(
an
)∞

n=1or just
(
an
)

for short.

An alternative notation used in literature is
〈

an
〉∞

n=1.
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Sequences∗

Sequences can be defined

▶ by enumerating of its terms,

▶ by a formula, or

▶ by recursion.
Each term is determined by its predecessor(s).

Enumeration:
(
an
)
=
(
1, 3, 5, 7, 9, . . .

)
Formula:

(
an
)
=
(
2 n− 1

)
Recursion: a1 = 1, an+1 = an + 2
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Graphical Representation∗

A sequence
(
an
)

can by represented

(1) by drawing tuples (n, an) in the plane, or
an

n

1

1 2 3 4 5 6 7 8 9 10

•

•
• • • • • • • •

( 1
n

)∞
n=1

(2) by drawing points on the number line.

0 1
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Properties∗

Properties of a sequence
(
an
)
:

Property Definition

monotonically increasing an+1 ≥ an for all n ∈N

monotonically decreasing an+1 ≤ an

alternating an+1 · an < 0 i.e. the sign changes

bounded |an| ≤ M for some M ∈ R

Sequence
( 1

n

)
is

▶ monotonically decreasing; and
▶ bounded, as for all n ∈N, |an| = |1/n| ≤ M = 1;

(we could also choose M = 1000)
▶ but not alternating.
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Limit of a Sequence∗

Consider the following sequence of numbers

(an)∞
n=1 =

(
(−1)n 1

n

)∞
n=1 = (−1, 1

2 ,− 1
3 , 1

4 ,− 1
5 , 1

6 , . . .)

0a1 a2a3 a4a5

The terms of this sequence tend to 0 with increasing n.
We say that sequence

(
an
)

converges to 0.

We write

(an)→ 0 or lim
n→∞

an = 0

(read: “limit of an for n tends to ∞”)

Josef Leydold – Foundations of Mathematics – WS 2024/25 8 – Limits – 6 / 34



Limit of a Sequence / Definition∗

Definition:
A number a ∈ R is a limit of sequence

(
an
)
, if for every interval

(a− ε, a + ε) there exists an N such that an ∈ (a− ε, a + ε) for all
n ≥ N; i.e., all terms following aN are contained in this interval.

Equivalent Definition: A sequence
(
an
)

converges to limit a ∈ R if
for every ε > 0 there exists an N such that |an − a| < ε for all n ≥ N.

[Mathematicians like to use ε for a very small positive number.]

A sequence that has a limit is called convergent.
It converges to its limit.

It can be shown that a limit of a sequence is uniquely defined
(if it exists).

A sequence without a limit is called divergent.

Josef Leydold – Foundations of Mathematics – WS 2024/25 8 – Limits – 7 / 34



Limit of a Sequence / Example∗

Sequence(
an
)∞

n=1 =
(
(−1)n 1

n

)∞
n=1 =

(
− 1, 1

2 ,− 1
3 , 1

4 ,− 1
5 , 1

6 , . . .
)

has limit a = 0.

For example, if we set ε = 0.3, then all terms following a4 are contained
in interval (a− ε, a + ε).

If we set ε = 1
1 000 000 , then all terms starting with the 1 000 001-st term

are contained in the interval.

Thus

lim
n→∞

(−1)n

n
= 0 .
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Limit of a Sequence / Example∗

Sequence
(
an
)∞

n=1 =
( 1

2n

)∞
n=1 =

( 1
2 , 1

4 , 1
8 , 1

16 , . . .
)

converges to 0:

lim
n→∞

an = 0

Sequence
(
bn
)∞

n=1 =
( n−1

n+1

)∞
n=1 =

(
0, 1

3 , 2
4 , 3

5 , 4
6 , 5

7 , . . .
)

is convergent:

lim
n→∞

bn = 1

Sequence
(
cn
)∞

n=1 =
(
(−1)n)∞

n=1 =
(
− 1, 1,−1, 1,−1, 1, . . .

)
is divergent.

Sequence
(
dn
)∞

n=1 =
(
2n)∞

n=1 =
(
2, 4, 8, 16, 32, . . .

)
is divergent,

but tends to ∞. By abuse of notation we write:

lim
n→∞

dn = ∞
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Limits of Important Sequences∗

lim
n→∞

na =


0 for a < 0
1 for a = 0
∞ for a > 0

lim
n→∞

qn =


0 for |q| < 1
1 for q = 1
∞ for q > 1
∄ for q ≤ −1

lim
n→∞

na

qn =


0 for |q| > 1
∞ for 0 < q < 1
∄ for −1 < q < 0

(|q| ̸∈ {0, 1})
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Rules for Limits∗

Let
(
an
)∞

n=1 and
(
bn
)∞

n=1 be convergent sequences with lim
n→∞

an = a

and lim
n→∞

bn = b, resp., and let
(
cn
)∞

n=1 be a bounded sequence.

Then

(1) lim
n→∞

(k · an + d) = k · a + d

(2) lim
n→∞

(an + bn) = a + b

(3) lim
n→∞

(an · bn) = a · b

(4) lim
n→∞

an

bn
=

a
b

for b ̸= 0

(5) lim
n→∞

(an · cn) = 0 provided a = 0

(6) lim
n→∞

ak
n = ak
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Example – Rules for Limits∗

lim
n→∞

(
2 +

3
n2

)
= 2 + 3 lim

n→∞
n−2︸ ︷︷ ︸

=0

= 2 + 3 · 0 = 2

lim
n→∞

(2−n · n−1) = lim
n→∞

n−1

2n = 0

lim
n→∞

1 + 1
n

2− 3
n2

=
lim
n→∞

(
1 + 1

n

)
lim
n→∞

(
2− 3

n2

) =
1
2

lim
n→∞

sin(n)︸ ︷︷ ︸
bounded

· 1
n2︸︷︷︸
→0

= 0
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Rules for Limits / Rational Terms∗

Important!
When we apply these rules we have to take care that we never obtain
expressions of the form 0

0 , ∞
∞ , or 0 ·∞.

These expressions are not defined!

lim
n→∞

3n2 + 1
n2 − 1

=
lim
n→∞

3n2 + 1

lim
n→∞

n2 − 1
=

∞
∞

(not defined)

Trick: Reduce the fraction by the largest power in its denominator.

lim
n→∞

3n2 + 1
n2 − 1

= lim
n→∞

n̸2

n̸2 ·
3 + n−2

1− n−2 =
lim
n→∞

3 + n−2

lim
n→∞

1− n−2 =
3
1
= 3
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Euler’s Number∗

lim
n→∞

(
1 +

1
n

)n

= e = 2.7182818284590 . . .

This limit is very important in many applications including finance
(continuous compounding).

lim
n→∞

(
1 +

x
n

)n
= lim

n→∞

(
1 +

1
n/x

)n

= lim
m→∞

(
1 +

1
m

)mx (
m =

n
x

)
=

(
lim

m→∞

(
1 +

1
m

)m)x

= ex
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Cauchy Sequence

How can we determine that a sequence converges if we have no clue
about the limit?

A sequence
(
an
)∞

n=1 converges if and only if for every ε > 0 there
exists an N such that |an − am| < ε for all n, m ≥ N.

A sequence with such a property is called a Cauchy sequence.
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Series∗

The sum of the first n terms of sequence
(
ai
)∞

i=1

sn =
n

∑
i=1

ai

is called the n-th partial sum of the sequence.

The sequence
(
sn
)∞

n=1 of all partial sums is called the series of the
sequence.

The series of sequence
(
ai
)
=
(
2 i− 1

)
is

(
sn
)
=

(
n

∑
i=1

(2 i− 1)

)
=
(
1, 4, 9, 16, 25, . . .

)
=
(
n2) .
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Limit of a Series∗

There are many cases where we have a summation over
infinitely many terms, ∑∞

i=1 ai.

However, then the usual rules for addition (in particular associativity and
commutativity) may not hold any more.
Applying them in such cases would result in contradicitions.

Thus an “infinite sum” is defined as the limit of a series:

∞

∑
i=1

ai = lim
n→∞

n

∑
i=1

ai

For example,
∞

∑
k=1

1
2k = lim

n→∞

n

∑
k=1

1
2k = lim

n→∞

1
2
·
( 1

2

)n − 1
1
2 − 1

= 1.
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Limit of a Function∗

What happens with the value of a function f , if the argument x tends to
some value x0 (which need not belong to the domain of f )?

Function

f (x) =
x2 − 1
x− 1

is not defined in x = 1.

By factorizing and reducing we get
function

g(x) = x + 1 =

{
f (x), if x ̸= 1
2, if x = 1

x

f (x)

−1 1 2

1

2

3
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Limit of a Function∗

Suppose we approach argument x0 = 1.

Then the value of function f (x) =
x2 − 1
x− 1

tends to 2.

We say:
f (x) converges to 2 when x tends to 1

and write:

lim
x→1

x2 − 1
x− 1

= 2

x

f (x)

−1 1 2

1

2

3
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Limit of a Function∗

Formal definition:
If sequence

(
f (xn))∞

n=1 of function values converges to number y0 for
every convergent sequence

(
xn)∞

n=1 → x0 of arguments,
then y0 is called the limit of f as x approaches x0.

We write

lim
x→x0

f (x) = y0 or f (x)→ y0 for x → x0

x0 need not belong to the domain of f .
y0 need not belong to the codomain of f .
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Rules for Limits∗

Rules for limits of functions are analogous to rules for sequences.

Let lim
x→x0

f (x) = a and lim
x→x0

g(x) = b.

(1) lim
x→x0

(c · f (x) + d) = c · a + d

(2) lim
x→x0

( f (x) + g(x)) = a + b

(3) lim
x→x0

( f (x) · g(x)) = a · b

(4) lim
x→x0

f (x)
g(x)

=
a
b

for b ̸= 0

(6) lim
x→x0

( f (x))k = ak for k ∈N

Josef Leydold – Foundations of Mathematics – WS 2024/25 8 – Limits – 21 / 34



How to Find Limits?∗

The following recipe is suitable for “simple” functions:
1. Draw the graph of the function.
2. Mark x0 on the x-axis.
3. Follow the graph with your pencil until we reach x0 starting from

right of x0.
4. The y-coordinate of your pencil in this point is then the so called

right-handed limit of f as x approaches x0 (from above):
lim

x→x+0
f (x). (Other notations: lim

x↓x0
f (x) or lim

x↘x0
f (x))

5. Analogously we get the left-handed limit of f as x approaches x0
(from below): lim

x→x−0
f (x).

6. If both limits coincide, then the limit exists and we have

lim
x→x0

f (x) = lim
x→x−0

f (x) = lim
x→x+0

f (x)
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Example – How to Find Limits?∗

x

f (x)

−1 1 2

1

2

lim
x→1−

f (x)

lim
x→1+

f (x) f (x) =


1, for x < 0
1− x2

2 , for 0 ≤ x < 1
x
2 + 1, for x ≥ 1

0.5 = limx→1− f (x) ̸= limx→1+ f (x) = 1.5
i.e., the limit of f at x0 = 1 does not exist.

The limits at other points, however, do exist,
e.g. lim

x→0
f (x) = 1.
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Example – How to Find Limits?∗

x

f (x)

−1 1 2

1

2

f (x) =


1, for x < 0
0, for x = 0
1− x2

2 , for 0 < x < 1
x
2 + 1, for x ≥ 1

The only difference is to above is the function value at x0 = 0.
Nevertheless, the limit does exist:

lim
x→0−

f (x) = 1 = lim
x→0+

f (x) ⇒ lim
x→0

f (x) = 1 .
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Unbounded Function∗

It may happen that f (x) tends to ∞ (or −∞) if x tends to x0.

We then write (by abuse of notation):

lim
x→x0

f (x) = ∞

x

f (x)

lim
x→0

1
x2 = ∞
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Limit as x → ∞∗

By abuse of language we can define the limit analogously for x0 = ∞

and x0 = −∞, resp.

Limit
lim
x→∞

f (x)

exists, if f (x) converges whenever x tends to infinity.

lim
x→∞

1
x2 = 0 and lim

x→−∞

1
x2 = 0
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Continuous Functions∗

We may observe that we can draw the graph of a function without
removing the pencil from paper. We call such functions continuous.

For some other functions we have to remove the pencil. At such points
the function has a jump discontinuity.

−2 −1 1 2

−1

1

−1 1 2

1

2

continuous jump discontinuity at x = 1
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Continuous Functions∗

Formal Definition:

Function f : D → R is called continuous at x0 ∈ D, if

1. lim
x→x0

f (x) exists, and

2. lim
x→x0

f (x) = f (x0) .

The function is called continuous if it is continuous at all points of its
domain.

Note that continuity is a local property of a function.
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Continuous Function and Limit∗

Continuous functions have to important property that we can exchange
function evaluation and the limiting process.

lim
x→x0

f (x) = f ( lim
x→x0

x)
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Discontinuous Function∗

x

f (x)

−1 1 2

1

2

lim
x→1−

f (x)

lim
x→1+

f (x) f (x) =


1, for x < 0
1− x2

2 , for 0 ≤ x < 1
x
2 + 1, for x ≥ 1

Not continuous in x = 1 as lim
x→1

f (x) does not exist.

So f is not a continuous function.

However, it is still continuous in all x ∈ R \ {1}.
For example at x = 0, lim

x→0
f (x) does exist and lim

x→0
f (x) = 1 = f (0).
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Discontinuous Function∗

x

f (x)

−1 1 2

1

2

f (x) =


1, for x < 0
0, for x = 0
1− x2

2 , for 0 < x < 1
x
2 + 1, for x ≥ 1

Not continuous in all x = 0, either.
lim
x→0

f (x) = 1 does exist but lim
x→0

f (x) ̸= f (0).

So f is not a continuous function.

However, it is still continuous in all x ∈ R \ {0, 1}.
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Recipe for “Nice” Functions∗

(1) Draw the graph of the given function.

(2) At all points of the domain, where we have to remove the pencil
from paper the function is not continuous.

(3) At all other points of the domain (where we need not remove the
pencil) the function is continuous.

x

f (x)

−1 1 2

1

2
f (x) =


1, for x < 0,

1− x2

2 , for 0 ≤ x < 1,
x
2 + 1, for x ≥ 1.

f is continuous
except at point x = 1.
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Discontinuous Function∗

x

f (x)

−1 1 2

1

2

f (x) =


1, for x < 0
0, for x = 0
1− x2

2 , for 0 < x < 1
x
2 + 1, for x ≥ 1

Function f is continuous except at points x = 0 and x = 1.
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Summary

▶ sequence
▶ limit of a sequence
▶ limit of a function
▶ convergent and divergent
▶ Euler’s number
▶ rules for limits
▶ continuous functions
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Chapter 9

Derivatives
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Difference Quotient∗

Let f : R→ R be some function. Then the ratio

∆ f
∆x

=
f (x0 + ∆x)− f (x0)

∆x
=

f (x)− f (x0)

x− x0

is called difference quotient.

x

f (x)

x0 x

∆x

∆ f

secant

(x0, f (x0))

(x, f (x))
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Differential Quotient∗

If the limit

lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
= lim

x→x0

f (x)− f (x0)

x− x0

exists, then function f is called differentiable at x0. This limit is then
called differential quotient or (first) derivative of function f at x0.

We write

f ′(x0) or
d f
dx

∣∣∣∣
x=x0

Function f is called differentiable, if it is differentiable at each point of its
domain.
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Slope of Tangent∗

▶ The differential quotient gives the slope of the tangent to the graph
of function f (x) at x0.

x

f (x)

secants

x0

1

f ′(x0)

tangent
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Marginal Function∗

▶ Instantaneous change of function f .
▶ “Marginal function” (as in marginal utility )

x

f (x)

x0

Josef Leydold – Foundations of Mathematics – WS 2024/25 9 – Derivatives – 5 / 51



Existence of Differential Quotient∗

Function f is differentiable at all points, where we can draw the tangent
(with finite slope) uniquely to the graph.

Function f is not differentiable at all points where this is not possible.

In particular these are
▶ jump discontinuities
▶ “kinks” in the graph of the function
▶ vertical tangents
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Computation of the Differential Quotient∗

We can compute a differential quotient by determining the limit of the
difference quotient.

Let f (x) = x2. The we find for the first derivative

f ′(x0) = lim
h→0

(x0 + h)2 − x0
2

h

= lim
h→0

x0
2 + 2 x0 h + h2 − x0

2

h

= lim
h→0

2 x0 h + h2

h
= lim

h→0
(2 x0 + h)

= 2 x0
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Derivative of a Function∗

Function

f ′ : D → R, x 7→ f ′(x) =
d f
dx

∣∣∣∣
x

is called the first derivative of function f .
Its domain D is the set of all points where the differential quotient
(i.e., the limit of the difference quotient) exists.
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Derivatives of Elementary Functions∗

f (x) f ′(x)

c 0

xα α · xα−1

ex ex

ln(x)
1
x

sin(x) cos(x)

cos(x) − sin(x)
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Computation Rules for Derivatives∗

▶ (c · f (x))′ = c · f ′(x)

▶ ( f (x) + g(x))′ = f ′(x) + g′(x) Summation rule

▶ ( f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g′(x) Product rule

▶ ( f (g(x)))′ = f ′(g(x)) · g′(x) Chain rule

▶

(
f (x)
g(x)

)′
=

f ′(x) · g(x)− f (x) · g′(x)
(g(x))2 Quotient rule
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Example – Computation Rules for Derivatives∗

(
3 x3 + 2 x− 4

)′
= 3 · 3 · x2 + 2 · 1− 0 = 9 x2 + 2

(
ex · x2)′ = (ex)′ · x2 + ex ·

(
x2)′ = ex · x2 + ex · 2 x

(
(3 x2 + 1)2)′ = 2 (3 x2 + 1) · 6 x

(√
x
)′
=
(

x
1
2

)′
= 1

2 · x−
1
2 = 1

2
√

x

(ax)′ =
(

eln(a)·x
)′

= eln(a)·x · ln(a) = ax ln(a)

(
1 + x2

1− x3

)′
=

2x · (1− x3)− (1 + x2) · 3x2

(1− x3)2
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Higher Order Derivatives∗

We can compute derivatives of the derivative of a function.

Thus we obtain the

▶ second derivative f ′′(x) of function f ,

▶ third derivative f ′′′(x), etc.,

▶ n-th derivative f (n)(x).

Other notations:

▶ f ′′(x) =
d2 f
dx2 (x) =

(
d

dx

)2

f (x)

▶ f (n)(x) =
dn f
dxn (x) =

(
d

dx

)n

f (x)
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Example – Higher Order Derivatives∗

The first five derivatives of function

f (x) = x4 + 2x2 + 5x− 3

are

f ′(x) = (x4 + 2x2 + 5x− 3)′ = 4x3 + 4x + 5
f ′′(x) = (4x3 + 4x + 5)′ = 12x2 + 4
f ′′′(x) = (12x2 + 4)′ = 24x
f ıv(x) = (24x)′ = 24
f v(x) = 0
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Marginal Change∗

We can estimate the derivative f ′(x0) approximately by means of the
difference quotient with small change ∆x:

f ′(x0) = lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
≈ ∆ f

∆x

Vice verse we can estimate the change ∆ f of f for small changes ∆x
approximately by the first derivative of f :

∆ f = f (x0 + ∆x)− f (x0) ≈ f ′(x0) · ∆x

Beware:
▶ f ′(x0) · ∆x is a linear function in ∆x.
▶ It is the best possible approximation of f by a linear function

around x0.
▶ This approximation is useful only for “small” values of ∆x.
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Differential∗

The approximation

∆ f = f (x0 + ∆x)− f (x0) ≈ f ′(x0) · ∆x

becomes exact if ∆x (and thus ∆ f ) becomes infinitesimally small.
We then write dx and d f instead of ∆x and ∆ f , resp.

d f = f ′(x0) dx

Symbols d f and dx are called the differentials of function f and the
independent variable x, resp.
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Differential∗

Differential d f can be seen as a linear function in dx.
We can use it to compute f approximately around x0.

f (x0 + dx) ≈ f (x0) + d f

Let f (x) = ex.

Differential of f at point x0 = 1:
d f = f ′(1) dx = e1 dx

Approximation of f (1.1) by means of this differential:
∆x = (x0 + dx)− x0 = 1.1− 1 = 0.1

f (1.1) ≈ f (1) + d f = e + e · 0.1 ≈ 2.99

Exact value: f (1.1) = 3.004166 . . .
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Elasticity∗

The first derivative of a function gives absolute rate of change of f at x0.
Hence it depends on the scales used for argument and function values.

However, often relative rates of change are more appropriate.

We obtain scale invariance and relative rate of changes by

change of function value relative to value of function

change of argument relative to value of argument

and thus

lim
∆x→0

f (x+∆x)− f (x)
f (x)
∆x
x

= lim
∆x→0

f (x + ∆x)− f (x)
∆x

· x
f (x)

= f ′(x) · x
f (x)
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Elasticity∗

Expression

ε f (x) = x · f ′(x)
f (x)

is called the elasticity of f at point x.

Let f (x) = 3 e2x. Then

ε f (x) = x · f ′(x)
f (x)

= x · 6 e2x

3 e2x = 2 x

Let f (x) = β xα. Then

ε f (x) = x · f ′(x)
f (x)

= x · β α xα−1

β xα
= α
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Elasticity II∗

The relative rate of change of f can be expressed as

ln( f (x))′ =
f ′(x)
f (x)

What happens if we compute the derivative of ln( f (x)) w.r.t. ln(x)?

Let v = ln(x) ⇔ x = ev

Derivation by means of the chain rule yields:

d(ln( f (x)))
d(ln(x))

=
d(ln( f (ev)))

dv
=

f ′(ev)

f (ev)
ev =

f ′(x)
f (x)

x = ε f (x)

ε f (x) =
d(ln( f (x)))

d(ln(x))
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Elasticity II∗

We can use the chain rule formally in the following way:

Let
▶ u = ln(y),
▶ y = f (x),
▶ x = ev ⇔ v = ln(x)

Then we find

d(ln f )
d(ln x)

=
du
dv

=
du
dy
· dy

dx
· dx

dv
=

1
y
· f ′(x) · ev =

f ′(x)
f (x)

x
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Elastic Functions∗

A Function f is called

▶ elastic in x, if
∣∣ ε f (x)

∣∣ > 1
▶ 1-elastic in x, if

∣∣ ε f (x)
∣∣ = 1

▶ inelastic in x, if
∣∣ ε f (x)

∣∣ < 1

For elastic functions we then have:
The value of the function changes relatively faster than the value of the
argument.

Function f (x) = 3 e2x is [ ε f (x) = 2 x ]

▶ 1-elastic, for x = − 1
2 and x = 1

2 ;

▶ inelastic, for − 1
2 < x < 1

2 ;

▶ elastic, for x < − 1
2 or x > 1

2 .
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Source of Errors

Beware!
Function f is elastic if the absolute value of the elasticity is greater
than 1.
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Elastic Demand∗

Let q(p) be an elastic demand function, where p is the price.
We have: p > 0, q > 0, and q′ < 0 (q is decreasing). Hence

εq(p) = p · q′(p)
q(p)

< −1

What happens to the revenue (= price × selling)?

u′(p) = (p · q(p))′ = 1 · q(p) + p · q′(p)

= q(p) · (1 + p · q′(p)
q(p)︸ ︷︷ ︸

=εq<−1

)

< 0

In other words, the revenue decreases if we raise prices.
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Partial Derivative∗

We investigate the rate of change of function f (x1, . . . , xn), when
variable xi changes and the other variables remain fixed.
Limit

∂ f
∂xi

= lim
∆xi→0

f (. . . , xi + ∆xi, . . .)− f (. . . , xi, . . .)
∆xi

is called the (first) partial derivative of f w.r.t. xi.

Other notations for partial derivative ∂ f
∂xi

:

▶ fxi(x) (derivative w.r.t. variable xi)

▶ fi(x) (derivative w.r.t. the i-th variable)

▶ f ′i (x) (i-th component of the gradient)
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Computation of Partial Derivatives∗

We obtain partial derivatives ∂ f
∂xi

by applying the rules for univariate
functions for variable xi while we treat all other variables as constants.

First partial derivatives of

f (x1, x2) = sin(2 x1) · cos(x2)

fx1 = 2 · cos(2 x1) · cos(x2)︸ ︷︷ ︸
treated as constant

fx2 = sin(2 x1)︸ ︷︷ ︸
treated as constant

·(− sin(x2))
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Higher Order Partial Derivatives∗

We can compute partial derivatives of partial derivatives analogously to
their univariate counterparts and obtain
higher order partial derivatives:

∂2 f
∂xk∂xi

(x) and
∂2 f
∂x2

i
(x)

Other notations for partial derivative ∂2 f
∂xk∂xi

(x):

▶ fxixk(x) (derivative w.r.t. variables xi and xk)

▶ fik(x) (derivative w.r.t. the i-th and k-th variable)

▶ f ′′ik(x) (component of the Hessian matrix with index ik)
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Higher Order Partial Derivatives∗

If all second order partial derivatives exists and are continuous, then
the order of differentiation does not matter (Schwarz’s theorem):

∂2 f
∂xk∂xi

(x) =
∂2 f

∂xi∂xk
(x)

Remark: Practically all differentiable functions in economic models have
this property.
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Example – Higher Order Partial Derivatives∗

Compute the first and second order partial derivatives of

f (x, y) = x2 + 3 x y

First order partial derivatives:

fx = 2 x + 3 y fy = 0 + 3 x

Second order partial derivatives:

fxx = 2 fxy = 3
fyx = 3 fyy = 0
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Gradient

We collect all first order partial derivatives into a (row) vector which is
called the gradient at point x.

∇ f (x) = ( fx1(x), . . . , fxn(x))

▶ read: “gradient of f ” or “nabla f ”.

▶ Other notation: f ′(x)

▶ Alternatively the gradient can also be a column vector.

▶ The gradient is the analog of the first derivative of univariate
functions.
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Properties of the Gradient

▶ The gradient of f always points in the direction of
steepest ascent.

▶ Its length is equal to the slope at this point.
▶ The gradient is normal (i.e. in right angle) to the corresponding

contour line (level set).

∇ f
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Example – Gradient

Compute the gradient of

f (x, y) = x2 + 3 x y

at point x = (3, 2).

fx = 2 x + 3 y
fy = 0 + 3 x

∇ f (x) = (2x + 3y, 3x)

∇ f (3, 2) = (12, 9)
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Directional Derivative

We obtain partial derivative ∂ f
∂xi

by differentiating the univariate function
g(t) = f (x1, . . . , xi + t, . . . , xn) = f (x + t · h)
with h = ei at point t = 0:

∂ f
∂xi

(x) =
dg
dt

∣∣∣∣
t=0

=
d
dt

f (x + t · h)
∣∣∣∣
t=0

∂ f
∂x1

∂ f
∂x2

x
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Directional Derivative

Generalization:
We obtain the directional derivative ∂ f

∂h along h with length 1 by
differentiating the univariate function g(t) = f (x + t · h)
at point t = 0:

∂ f
∂h

(x) =
dg
dt

∣∣∣∣
t=0

=
d
dt

f (x + t · h)
∣∣∣∣
t=0

∂ f
∂h

hx

The directional derivative
describes the change of f ,
if we move x in direction h.
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Directional Derivative

We have (for ∥h∥ = 1):

∂ f
∂h

(x) = fx1(x) · h1 + · · ·+ fxn(x) · hn = ∇ f (x) · h

If h does not have norm 1, we first have to normalize first:

∂ f
∂h

(x) = ∇ f (x) · h
∥h∥
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Example – Directional Derivative

Compute the directional derivative of

f (x1, x2) = x2
1 + 3 x1 x2

along h =

(
1
−2

)
at x =

(
3
2

)
.

Norm of h:
∥h∥ =

√
hT h =

√
12 + (−2)2 =

√
5

Directional derivative:

∂ f
∂h

(x) = ∇ f (x) · h
∥h∥ =

1√
5
(12, 9) ·

(
1
−2

)
= − 6√

5
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Total Differential

We want to approximate a function f by some linear function such that
the approximation error is as small as possible:

f (x + h)− f (x) ≈ fx1(x) h1 + . . . + fxn(x) hn = ∇ f (x) · h

The approximation becomes exact if h (and thus ∆ f ) becomes
infinitesimally small.

The linear function

d f = fx1(x) dx1 + . . . + fxn(x) dxn =
n

∑
i=1

fxi dxi = ∇ f (x) · dx

is called the total Differential of f at x.
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Example – Total Differential

Compute the total differential of

f (x1, x2) = x2
1 + 3 x1 x2

at x = (3, 2).

d f = fx1(3, 2) dx1 + fx2(3, 2) dx2 = 12 dx1 + 9 dx2

Approximation of f (3.1, 1.8) by means of the total differential:

f (3.1, 1.8) ≈ f (3; 2) + d f
= 27 + 12 · 0.1 + 9 · (−0.2) = 26.40

Exact value: f (3.1, 1.8) = 26.35

h = (x + h)− x =

(
3.1
1.8

)
−
(

3
2

)
=

(
0.1
−0.2

)
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Hessian Matrix

Let f (x) = f (x1, . . . , xn) be two times differentiable. Then matrix

H f (x) =


fx1x1(x) fx1x2(x) . . . fx1xn(x)
fx2x1(x) fx2x2(x) . . . fx2xn(x)

...
...

. . .
...

fxnx1(x) fxnx2(x) . . . fxnxn(x)


is called the Hessian matrix of f at x.

▶ The Hessian matrix is symmetric, i.e., fxixk(x) = fxkxi(x).

▶ Other notation: f ′′(x)

▶ The Hessian matrix is the analog of the second derivative of
univariate functions.
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Example – Hessian Matrix

Compute the Hessian matrix of

f (x, y) = x2 + 3 x y

at point x = (1, 2).

Second order partial derivatives:

fxx = 2 fxy = 3
fyx = 3 fyy = 0

Hessian matrix:

H f (x, y) =

(
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
=

(
2 3
3 0

)
= H f (1, 2)
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Differentiability

Theorem:
A function f : R→ R is differentiable at x0 if and only if there exists a
linear map ℓ which approximates f in x0 in an optimal way:

lim
h→0

|( f (x0 + h)− f (x0))− ℓ(h)|
|h| = 0

Obviously ℓ(h) = f ′(x0) · h.

Definition:
A function f : Rn → Rm is differentiable at x0 if there exists a
linear map ℓ which approximates f in x0 in an optimal way:

lim
h→0

∥(f(x0 + h)− f(x0))− ℓ(h)∥
∥h∥ = 0

Function ℓ(h) = J · h is called the total derivative of f.
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Jacobian Matrix

Let f : Rn → Rm, x 7→ y = f(x) =


f1(x1, . . . , xn)

...

fm(x1, . . . , xn)


The m× n matrix

Df(x0) = f′(x0) =


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . . ∂ fm
∂xn


is called the Jacobian matrix of f at point x0.

It is the generalization of derivatives (and gradients) for vector-valued
functions.
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Jacobian Matrix

For f : Rn → R the Jacobian matrix is the gradient of f :

D f (x0) = ∇ f (x0)

For vector-valued functions the Jacobian matrix can be written as

Df(x0) =


∇ f1(x0)

...

∇ fm(x0)


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Example – Jacobian Matrix

▶ f (x) = f (x1, x2) = exp(−x2
1 − x2

2)

D f (x) =
(

∂ f
∂x1

, ∂ f
∂x2

)
= ∇ f (x)

=
(
−2 x1 exp(−x2

1 − x2
2),−2 x2 exp(−x2

1 − x2
2)
)

▶ f(x) = f(x1, x2) =

(
f1(x1, x2)

f2(x1, x2)

)
=

(
x2

1 + x2
2

x2
1 − x2

2

)

Df(x) =

( ∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

)
=

(
2 x1 2 x2

2 x1 −2 x2

)

▶ s(t) =

(
s1(t)
s2(t)

)
=

(
cos(t)
sin(t)

)

Ds(t) =

(
ds1
dt
ds2
dt

)
=

(
− sin(t)
cos(t)

)
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Chain Rule

Let f : Rn → Rm and g : Rm → Rk. Then

(g ◦ f)′(x) = g′(f(x)) · f′(x)

f(x, y) =

(
ex

ey

)
g(x, y) =

(
x2 + y2

x2 − y2

)

f′(x, y) =

(
ex 0
0 ey

)
g′(x, y) =

(
2 x 2 y
2 x −2 y

)

(g ◦ f)′(x) = g′(f(x)) · f′(x) =
(

2 ex 2 ey

2 ex −2 ey

)
·
(

ex 0
0 ey

)

=

(
2 e2x 2 e2y

2 e2x −2 e2y

)
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Example – Directional Derivative

We can derive the formula for the directional derivative of f : Rn → R

along h (with ∥h∥ = 1) at x0 by means of the chain rule:

Let s(t) be a path through x0 along h, i.e.,

s : R→ Rn, t 7→ x0 + th .

Then
f ′(s(0)) = f ′(x0) = ∇ f (x0)

s′(0) = h

and hence

∂ f
∂h

= ( f ◦ s)′(0) = f ′(s(0)) · s′(0) = ∇ f (x0) · h .
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Example – Indirect Dependency

Let f (x1, x2, t) where x1(t) and x2(t) also depend on t.
What is the total derivative of f w.r.t. t?

Chain rule:

Let x : R→ R3, t 7→

x1(t)
x2(t)

t


d f
dt

= ( f ◦ x)′(t) = f ′(x(t)) · x′(t)

= ∇ f (x(t)) ·

x′1(t)
x′2(t)

1

=( fx1(x(t)), fx2(x(t)), ft(x(t)) ·

x′1(t)
x′2(t)

1


= fx1(x(t)) · x′1(t) + fx2(x(t)) · x′2(t) + ft(x(t))

= fx1(x1, x2, t) · x′1(t) + fx2(x1, x2, t) · x′2(t) + ft(x1, x2, t)
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L’Hôpital’s Rule

Suppose we want to compute

lim
x→x0

f (x)
g(x)

and find
lim

x→x0
f (x) = lim

x→x0
g(x) = 0 (or = ±∞)

However, expressions like 0
0 or ∞

∞ are not defined.

(You must not reduce the fraction by 0 or ∞!)
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L’Hôpital’s Rule

If lim
x→x0

f (x) = lim
x→x0

g(x) = 0 (or = ∞ or = −∞), then

lim
x→x0

f (x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

Assumption: f and g are differentiable in x0.

This formula is called l’Hôpital’s rule (also spelled as l’Hospital’s rule).
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Example – L’Hôpital’s Rule

lim
x→2

x3 − 7 x + 6
x2 − x− 2

= lim
x→2

3 x2 − 7
2 x− 1

=
5
3

lim
x→∞

ln x
x2 = lim

x→∞

1
x

2 x
= lim

x→∞

1
2 x2 = 0

lim
x→0

x− ln(1 + x)
x2 = lim

x→0

1− (1 + x)−1

2 x
= lim

x→0

(1 + x)−2

2
=

1
2
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Example – L’Hôpital’s Rule

L’Hôpital’s rule can be applied iteratively:

lim
x→0

ex − x− 1
x2 = lim

x→0

ex − 1
2x

= lim
x→0

ex

2
=

1
2
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Summary

▶ difference quotient and differential quotient
▶ differential quotient and derivative
▶ derivatives of elementary functions
▶ differentiation rules
▶ higher order derivatives
▶ total differential
▶ elasticity
▶ partial derivatives
▶ gradient and Hessian matrix
▶ Jacobian matrix and chain rule
▶ l’Hôpital’s rule
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Chapter 10

Inverse and Implicit
Functions
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Inverse Function

Let f : D f ⊆ Rn →W f ⊆ Rm, x 7→ y = f(x). A Function

f−1 : W f → D f , y 7→ x = f−1(y)

is called inverse function of f, if

f−1 ◦ f = f ◦ f−1 = id

where id denotes the identity function, id(x) = x:

f−1(f(x)) = f−1(y) = x and f(f−1(y)) = f(x) = y

f−1 exists if and only if f is bijective.

We then obtain f−1(y) as the unique solution x of equation y = f(x).
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Linear Function

Let f : R→ R, x 7→ y = f (x) = a x + b.

y = a x + b ⇔ a x = y− b ⇔ x = 1
a y− b

a

That is,
f−1(y) = a−1 y− a−1 b

Provided that a ̸= 0 [ a = f ′(x) ]

Observe:

( f−1)′(y) = a−1 =
1
a
=

1
f ′(x)
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Linear Function

Let f : Rn → Rm, x 7→ y = f(x) = A x + b for some m× n matrix A.

y = A x + b ⇔ x = A−1 y−A−1 b

That is,
f−1(y) = A−1 y−A−1 b .

Provided that A is invertible, [ A = Df(x) ]
(and thus: n = m)

Observe:
(f−1)′(y) = A−1 = (f′(x))−1
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Locally Invertible Function

Function

f : R→ [0, ∞), x 7→ f (x) = x2

is not bijective. Thus
f−1 does not exist globally.

For some x0 there exists an open
interval (x0 − ε, x0 + ε) where
y = f (x) can be solved w.r.t. x.

We say:
f is locally invertible around x0.

For other x0 such an interval does
not exist (even if it is very short).

x− ε x + ε

locally invertible

y

x

not locally invertible
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Existence and Derivative

1. For which x0 is f locally
invertible?

2. What is the derivative of f−1 at
y0 = f(x0).

Idea:
Replace f by its differential:

f(x0 + h) ≈ f(x0) + f′(x0) · h

Hence:

1. f′(x0) must be invertible.

2. (f−1)′(y0) = (f′(x0))−1

locally invertible

x0

not locally invertible
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Inverse Function Theorem

Let f : D f ⊆ R→ R be a function and x0 some point with f ′(x0) ̸= 0.

Then there exist open intervals U around x0 and V around y0 = f (x0)
such that f : U → V is one-to-one and onto,
i.e., the inverse function f−1 : V → U exists.

Moreover, we find for its derivative:

( f−1)′(y0) =
1

f ′(x0)
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Example – Inverse Function Theorem

Let f : R→ R, x 7→ y = f (x) = x2 and x0 = 3, y0 = f (x0) = 9.

As f ′(x0) = 6 ̸= 0, f is locally invertible around x0 = 3 and

( f−1)′(9) =
1

f ′(3)
=

1
6

For x0 = 0 we cannot apply this theorem as f ′(0) = 0.
(The inverse function theorem provides a sufficient condition.)
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Inverse Function Theorem II

Let f : Rn → Rn and x0 and x0 some point with |f′(x0)| ̸= 0.

Then there exist open hyper-rectangles U around x0 and V around
y0 = f(x0) such that f : U → V is one-to-one and onto,
i.e., the inverse function f−1 : V → U exists.

Moreover, we find for its derivative:

(f−1)′(y0) = (f′(x0))
−1

The Jacobian determinant |f′(x0)| is also denoted by

∂( f1, . . . , fn)

∂(x1, . . . , xn)
= |f′(x0)|
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Example – Inverse Function Theorem

Let f : R2 → R2, x 7→ f(x) =

(
x2

1 − x2
2

x1 x2

)
and x0 = (1, 1)T.

Then f′(x) =

(
2x1 −2x2

x2 x1

)
and

∂( f1, f2)

∂(x1, x2)
=

∣∣∣∣∣2x1 −2x2

x2 x1

∣∣∣∣∣ = 2x2
1 + 2x2

2 ̸= 0 for all x ̸= 0.

That is, f is locally invertible around all x0 ̸= 0.
In particular for x0 = (1, 1)T we find

(f−1)′(f(1, 1)) = (f′(1, 1))−1 =

(
2 −2
1 1

)−1

=

(
1
4

2
4

− 1
4

2
4

)

However, f is not bijective: f(1, 1) = f(−1,−1) =

(
0
1

)
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Explicit and Implicit Function

The relation between two variables x and y can be described by an

explicit function:

y = f (x)

Example:
y = x2

does not exist

implicit function:

F(x, y) = 0

Example:
y− x2 = 0

x2 + y2 − 1 = 0

Questions:
▶ When can an implicit function be represented (locally) by an

explicit function?
▶ What is the derivative of y w.r.t. variable x?
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Case: Linear Function

For a linear function
F(x, y) = ax + by

both questions can be easily answered:

ax + by = 0 ⇒ y = − a
b

x (if Fy = b ̸= 0)

dy
dx

= − a
b
= −Fx

Fy
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Case: General Function

Let F(x, y) be a function and (x0, y0) some point with F(x0, y0) = 0.

If F is not linear, then we can compute the derivative dy
dx in x0 by

replacing F locally by its total differential

dF = Fx dx + Fy dy = d0 = 0

and yield1

dy
dx

= −Fx

Fy

1The given “computation” is not correct but yields the correct result.
Note that the differential quotient is not the quotient of differentials.

Josef Leydold – Foundations of Mathematics – WS 2024/25 10 – Inverse and Implicit Functions – 13 / 23



Example – Implicit Derivative

Compute the implicit derivative dy
dx of

F(x, y) = x2 + y2 − 1 = 0 .

dy
dx

= −Fx

Fy
= −2x

2y
= − x

y

We also can compute the derivative of x w.r.t. variable y:

dx
dy

= −
Fy

Fx
= −2y

2x
= −y

x
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Local Existence of an Explicit Function

explicit function
exists locally

y

x

(x0, y0)explicit function
does not exist

y = f (x) exists locally, if Fy ̸= 0.
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Implicit Function Theorem

Let F : R2 → R and let (x0, y0) be some point with

F(x0, y0) = 0 and Fy(x0, y0) ̸= 0 .

Then there exists a rectangle R around (x0, y0) such that

▶ F(x, y) = 0 has a unique solution y = f (x) in R, and

▶ dy
dx

= −Fx

Fy
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Example – Implicit Function Theorem

Let F(x, y) = x2 + y2 − 8 and (x0, y0) = (2, 2).

As F(x0, y0) = 0 and Fy(x0, y0) = 2 y0 = 4 ̸= 0,
variable y can be represented locally as a function of variable x and

dy
dx

(x0) = −
Fx(x0, y0)

Fy(x0, y0)
= −2x0

2y0
= −1 .
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Implicit Function Theorem II

Let F : Rn+1 → R, (x, y) 7→ F(x, y) = F(x1, . . . , xn, y), and
let (x0, y0) be some point with

F(x0, y0) = 0 and Fy(x0, y0) ̸= 0 .

Then there exists a hyper-rectangle R around (x0, y0) such that

▶ F(x, y) = 0 has a unique solution y = f (x) in R, where
f : Rn → R, and

▶ ∂y
∂xi

= −Fxi

Fy

The independent variable y can be any of the variables of F and need
not be in the last position.
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Example – Implicit Function Theorem

Compute ∂x2
∂x3

of the implicit function

F(x1, x2, x3, x4) = x2
1 + x2 x3 + x2

3 − x3 x4 − 1 = 0

at point (x1, x2, x3, x4) = (1, 0, 1, 1).

As F(1, 0, 1, 1) = 0 and Fx2(1, 0, 1, 1) = 1 ̸= 0 we can represent x2
locally as a function of (x1, x3, x4): x2 = f (x1, x3, x4).

The partial derivative w.r.t. x3 is given by

∂x2

∂x3
= −Fx3

Fx2

= − x2 + 2 x3 − x4

x3
= −1

At (1, 1, 1, 1) and (1, 1, 0, 1) the implicit function theorem cannot be
applied for independent variable x2:

F(1, 1, 1, 1) ̸= 0 and Fx2(1, 1, 0, 1) = 0.

Josef Leydold – Foundations of Mathematics – WS 2024/25 10 – Inverse and Implicit Functions – 19 / 23



Jacobian Matrix

Let

F(x, y) =


F1(x1, . . . , xn, y1, . . . , ym)

...

Fm(x1, . . . , xn, y1, . . . , ym)

 = 0

then matrix

∂F(x, y)
∂y

=


∂F1
∂y1

. . . ∂F1
∂ym

...
. . .

...
∂Fm
∂y1

. . . ∂Fm
∂ym


is called the Jacobian matrix of F(x, y) w.r.t. y.

Analogous: ∂F(x,y)
∂x
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Implicit Function Theorem III

Let F : Rn+m → Rm,

(x, y) 7→ F(x, y) =


F1(x1, . . . , xn, y1, . . . , ym)

...

Fm(x1, . . . , xn, y1, . . . , ym)


and let (x0, y0) be a point with

F(x0, y0) = 0 and

∣∣∣∣∂F(x, y)
∂y

∣∣∣∣ ̸= 0 for (x, y) = (x0, y0).

Then there exists a hyper-rectangle R around (x0, y0) such that

▶ F(x, y) = 0 has a unique solution y = f(x) in R, where
f : Rn → Rm, and

▶ ∂y
∂x

= −
(

∂F
∂y

)−1

·
(

∂F
∂x

)
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Example – Implicit Function Theorem

Let F(x, y) =

(
F1(x1, x2, y1, y2)

F2(x1, x2, y1, y2)

)
=

(
x2

1 + x2
2 − y2

1 − y2
2 + 3

x3
1 + x3

2 + y3
1 + y3

2 − 11

)
and (x0, y0) = (1, 1, 1, 2).

∂F
∂x

=

(
∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

)
=

(
2x1 2x2

3x2
1 3x2

2

)
∂F
∂x

(1, 1, 1, 2) =

(
2 2
3 3

)

∂F
∂y

=

(
∂F1
∂y1

∂F1
∂y2

∂F2
∂y1

∂F2
∂y2

)
=

(
−2y1 −2y2

3y2
1 3y2

2

)
∂F
∂y

(1, 1, 1, 2) =

(
−2 −4
3 12

)

As F(1, 1, 1, 2) = 0 and
∣∣∣ ∂F(x,y)

∂y

∣∣∣ = −12 ̸= 0 we can apply the implicit
function theorem and we find

∂y
∂x

= −
(

∂F
∂y

)−1
·
(

∂F
∂x

)
= − 1

−12

(
12 4
−3 −2

)
·
(

2 2
3 3

)
=

(
3 3
0 0

)
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Summary

▶ local existence of an inverse function
▶ derivative of an inverse Function
▶ inverse function theorem
▶ explicit and implicit function
▶ explicit representation of an implicit function
▶ derivative of an implicit function
▶ implicit function theorem
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Chapter 11

Taylor Series
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First-Order Approximation

We want to approximate function f by some simple function.

Best possible approximation by a linear function:

f (x) .
= f (x0) + f ′(x0) (x− x0)

.
= means “first-order approximation”.

If we use this approximation, we calculate the value of the tangent at x
instead of f .
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Polynomials

We get a better approximation (i.e., with smaller approximation error)
if we use a polynomial Pn(x) = ∑n

k=0 akxk of higher degree.

Ansatz:

f (x) = a0 + a1x + a2x2 + · · ·+ anxn + Rn(x)

Remainder term Rn(x) gives the approximation error when we replace
function f by approximation Pn(x).

Idea:
Choose coefficients ai such that the derivatives of f and Pn coincide at
x0 = 0 up to order n.

Josef Leydold – Foundations of Mathematics – WS 2024/25 11 – Taylor Series – 3 / 27



Derivatives

f (x) = a0 + a1x + · · ·+ anxn = Pn(x)
⇒ f (0) = a0

f ′(x) = a1 + 2 · a2x + · · ·+ n · anxn−1 = P′n(x)
⇒ f ′(0) = a1

f ′′(x) = 2 · a2 + 3 · 2 · a3x + · · ·+ n · (n− 1) · anxn−2 = P′′n (x)
⇒ f ′′(0) = 2 a2

f ′′′(x) = 3 · 2 · a3 + · · ·+ n · (n− 1) · (n− 2) · anxn−3 = P′′′n (x)
⇒ f ′′′(0) = 3! a3

...

f (n)(x) = n · (n− 1) · (n− 2) · . . . · 1 · an = P(n)
n (x)

⇒ f (n)(0) = n! an
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MacLaurin Polynomial

Thus we find for the coefficients of the polynomial

ak =
f (k)(0)

k!

f (k)(x0) denotes the k-th derivatives of f at x0, f (0)(x0) = f (x0).

f (x) =
n

∑
k=0

f (k)(0)
k!

xk + Rn(x)

This polynomial is called the MacLaurin polynomial of degree n of f :

f (0) + f ′(0) x +
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn
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Taylor Polynomial

This idea can be generalized to arbitrary exansion points x0.
We then get the Taylor polynomial of degree n of f around point x0:

f (x) =
n

∑
k=0

f (k)(x0)

k!
(x− x0)

k + Rn(x)
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Taylor Series

The (infinite) series
∞

∑
k=0

f (k)(x0)

k!
(x− x0)

k

is called the Taylor series of f around x0.

If lim
n→∞

Rn(x) = 0, then the Taylor series converges to f (x).

We then say that we expand f into a Taylor series around expansion
point x0.
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Example – Exponential Function

Taylor series expansion of f (x) = ex around x0 = 0:

f (x) = f (0) + f ′(0) x + f ′′(0)
2! x2 + f ′′′(0)

3! x3 + · · ·+ f (n)(0)
n! xn + Rn(x)

f (x) = ex ⇒ f (0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
f ′′′(x) = ex ⇒ f ′′′(0) = 1

...

f (n)(x) = ex ⇒ f (n)(0) = 1

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

The Taylor series converges for all x ∈ R.
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Example – Exponential Function

exp(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ · · ·

1

1

exp(x)

n = 1

n = 2

n = 3
n = 4
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Example – Logarithm

Taylor series expansion of f (x) = ln(1 + x) around x0 = 0:

f (x) = f (0) + f ′(0) x + f ′′(0)
2! x2 + f ′′′(0)

3! x3 + · · ·+ f (n)(0)
n! xn + Rn(x)

f (x) = ln(1 + x) ⇒ f (0) = 0
f ′(x) = (1 + x)−1 ⇒ f ′(0) = 1
f ′′(x) = −1 · (1 + x)−2 ⇒ f ′′(0) = −1
f ′′′(x) = 2 · 1 · (1 + x)−3 ⇒ f ′′′(0) = 2!

...

f (n)(x) = (−1)n−1(n− 1)!(1 + x)−n+1⇒ f (n)(0) = (−1)n−1(n− 1)!

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n−1 xn

n
+ · · ·

The Taylor series converges for all x ∈ (−1, 1).
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Example – Logarithm

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ · · ·

1−1

1 ln(1 + x)

n = 1

n = 2

n = 5

n = 6
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Radius of Convergence

Some Taylor series do not converge for all x ∈ R.
For example: ln(1 + x)

At least the following holds:

If a Taylor series converges for some x1 with |x1 − x0| = ρ,
then it also converges for all x with |x− x0| < ρ.

The maximal value for ρ is called the radius of convergence of the
Taylor series.

ρ

x0 x1

Taylor series converges
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Example – Radius of Convergence

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ · · ·

Radius of convergence: ρ = 1

Indication:
ln(1 + x) is not defined for x ≤ −1.

1−1

1

ρ

ρ

ln(1 + x)

n = 1
n = 5

n = 7

n = 11n = 31

Josef Leydold – Foundations of Mathematics – WS 2024/25 11 – Taylor Series – 13 / 27



Approximation Error

The remainder term indicates the error of the approximation by a Taylor
polynomial.
It can be estimated by means of Lagrange’s form of the remainder:

Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x− x0)

n+1

for some point ξ ∈ (x, x0).

If the Taylor series converges we have

Rn(x) = O
(
(x− x0)

n+1
)

for x → x0

We say: the remainder is of big O of xn+1 as x tends to x0.
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Big O Notation

Let f (x) and g(x) be two functions.

f (x)

g(x)

C g(x)

−C g(x)

We write

f (x) = O
(

g(x)
)

as x → x0

if there exist reals numbers C and ε such that

| f (x)| < C · |g(x)|

for all x with |x− x0| < ε.

We say that f (x) is of big O of g(x) as x tends to x0.

Symbol O(·) belongs to the family of Bachmann-Landau notations.

Some books use notation f (x) ∈ O
(

g(x)
)

as x → x0
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Impact of Order of Powers

The higher the order of a monomial is,
the smaller is its contribution to the summation.

0.3

0.2
x1 x2 x3

x4

x5

x6

x7

x8
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Important Taylor Series

f (x) MacLaurin Series ρ

exp(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · ∞

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · 1

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · ∞

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · ∞

1
1− x

= 1 + x + x2 + x3 + x4 + · · · 1
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Calculations with Taylor Series

Taylor series can be conveniently
▶ added (term by term)
▶ differentiated (term by term)
▶ integrated (term by term)
▶ multiplied
▶ divided
▶ substituted

Therefore Taylor series are also used for the Definition of some function.

For example:

exp(x) := 1 + x +
x2

2!
+

x3

3!
+ · · ·
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Example – Derivative

We get the first derivative of exp(x) by computing the derivative of its
Taylor series:

(exp(x))′ =
(

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

)′
= 0 + 1 +

2 x
2!

+
3 x2

3!
+

4 x3

4!
+ · · ·

= 1 + x +
x2

2!
+

x3

3!
+ · · ·

= exp(x)
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Example – Product

We get the MacLaurin series of f (x) = x2 · ex by multiplying the
MacLaurin series of x2 with the MacLaurin series of exp(x):

x2 · ex = x2 ·
(

1 + x + x2

2! +
x3

3! +
x4

4! + · · ·
)

= x2 + x3 +
x4

2!
+

x5

3!
+

x6

4!
+ · · ·
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Example – Substitution

We get the MacLaurin series of f (x) = exp(−x2) by substituting of
−x2 into the MacLaurin series of exp(x):

eu = 1 + u + u2

2! + u3

3! + u4

4! + · · ·

e−x2
= 1 + (−x2) + (−x2)2

2! + (−x2)3

3! + (−x2)4

4! + · · ·

= 1 − x2 + x4

2! − x6

3! + x8

4! − · · ·
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Polynomials

The concept of Taylor series can be generalized to multivariate
functions.

A polynomial of degree n in two variables has the form

Pn(x1, x2) = a0

+ a10 x1 + a11 x2

+ a20 x2
1 + a21 x1 x2 + a22 x2

2

+ a30 x3
1 + a31 x2

1 x2 + a32 x1 x2
2 + a33 x3

2
...

+ an0 xn
1 + an1 xn−1

1 x2 + an2 xn−2
1 x2

2 + · · ·+ ann xn
2

We choose coefficients akj such that all its partial derivatives in
expansion point x0 = 0 up to order n coincides with the respective
derivatives of f .
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Taylor Polynomial of Degree 2

We obtain the coefficients as

akj =
1
k!

(
k
j

)
∂k f (0)

(∂x1)k−j (∂x2)j k ∈N, j = 0, · · · , k

In particular we find for the Taylor polynomial of degree 2 around x0 = 0

f (x) = f (0)
+ fx1(0) x1 + fx2(0) x2

+ 1
2 fx1x1(0) x2

1 + fx1x2(0) x1 x2 +
1
2 fx2x2(0) x2

2 + · · ·
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Taylor Polynomial of Degree 2

Observe that the linear term can be written by means of the gradient:

fx1(0) x1 + fx2(0) x2 = ∇ f (0) · x

The quadratic term can be written by means of the Hessian matrix:

fx1x1(0) x2
1 + 2 fx1x2(0) x1 x2 + fx2x2(0) x2

2 = xT ·H f (0) · x

So we find for the Taylor polynomial of degree 2 around x0 = 0

f (x) = f (0) +∇ f (0) · x + 1
2 xT ·H f (0) · x +O(∥x∥3)

or in different notation

f (x) = f (0) + f ′(0)x + 1
2 xT f ′′(0)x +O(∥x∥3)
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Example – Bivariate Function

Compute the Taylor polynomial of degree 2 around x0 = 0

f (x, y) = ex2−y2
+ x

f (x, y) = ex2−y2
+ x ⇒ f (0, 0) = 1

fx(x, y) = 2x ex2−y2
+ 1 ⇒ fx(0, 0) = 1

fy(x, y) = −2y ex2−y2 ⇒ fy(0, 0) = 0
fxx(x, y) = 2 ex2−y2

+ 4x2 ex2−y2 ⇒ fxx(0, 0) = 2
fxy(x, y) = −4xy ex2−y2 ⇒ fxy(0, 0) = 0
fyy(x, y) = −2 ex2−y2

+ 4y2 ex2−y2 ⇒ fyy(0, 0) = −2

gradient: Hessian matrix:

∇ f (0) = (1, 0) H f (0) =

(
2 0
0 −2

)
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Example – Bivariate Function

Thus we find for the Taylor polynomial

f (x, y) ≈ f (0) +∇ f (0) · x + 1
2 xT ·H f (0) · x

= 1 + (1, 0) ·
(

x
y

)
+ 1

2 (x, y) ·
(

2 0
0 −2

)
·
(

x
y

)
= 1 + x + x2 − y2
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Summary

▶ MacLaurin and Taylor polynomial
▶ Taylor series expansion
▶ radius of convergence
▶ calculations with Taylor series
▶ Taylor series of multivariate functions
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Chapter 12

Integration
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Antiderivative

A function F(x) is called an antiderivative (or primitive) of function
f (x), if

F′(x) = f (x)

Computation:

Guess and verify

Example: We want the antiderivative of f (x) = ln(x).
Guess: F(x) = x (ln(x)− 1)
Verify: F′(x) = (x (ln(x)− 1)′ =

= 1 · (ln(x)− 1) + x · 1
x = ln(x)

But also: F(x) = x (ln(x)− 1) + 5
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Antiderivative

The antiderivative is denoted by symbol∫
f (x) dx + c

and is also called the indefinite integral of function f . Number c is
called integration constant.

Unfortunately, there are no “recipes” for computing antiderivatives
(but tools one can try and which may help).

There are functions where antiderivatives cannot be expressed by
means of elementary functions.

E.g., the antiderivative of exp(− 1
2 x2).
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Basic Integrals

Integrals of some elementary functions:

f (x)
∫

f (x) dx

0 c

xa 1
a+1 · xa+1 + c

ex ex + c
1
x ln |x|+ c

cos(x) sin(x) + c

sin(x) − cos(x) + c

(The table is created by swapping the columns in the list of derivatives.)
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Integration Rules

▶ Summation rule∫
α f (x) + βg(x) dx = α

∫
f (x) dx + β

∫
g(x) dx

▶ Integration by parts∫
f · g′ dx = f · g−

∫
f ′ · g dx

▶ Integration by substitution∫
f (g(x)) · g′(x) dx =

∫
f (z) dz

with z = g(x) and dz = g′(x) dx
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Example – Summation Rule

Antiderivative of f (x) = 4 x3 − x2 + 3 x− 5.

∫
f (x) dx =

∫
4 x3 − x2 + 3 x− 5 dx

= 4
∫

x3 dx−
∫

x2 dx + 3
∫

x dx− 5
∫

dx

= 4
1
4

x4 − 1
3

x3 + 3
1
2

x2 − 5x + c

= x4 − 1
3

x3 +
3
2

x2 − 5x + c
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Example – Integration by Parts

Antiderivative of f (x) = x · ex.

∫
x︸︷︷︸
f

· ex︸︷︷︸
g′

dx = x︸︷︷︸
f

· ex︸︷︷︸
g

−
∫

1︸︷︷︸
f ′

· ex︸︷︷︸
g

dx = x · ex − ex + c

f = x ⇒ f ′ = 1
g′ = ex ⇒ g = ex
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Example – Integration by Parts

Antiderivative of f (x) = x2 cos(x).∫
x2︸︷︷︸
f

· cos(x)︸ ︷︷ ︸
g′

dx = x2︸︷︷︸
f

· sin(x)︸ ︷︷ ︸
g

−
∫

2x︸︷︷︸
f ′

· sin(x)︸ ︷︷ ︸
g

dx

Integration by parts of the second terms yields:∫
2x︸︷︷︸

f

· sin(x)︸ ︷︷ ︸
g′

dx = 2x︸︷︷︸
f

· (− cos(x))︸ ︷︷ ︸
g

−
∫

2︸︷︷︸
f ′

· (− cos(x))︸ ︷︷ ︸
g

dx

= −2x · cos(x)− 2 · (− sin(x)) + c

Thus the antiderivative of f is given by∫
x2 cos(x) dx = x2 sin(x) + 2x cos(x)− 2 sin(x) + c
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Example – Integration by Substitution

Antiderivative of f (x) = 2x · ex2
.

∫
exp( x2︸︷︷︸

g(x)

) · 2x︸︷︷︸
g′(x)

dx =
∫

exp(z) dz = ez + c = ex2
+ c

z = g(x) = x2 ⇒ dz = g′(x) dx = 2x dx
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Integration Rules – Derivation

Integration by parts follows from the product rule for derivatives:

f (x) · g(x) =
∫

( f (x) · g(x))′ dx =
∫ (

f ′(x) g(x) + f (x) g′(x)
)

dx

=
∫

f ′(x) g(x) dx +
∫

f (x) g′(x) dx

Integration by substitution follows from the chain rule:
Let F be an antiderivative of f and let z = g(x). Then∫

f (z) dz = F(z) = F(g(x)) =
∫
(F(g(x)))′ dx

=
∫

F′(g(x)) g′(x) dx =
∫

f (g(x)) g′(x) dx
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Area

Compute the areas of the given regions.

1

1

f (x) = 1

Area: A = 1

1

1

f (x) = 1
1+x2

Approximation
by step function
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Riemann Sum

x0 ξ1 x1 ξ2 x2

f (ξ1)

f (ξ2)

ξi =
1
2 (xi−1 + xi)

in general: ξi ∈ (xi, xi−1)

A =
∫ b

a
f (x) dx ≈

n

∑
i=1

f (ξi) · (xi − xi−1)
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Approximation Error

x0 ξ1 x1 ξ2 x2

f (ξ1)

f (ξ2)

f (x0)

f (x1)

f (x2)

∣∣∣∣∣
∫ b

a
f (x) dx−

n

∑
i=1

f (ξi) · (xi − xi−1)

∣∣∣∣∣ ≤ ( fmax− fmin) (b− a)
1
n
→ 0

Assumption: Function monotone; x0, x1, . . . , xn equidistant
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Riemann Integral

If all sequences of Riemann sums

In =
n

∑
i=1

f (ξi) · (xi − xi−1)

converge, then their (uniquely determined) limit is called the

Riemann integral of f and is denoted by
∫ b

a
f (x) dx:

∫ b

a
f (x) dx = lim

n→∞

n

∑
i=1

f (ξi) · (xi − xi−1)

Almost all functions in economics have a Riemann integral.
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Riemann Integral – Properties

∫ b

a
(α f (x) + βg(x)) dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

∫ a

a
f (x) dx = 0

∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx if f (x) ≤ g(x) for all x ∈ [a, b]
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Fundamental Theorem of Calculus

Let F(x) be an antiderivative of a continuous function f (x),
then we find

∫ b

a
f (x) dx = F(x)

∣∣∣b
a
= F(b)− F(a)

By this theorem we can compute Riemann integrals by means of
antiderivatives!

For that reason
∫

f (x) dx is called an indefinite integral of f ; and∫ b

a
f (x) dx is called a definite integral of f .

Josef Leydold – Foundations of Mathematics – WS 2024/25 12 – Integration – 16 / 36



Example – Fundamental Theorem

Compute the integral of f (x) = x2 over interval [ 0, 1 ].

∫ 1

0
x2 dx = 1

3 x3
∣∣∣1
0
= 1

3 · 1
3 − 1

3 · 0
3 =

1
3
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Fundamental Theorem / Proof Idea

Let A(x) be the area between the graph of a continuous function f and
the x-axis from 0 to x.

A(x)

x + hx

fmin

fmax

fmin · h ≤ A(x + h)− A(x) ≤ fmax · h

fmin ≤
A(x + h)− A(x)

h
≤ fmax

Limit for h→ 0: (lim
h→0

fmin = f (x))

f (x) ≤ lim
h→0

A(x + h)− A(x)
h︸ ︷︷ ︸

=A′(x)

≤ f (x)

A′(x) = f (x)

i.e. A(x) is an antiderivative of f (x).
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Integration Rules / (Definite Integrals)

▶ Summation rule∫ b

a
α f (x) + βg(x) dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

▶ Integration by parts∫ b

a
f · g′ dx = f · g

∣∣∣b
a
−
∫ b

a
f ′ · g dx

▶ Integration by Substitution∫ b

a
f (g(x)) · g′(x) dx =

∫ g(b)

g(a)
f (z) dz

with z = g(x) and dz = g′(x) dx
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Example – Integration by Parts

Compute the definite integral
∫ 2

0
x · ex dx.

∫ 2

0
x︸︷︷︸
f

· ex︸︷︷︸
g′

dx = x︸︷︷︸
f

· ex︸︷︷︸
g

∣∣∣2
0
−
∫ 2

0
1︸︷︷︸
f ′

· ex︸︷︷︸
g

dx

= x · ex
∣∣∣2
0
− ex

∣∣∣2
0
= (2 · e2 − 0 · e0)− (e2 − e0)

= e2 + 1

Note: we also could use our indefinite integral from above,∫ 2

0
x · ex dx = (x · ex − ex)

∣∣∣2
0
= (2 · e2 − e2)− (0 · e0 − e0) = e2 + 1
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Example – Integration by Substitution

Compute the definite integral
∫ 10

e

1
ln(x)

· 1
x

dx.

∫ 10

e

1
ln(x)

· 1
x

dx =
∫ ln(10)

1

1
z

dz =

z = ln(x) ⇒ dz =
1
x

dx

= ln(z)
∣∣∣ln(10)

1
=

= ln(ln(10))− ln(1) ≈ 0.834
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Example – Subdomains

Compute
∫ 2

−2
f (x) dx for function

f (x) =


1 + x, for −1 ≤ x < 0,
1− x, for 0 ≤ x < 1,
0, for x < −1 and x ≥ 1. −1 0 1

We have∫ 2

−2
f (x) dx =

∫ −1

−2
f (x) dx +

∫ 0

−1
f (x) dx +

∫ 1

0
f (x) dx +

∫ 2

1
f (x) dx

=
∫ −1

−2
0 dx +

∫ 0

−1
(1 + x) dx +

∫ 1

0
(1− x) dx +

∫ 2

1
0 dx

= (x + 1
2 x2)

∣∣∣0
−1

+ (x− 1
2 x2)

∣∣∣1
0

= 1
2 +

1
2 = 1
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Improper Integral

An improper integral is an integral where
▶ the domain of integration is unbounded, or
▶ the integrand is unbounded.

t∫ ∞

0
f (x) dx = lim

t→∞

∫ t

0
f (x) dx

∫ 1

0
f (x) dx = lim

t→0

∫ 1

t
f (x) dx
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Example – Improper Integral

∫ 1

0

1√
x

dx = lim
t→0

∫ 1

t
x−

1
2 dx = lim

t→0
2
√

x
∣∣∣1
t
= lim

t→0
(2− 2

√
t) = 2

∫ ∞

1

1
x2 dx = lim

t→∞

∫ t

1
x−2 dx = lim

t→∞
−1

x

∣∣∣∣t
1
= lim

t→∞
−1

t
− (−1) = 1

∫ ∞

1

1
x

dx = lim
t→∞

∫ t

1

1
x

dx = lim
t→∞

ln(x)
∣∣∣t
1
= lim

t→∞
ln(t)− ln(1) = ∞

The improper integral does not exist.
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Two Limits

In probability theory we often have integrals where both boundaries are
infinite.
For example, the expectation of random variable X with density f is
defined as

E(X) =
∫ ∞

−∞
x · f (x) dx

In such a case we have to separate the domain of integration:

E(X) =
∫ ∞

−∞
x · f (x) dx

= lim
t→−∞

∫ 0

t
x · f (x) dx + lim

s→∞

∫ s

0
x · f (x) dx

Beware!
If we yield ∞−∞, then the result is not ∞−∞ = 0!
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Leibniz Integration Rule

Let f (x, t) be continously differentiable function
(i.e., all partial derivatives exist and are continuous) and let

F(x) =
∫ b(x)

a(x)
f (x, t) dt.

Then

F′(x) = f (x, b(x)) b′(x)− f (x, a(x)) a′(x) +
∫ b(x)

a(x)

∂

∂x
f (x, t) dt

If a(x) = a and b(x) = b are constant, then

d
dx

(∫ b

a
f (x, t) dt

)
=
∫ b

a

∂

∂x
f (x, t) dt
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Example – Leibniz Integration Rule

Let F(x) =
∫ 2x

x
t x2 dt for x > 0. Compute F′(x).

We set f (x, t) = t x2, a(x) = x and b(x) = 2x
and apply Leibniz’s integration rule:

F′(x) = f (x, b) · b′ − f (x, a) · a′ +
∫ b

a
fx(x, t) dt

= (2x) x2 · 2− (x) x2 · 1 +
∫ 2x

x
2x t dt

= 4x3 − x3 +
(
2x 1

2 t2) ∣∣∣∣2x

x

= 4x3 − x3 + (4x3 − x3)

= 6x3
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Volume

Let f (x, y) be a function with domain

R = [a, b]× [c, d] = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}

What is the Volumen V below the graph of f ?

a b

c

d

R

x

y

z

b
d
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Riemann Sums

▶ Partition R into smaller rectangles Rij = [xi−1, xi]× [yj−1, yj]

▶ Estimate V ≈
n

∑
i=1

k

∑
j=1

f (ξi, ζ j) (xi − xi−1) (yj − yj−1)

a b

c

d

xi−1 xi

yj−1

yj

ξi

ζi

x

y

z

b
d
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Riemann Integral

If these Riemann Sums converge for partitions of R with increasing
number of rectangles, then the limit is called the
Riemann Integral of f over R:

∫∫
R

f (x, y) dx dy = lim
n,k→∞

n

∑
i=1

k

∑
j=1

f (ξi, ζ j) (xi − xi−1) (yj − yj−1)

The Riemann integral is defined analo-
gously for arbitrary domains D.∫∫

D
f (x, y) dx dy

D
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Fubini’s Theorem

Let f : R = [a, b]× [c, d] ⊂ R2 → R a continuous function. Then

∫∫
R

f (x, y) dx dy=
∫ b

a

(∫ d

c
f (x, y) dy

)
dx

=
∫ d

c

(∫ b

a
f (x, y) dx

)
dy .

Fubini’s theorem provides a recipe for computating double integrals
stepwise:

1. Treat x like a constant and compute the inner integral∫ d
c f (x, y) dy w.r.t. variabel y.

2. Integrate the result from Step 1 w.r.t. x.

We also may change the order of integration.
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Example – Fubini’s Theorem

Compute
∫ 1

−1

∫ 1

0
(1− x− y2 + xy2) dx dy.

We have to integrate twice:∫ 1

−1

∫ 1

0
(1− x− y2 + xy2) dx dy

=
∫ 1

−1

(
x− 1

2
x2 − xy2 +

1
2

x2y2
∣∣∣∣1
0

)
dy

=
∫ 1

−1

(
1
2
− 1

2
y2
)

dy =
1
2

y− 1
6

y3
∣∣∣∣1
−1

=
1
2
− 1

6
−
(
−1

2
+

1
6

)
=

2
3
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Bounds of Integration

Beware!
The integration variables and the corresponding integration limits have
to be read from inside to outside.

If we change the order of integration, then we also have to exchange
the integration limits:∫ b

a

∫ d

c
f (x, y) dy dx =

∫ d

c

∫ b

a
f (x, y) dx dy

This may be more obvious if we add (redundant) parenthesis:∫ b

a

(∫ d

c
f (x, y) dy

)
dx =

∫ d

c

(∫ b

a
f (x, y) dx

)
dy .
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Example – Fubini’s Theorem

Integration in reversed order:∫ 1

−1

∫ 1

0
(1− x− y2 + xy2) dx dy

=
∫ 1

0

(∫ 1

−1
(1− x− y2 + xy2) dy

)
dx

=
∫ 1

0

(
y− xy− 1

3
y3 +

1
3

xy3
∣∣∣∣1
−1

)
dx

=
∫ 1

0

(
1− x− 1

3
+

1
3

x−
(
−1 + x +

1
3
− 1

3
x
))

dx

=
∫ 1

0

(
4
3
− 4

3
x
)

dx =
4
3

x− 4
6

x2
∣∣∣∣1
0
=

2
3
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Fubini’s Theorem – Interpretation

∫∫
R

f (x, y) dx dy =
∫ b

a

(∫ d

c
f (x, y) dy

)
dx =

∫ b

a
A(x)dx

If we fix x, then

A(x) =
∫ d

c
f (x, y) dy

is the area below curve

g(y) = f (x, y).
y

x

z

∫ d

c
f (x, y)dy

x
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Summary

▶ antiderivate
▶ Riemann sum and Riemann integral
▶ indefinite and definite integral
▶ Fundamental Theorem of Calculus
▶ integration rules
▶ Leibniz integration rule
▶ improper integral
▶ double integral
▶ Fubini’s theorem
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Chapter 13

Convex and Concave
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Monotone Functions∗

Function f is called monotonically increasing, if

x1 ≤ x2 ⇒ f (x1) ≤ f (x2)

It is called strictly monotonically increasing, if

x1 < x2 ⇔ f (x1) < f (x2) x1 x2

f (x1)

f (x2)

Function f is called monotonically decreasing, if

x1 ≤ x2 ⇒ f (x1) ≥ f (x2)

It is called strictly monotonically decreasing, if

x1 < x2 ⇔ f (x1) > f (x2) x1 x2

f (x1)

f (x2)
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Monotone Functions∗

For differentiable functions we have

f monotonically increasing ⇔ f ′(x) ≥ 0 for all x ∈ D f

f monotonically decreasing ⇔ f ′(x) ≤ 0 for all x ∈ D f

f strictly monotonically increasing ⇐ f ′(x) > 0 for all x ∈ D f

f strictly monotonically decreasing ⇐ f ′(x) < 0 for all x ∈ D f

Function f : (0, ∞), x 7→ ln(x) is strictly monotonically increasing, as

f ′(x) = (ln(x))′ =
1
x
> 0 for all x > 0
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Locally Monotone Functions∗

A function f can be monotonically increasing in some interval and
decreasing in some other interval.

For continuously differentiable functions (i.e., when f ′(x) is continuous)
we can use the following procedure:

1. Compute first derivative f ′(x).

2. Determine all roots of f ′(x).

3. We thus obtain intervals where f ′(x) does not change sign.

4. Select appropriate points xi in each interval and determine the
sign of f ′(xi).
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Example – Locally Monotone Functions∗

In which region is function f (x) = 2 x3 − 12 x2 + 18 x− 1
monotonically increasing?

We have to solve inequality f ′(x) ≥ 0:

1. f ′(x) = 6 x2 − 24 x + 18

2. Roots: x2 − 4 x + 3 = 0 ⇒ x1 = 1, x2 = 3

3. Obtain 3 intervals: (−∞, 1], [1, 3], and [3, ∞)

4. Sign of f ′(x) at appropriate points in each interval:
f ′(0) = 3 > 0, f ′(2) = −1 < 0, and f ′(4) = 3 > 0.

5. f ′(x) cannot change sign in each interval:
f ′(x) ≥ 0 in (−∞, 1] and [3, ∞).

Function f (x) is monotonically increasing in (−∞, 1] and in [3, ∞).
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Monotone and Inverse Function

If f is strictly monotonically increasing, then

x1 < x2 ⇔ f (x1) < f (x2)

immediately implies

x1 ̸= x2 ⇔ f (x1) ̸= f (x2)

That is, f is one-to-one.

So if f is onto and strictly monotonically increasing (or decreasing),
then f is invertible.
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Convex Set

A set D ⊆ Rn is called convex, if for any two points x, y ∈ D the
straight line segment between these points also belongs to D, i.e.,

(1− h) x + h y ∈ D for all h ∈ [0, 1], and x, y ∈ D .

convex:

not convex:
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Intersection of Convex Sets

Let S1, . . . , Sk be convex subsets of Rn. Then their intersection
S1 ∩ . . . ∩ Sk is also convex.

The union of convex sets need not be convex.
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Example – Half-Space

Let p ∈ Rn and m ∈ R be fixed, p ̸= 0. Then

H = {x ∈ Rn : pT · x = m}

is a so called hyper-plane which partitions the Rn into two half-spaces

H+ = {x ∈ Rn : pT · x ≥ m} ,
H− = {x ∈ Rn : pT · x ≤ m} .

Sets H, H+ and H− are convex.

Let x be a vector of goods, p the vector of prices and m the budget.
Then the budget set is convex.

{x ∈ Rn : pT · x ≤ m, x ≥ 0}
= {x : pT · x ≤ m} ∩ {x : x1 ≥ 0} ∩ . . . ∩ {x : xn ≥ 0}
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Convex and Concave Functions

Function f is called convex in domain D ⊆ Rn, if D is convex and

f ((1− h) x1 + h x2) ≤ (1− h) f (x1) + h f (x2)

for all x1, x2 ∈ D and all h ∈ [0, 1]. It is called concave, if

f ((1− h) x1 + h x2) ≥ (1− h) f (x1) + h f (x2)

x1 x2 x1 x2

convex concave
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Concave Function∗

f
(
(1− h) x1 + h x2

)
≥ (1− h) f (x1) + h f (x2)

x1 x2
(1− h) x1 + h x2

f
(
(1− h) x1 + h x2

)

(1− h) f (x1) + h f (x2)

Secant is below the graph of function f .
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Strictly Convex and Concave Functions

Function f is strictly convex in domain D ⊆ Rn, if D is convex and

f ((1− h) x1 + h x2) < (1− h) f (x1) + h f (x2)

for all x1, x2 ∈ D with x1 ̸= x2 and all h ∈ (0, 1).

Function f is strictly concave in domain D ⊆ Rn, if D is convex and

f ((1− h) x1 + h x2) > (1− h) f (x1) + h f (x2)

for all x1, x2 ∈ D with x1 ̸= x2 and all h ∈ (0, 1).
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Example – Linear Function

Let a ∈ Rn be fixed.
Then f (x) = aT · x is a linear map and we find:

f ((1− h) x1 + h x2) = aT · ((1− h) x1 + h x2)

= (1− h) aT · x1 + h aT · x2

= (1− h) f (x1) + h f (x2)

That is, every linear function is both concave and convex.

However, a linear function is neither strictly concave nor strictly convex,
as the inequality is never strict.
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Example – Quadratic Univariate Function

Function f (x) = x2 is strictly convex :

f ((1− h) x + h y)−
[
(1− h) f (x) + h f (y)

]
= ((1− h) x + h y)2 −

[
(1− h) x2 + h y2]

= (1− h)2 x2 + 2(1− h)h xy + h2 y2 − (1− h) x2 − h y2

= −h(1− h) x2 + 2(1− h)h xy− h(1− h) y2

= −h(1− h) (x− y)2

< 0 for x ̸= y and 0 < h < 1.

Thus
f ((1− h) x + h y) < (1− h) f (x) + h f (y)

for all x ̸= y and 0 < h < 1,
i.e., f (x) = x2 is strictly convex, as claimed.
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Properties

▶ If f (x) is (strictly) convex, then − f (x) is (strictly) concave
(and vice versa).

▶ If f1(x), . . . , fk(x) are convex (concave) functions and
α1, . . . , αk > 0, then

g(x) = α1 f1(x) + · · ·+ αk fk(x)

is also convex (concave).

▶ If (at least) one of the functions fi(x) is strictly convex (strictly
concave), then g(x) is strictly convex (strictly concave).
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Properties

For a differentiable functions the following holds:
▶ Function f is concave if and only if

f (x)− f (x0) ≤ ∇ f (x0) · (x− x0)
x0

i.e., the function graph is always below the tangent.

▶ Function f is strictly concave if and only if

f (x)− f (x0) < ∇ f (x0) · (x− x0) for all x ̸= x0

▶ Function f is convex if and only if

f (x)− f (x0) ≥ ∇ f (x0) · (x− x0)

x0
(Analogous for strictly convex functions.)
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Univariate Functions∗

For two times differentiable functions we have

f convex ⇔ f ′′(x) ≥ 0 for all x ∈ D f

f concave ⇔ f ′′(x) ≤ 0 for all x ∈ D f

Derivative f ′(x) is
monotonically decreasing,

thus f ′′(x) ≤ 0.
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Univariate Functions∗

For two times differentiable functions we have

f strictly convex ⇐ f ′′(x) > 0 for all x ∈ D f

f strictly concave ⇐ f ′′(x) < 0 for all x ∈ D f
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Example – Convex Function∗

Exponential function:

f (x) = ex

f ′(x) = ex

f ′′(x) = ex > 0 for all x ∈ R

exp(x) is (strictly) convex.

1

1

e
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Example – Concave Function∗

Logarithm function: (x > 0)

f (x) = ln(x)
f ′(x) = 1

x

f ′′(x) = − 1
x2 < 0 for all x > 0

ln(x) is (strictly) concave.

1

1

e
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Locally Convex Functions∗

A function f can be convex in some interval and concave in some other
interval.

For two times continuously differentiable functions (i.e., when f ′′(x) is
continuous) we can use the following procedure:

1. Compute second derivative f ′′(x).

2. Determine all roots of f ′′(x).

3. We thus obtain intervals where f ′′(x) does not change sign.

4. Select appropriate points xi in each interval and determine the
sign of f ′′(xi).
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Locally Concave Function∗

In which region is f (x) = 2 x3 − 12 x2 + 18 x− 1 concave?

We have to solve inequality f ′′(x) ≤ 0.

1. f ′′(x) = 12 x− 24

2. Roots: 12 x− 24 = 0 ⇒ x = 2

3. Obtain 2 intervals: (−∞, 2] and [2, ∞)

4. Sign of f ′′(x) at appropriate points in each interval:
f ′′(0) = −24 < 0 and f ′′(4) = 24 > 0.

5. f ′′(x) cannot change sign in each interval: f ′′(x) ≤ 0 in (−∞, 2]

Function f (x) is concave in (−∞, 2].
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Univariate Restrictions

Notice, that by definition a (multivariate) function is convex if and only if
every restriction of its domain to a straight line results in a convex
univariate function. That is:

Function f : D ⊂ Rn → R is convex

if and only if

g(t) = f (x0 + t · h) is convex

for all x0 ∈ D and
all non-zero h ∈ Rn.

hx0
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Quadratic Form

Let A be a symmetric matrix
and qA(x) = xTAx be the corresponding quadratic form.

Matrix A can be diagonalized, i.e., if we use an orthonormal basis of its
eigenvectors, then A becomes a diagonal matrix with the eigenvalues
of A as its elements:

qA(x) = λ1x2
1 + λ2x2

2 + · · ·+ λnx2
n .

▶ It is convex if all eigenvalues λi ≥ 0
as it is the sum of convex functions.

▶ It is concave if all λi ≤ 0
as it is the negative of a convex function.

▶ It is neither convex nor concave if we have eigenvalues with
λi > 0 and λi < 0.

Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 24 / 45



Quadratic Form

We find for a quadratic form qA:

▶ strictly convex ⇔ positive definite

▶ convex ⇔ positive semidefinite

▶ strictly concave ⇔ negative definite

▶ concave ⇔ negative semidefinite

▶ neither ⇔ indefinite

We can determine the definiteness of A by means of
▶ the eigenvalues of A, or
▶ the (leading) principle minors of A.
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Example – Quadratic Form

Let A =

2 1 0
1 3 −1
0 −1 2

. Leading principle minors:

A1 = 2 > 0

A2 =

∣∣∣∣∣2 1
1 3

∣∣∣∣∣ = 5 > 0

A3 = |A| =

∣∣∣∣∣∣∣
2 1 0
1 3 −1
0 −1 2

∣∣∣∣∣∣∣ = 8 > 0

A is thus positive definite.
Quadratic form qA is strictly convex.
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Example – Quadratic Form

Let A =

−1 0 1
0 −4 2
1 2 −2

. Principle Minors:

A1 = −1 A2 = −4 A3 = −2

A1,2 =

∣∣∣∣∣−1 0
0 −4

∣∣∣∣∣ = 4 A1,3 =

∣∣∣∣∣−1 1
1 −2

∣∣∣∣∣ = 1 A2,3 =

∣∣∣∣∣−4 2
2 −2

∣∣∣∣∣ = 4

A1,2,3 =

∣∣∣∣∣∣∣
−1 0 1
0 −4 2
1 2 −2

∣∣∣∣∣∣∣ = 0
Ai ≤ 0
Ai,j ≥ 0
A1,2,3 ≤ 0

A is thus negative semidefinite.
Quadratic form qA is concave (but not strictly concave).
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Concavity of Differentiable Functions

Le f : D ⊆ Rn → R with Taylor series expansion

f (x0 + h) = f (x0) +∇ f (x0) · h + 1
2 hT ·H f (x0) · h +O(∥h∥3)

Hessian matrix H f (x0) determines the concavity or convexity of f
around expansion point x0.

▶ H f (x0) positive definite ⇒ f strictly convex around x0

▶ H f (x0) negative definite ⇒ f strictly concave around x0

▶ H f (x) positive semidefinite for all x ∈ D ⇔ f convex in D
▶ H f (x) negative semidefinite for all x ∈ D ⇔ f concave in D
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Recipe – Strictly Convex

1. Compute Hessian matrix

H f (x) =


fx1x1(x) fx1x2(x) · · · fx1xn(x)
fx2x1(x) fx2x2(x) · · · fx2xn(x)

...
...

. . .
...

fxnx1(x) fxnx2(x) · · · fxnxn(x)


2. Compute all leading principle minors Hi.

3.
▶ f strictly convex ⇔ all Hk > 0 for (almost) all x ∈ D

▶ f strictly concave ⇔ all (−1)k Hk > 0 for (almost) all x ∈ D

[ (−1)k Hk > 0 implies: H1, H3, . . . < 0 and H2, H4, . . . > 0 ]

4. Otherwise f is neither strictly convex nor strictly concave.
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Recipe – Convex

1. Compute Hessian matrix

H f (x) =


fx1x1(x) fx1x2(x) · · · fx1xn(x)
fx2x1(x) fx2x2(x) · · · fx2xn(x)

...
...

. . .
...

fxnx1(x) fxnx2(x) · · · fxnxn(x)


2. Compute all principle minors Hi1,...,ik .

(Only required if det(H f ) = 0, see below)

3. ▶ f convex ⇔ all Hi1,...,ik ≥ 0 for all x ∈ D.

▶ f concave ⇔ all (−1)k Hi1,...,ik ≥ 0 for all x ∈ D.

4. Otherwise f is neither convex nor concave.
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Recipe – Convex II

Computation of all principle minors can be avoided if det(H f ) ̸= 0.
Then a function is either strictly convex/concave (and thus
convex/concave) or neither convex nor concave.

In particular we have the following recipe:

1. Compute Hessian matrix H f (x).

2. Compute all leading principle minors Hi.

3. Check if det(H f ) ̸= 0.

4. Check for strict convexity or concavity.

5. If det(H f ) ̸= 0 and f is neither strictly convex nor concave, then f
is neither convex nor concave, either.
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Example – Strict Convexity

Is function f (strictly) concave or convex?

f (x, y) = x4 + x2 − 2 x y + y2

1. Hessian matrix: H f (x) =

(
12 x2 + 2 −2
−2 2

)
2. Leading principle minors:

H1 = 12 x2 + 2 > 0
H2 = |H f (x)| = 24 x2 > 0 for all x ̸= 0.

3. All leading principle minors > 0 for almost all x
⇒ f is strictly convex. (and thus convex, too)
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Example – Cobb-Douglas Function

Let f (x, y) = xαyβ with α, β ≥ 0 and α + β ≤ 1,
and D = {(x, y) : x, y ≥ 0}.

Hessian matrix at x:

H f (x) =

(
α(α− 1) xα−2yβ αβ xα−1yβ−1

αβ xα−1yβ−1 β(β− 1) xαyβ−2

)

Principle Minors:

H1 = α︸︷︷︸
≥0

(α− 1)︸ ︷︷ ︸
≤0

xα−2yβ︸ ︷︷ ︸
≥0

≤ 0

H2 = β︸︷︷︸
≥0

(β− 1)︸ ︷︷ ︸
≤0

xαyβ−2︸ ︷︷ ︸
≥0

≤ 0
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Example – Cobb-Douglas Function

H1,2 = |H f (x)|
= α(α− 1) xα−2yβ · β(β− 1) xαyβ−2 − (αβ xα−1yβ−1)2

= α(α− 1) β(β− 1) x2α−2y2β−2 − α2β2 x2α−2y2β−2

= αβ[(α− 1)(β− 1)− αβ]x2α−2y2β−2

= αβ︸︷︷︸
≥0

(1− α− β)︸ ︷︷ ︸
≥0

x2α−2y2β−2︸ ︷︷ ︸
≥0

≥ 0

H1 ≤ 0 and H2 ≤ 0 , and H1,2 ≥ 0 for all (x, y) ∈ D.

f (x, y) thus is concave in D.

For 0 < α, β < 1 and α + β < 1 we even find:
H1 = H1 < 0 and H2 = |H f (x)| > 0 for almost all (x, y) ∈ D.

f (x, y) is then strictly concave.
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Lower Level Sets of Convex Functions

Assume that f is convex.
Then the lower level sets of f

{x ∈ D f : f (x) ≤ c}
are convex.

x1

x2
y

Let x1, x2 ∈ {x ∈ D f : f (x) ≤ c},
i.e., f (x1), f (x2) ≤ c.

Then for y = (1− h)x1 + hx2
where h ∈ [0, 1] we find

f (y) = f ((1− h)x1 + hx2)

≤ (1− h) f (x1) + h f (x2)

≤ (1− h)c + hc = c

That is, y ∈ {x ∈ D f : f (x) ≤ c}, too.
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Upper Level Sets of Concave Functions

Assume that f is concave.
Then the upper level sets of f

{x ∈ D f : f (x) ≥ c}
are convex.

c
c

upper level set lower level set
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Extremum and Monotone Transformation

Let T : R→ R be a strictly monotonically increasing function.

If x∗ is a maximum of f , then x∗ is also a maximum of T ◦ f .

As x∗ is a maximum of f , we have

f (x∗) ≥ f (x) for all x.

As T is strictly monotonically increasing,we have

T(x1) > T(x2) falls x1 > x2.

Thus we find

(T ◦ f )(x∗) = T( f (x∗)) > T( f (x)) = (T ◦ f )(x) for all x,

i.e., x∗ is a maximum of T ◦ f .

As T is one-to-one we also get the converse statement:
If x∗ is a maximum of T ◦ f , then it also is a maximum of f .
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Extremum and Monotone Transformation

A strictly monotonically increasing Transformation T preserves the
extrema of f .

Transformation T also preserves the level sets of f :

−1
−4
−9

−1
−4
−9

e−1
e−4

e−9

e−1
e−4

e−9

f (x, y) = −x2 − y2 T( f (x, y)) = exp(−x2 − y2)
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Quasi-Convex and Quasi-Concave

Function f is called quasi-convex in D ⊆ Rn, if D is convex and every
lower level set {x ∈ D f : f (x) ≤ c} is convex.

Function f is called quasi-concave in D ⊆ Rn, if D is convex and
every upper level set {x ∈ D f : f (x) ≥ c} is convex.
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Convex and Quasi-Convex

Every concave (convex) function also is quasi-concave (and
quasi-convex, resp.).

However, a quasi-concave function need not be concave.

Let T be a strictly monotonically increasing function.
If function f (x) is concave (convex), then T ◦ f is quasi-concave (and
quasi-convex, resp.).

Function g(x, y) = e−x2−y2
is quasi-concave, as f (x, y) = −x2 − y2 is

concave and T(x) = ex is strictly monotonically increasing.

However, g = T ◦ f is not concave.
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A Weaker Condition

The notion of quasi-convex is weaker than that of convex in the sense
that every convex function also is quasi-convex but not vice versa.
There are much more quasi-convex functions than convex ones.

The importance of such a weaker notions is based on the observation
that a couple of propositions still hold if “convex” is replaced by
“quasi-convex”.

In this way we get a generalization of a theorem, where a stronger
condition is replaced by a weaker one.
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Quasi-Convex and Quasi-Concave II

▶ Function f is quasi-convex if and only if

f ((1− h)x1 + hx2) ≤ max{ f (x1), f (x2)}
for all x1, x2 and h ∈ [0, 1].

▶ Function f is quasi-concave if and only if

f ((1− h)x1 + hx2) ≥ min{ f (x1), f (x2)}
for all x1, x2 and h ∈ [0, 1].

x2 x1 x1 x2

quasi-convex quasi-concave
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Strictly Quasi-Convex and Quasi-Concave

▶ Function f is called strictly quasi-convex if

f ((1− h)x1 + hx2) < max{ f (x1), f (x2)}

for all x1, x2, with x1 ̸= x2, and h ∈ (0, 1).

▶ Function f is called strictly quasi-concave if

f ((1− h)x1 + hx2) > min{ f (x1), f (x2)}

for all x1, x2, with x1 ̸= x2, and h ∈ (0, 1).
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Quasi-convex and Quasi-Concave III

For a differentiable function f we find:

▶ Function f is quasi-convex if and only if

f (x) ≤ f (x0) ⇒ ∇ f (x0) · (x− x0) ≤ 0

▶ Function f is quasi-concave if and only if

f (x) ≥ f (x0) ⇒ ∇ f (x0) · (x− x0) ≥ 0
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Summary

▶ monotone function
▶ convex set
▶ convex and concave function
▶ convexity and definiteness of quadratic form
▶ minors of Hessian matrix
▶ quasi-convex and quasi-concave function
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Chapter 14

Extrema
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Global Extremum (Optimum)

A point x∗ is called global maximum (absolute maximum) of f ,
if for all x ∈ D f ,

f (x∗) ≥ f (x) .

A point x∗ is called global minimum (absolute minimum) of f ,
if for all x ∈ D f ,

f (x∗) ≤ f (x) .

global maximum

no global minimum
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Local Extremum (Optimum)

A point x0 is called local maximum (relative maximum) of f ,
if for all x in some neighborhood of x0,

f (x0) ≥ f (x) .

A point x0 is called local minimum (relative minimum) of f ,
if for all x in some neighborhood of x0,

f (x0) ≤ f (x) .

local maximum
= global maximumlocal maximum

local minimum
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Minima and Maxima

Notice!
Every minimization problem can be transformed into a maximization
problem (and vice versa).

Point x0 is a minimum of f (x),
if and only if x0 is
a maximum of − f (x).

x0

f (x)

− f (x)
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Critical Point

At a (local) maximum or minimum the first derivative of the function
must vanish (i.e., must be equal to 0).

A point x0 is called a critical point (or stationary point) of function
f , if

f ′(x0) = 0

Necessary condition for differentiable functions:

Each extremum of f is a critical point of f .
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Global Extremum

Sufficient condition:

Let x0 be a critical point of f .
If f is concave, then x0 is a global maximum of f .
If f is convex, then x0 is a global minimum of f .

If f is strictly concave (or convex), then the extremum is unique.

This condition immediately follows from the properties of (strictly)
concave functions. Indeed, we have for all x ̸= x0,

f (x)− f (x0) ≤ ∇ f (x0) · (x− x0) = 0 · (x− x0) = 0

and thus
f (x0) ≥ f (x) .
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Example – Global Extremum / Univariate∗

Let f (x) = ex − 2 x.

Function f is strictly convex:

f ′(x) = ex − 2
f ′′(x) = ex > 0 for all x ∈ R

Critical point:

f ′(x) = ex − 2 = 0 ⇒ x0 = ln 2

x0 = ln 2 is the (unique) global minimum of f .
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Example – Global Extremum / Multivariate

Let f : D = [0, ∞)2 → R, f (x, y) = 4 x
1
4 y

1
4 − x− y

Hessian matrix at x:

H f (x) =

(
− 3

4 x−
7
4 y

1
4 1

4 x−
3
4 y−

3
4

1
4 x−

3
4 y−

3
4 − 3

4 x
1
4 y−

7
4

)

Leading principle minors:
H1 = − 3

4 x−
7
4 y

1
4 < 0

H2 = 1
2 x−

3
2 y−

3
2 > 0

f is strictly concave in D.

critical point: ∇ f = (x−
3
4 y

1
4 − 1, x

1
4 y−

3
4 − 1) = 0

fx = x−
3
4 y

1
4 − 1 = 0

fy = x
1
4 y−

3
4 − 1 = 0

⇒ x0 = (1, 1)

x0 is the global maximum of f .
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Sources of Errors

Find all global minima of f (x) =
x3 + 2

3x
.

x0

1. f ′(x) = 2(x3−1)
3x2 ,

f ′′(x) = 2x3+4
3x3 .

2. critical point at x0 = 1.

3. f ′′(1) = 2 > 0
⇒ global minimum ???

However, looking just at f ′′(1) is not sufficient as we are looking for
global minima!

Beware! We have to look at f ′′(x) at all x ∈ D f .
However, f ′′(−1) = − 2

3 < 0.
Moreover, domain D = R \ {0} is not an interval.
So f is not convex and we cannot apply our theorem.
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Sources of Errors

Find all global maxima of f (x) = exp(−x2/2) .

x0

1. f ′(x) = x exp(−x2),

f ′′(x) = (x2 − 1) exp(−x2).

2. critical point at x0 = 0.

3. However,
f ′′(0) = −1 < 0 but f ′′(2) = 2e−2 > 0.
So f is not concave and thus there cannot be a global maximum.
Really ???

Beware! We are checking a sufficient condition.
Since an assumption does not hold ( f is not concave),
we simply cannot apply the theorem.
We cannot conclude that f does not have a global maximum.
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Global Extrema in [a, b]∗

Extrema of f (x) in closed interval [a, b].

Procedure for differentiable functions:

(1) Compute f ′(x).

(2) Find all stationary points xi (i.e., f ′(xi) = 0).

(3) Evaluate f (x) for all candidates:
▶ all stationary points xi,
▶ boundary points a and b.

(4) Largest of these values is global maximum,
smallest of these values is global minimum.

It is not necessary to compute f ′′(xi).
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Global Extrema in [a, b]∗

Find all global extrema of function

f : [0,5; 8,5]→ R, x 7→ 1
12

x3 − x2 + 3 x + 1

(1) f ′(x) = 1
4 x2 − 2 x + 3.

(2) 1
4 x2 − 2 x + 3 = 0 has roots x1 = 2 and x2 = 6.

(3) f (0.5) = 2.260
f (2) = 3.667
f (6) = 1.000 ⇒ global minimum

f (8.5) = 5.427 ⇒ global maximum

(4) x2 = 6 is the global minimum and
b = 8.5 is the global maximum of f .
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Global Extrema in (a, b)∗

Extrema of f (x) in open interval (a, b) (or (−∞, ∞)).

Procedure for differentiable functions:

(1) Compute f ′(x).

(2) Find all stationary points xi (i.e., f ′(xi) = 0).

(3) Evaluate f (x) for all stationary points xi.

(4) Determine limx→a f (x) and limx→b f (x).

(5) Largest of these values is global maximum,
smallest of these values is global minimum.

(6) A global extremum exists only if the largest (smallest) value
is obtained in a stationary point !
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Global Extrema in (a, b)∗

Compute all global extrema of

f : R→ R, x 7→ e−x2

(1) f ′(x) = −2x e−x2
.

(2) f ′(x) = −2x e−x2
= 0 has unique root x1 = 0.

(3) f (0) = 1 ⇒ global maximum

limx→−∞ f (x) = 0 ⇒ no global minimum

limx→∞ f (x) = 0

(4) The function has a global maximum in x1 = 0,
but no global minimum.
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Existence and Uniqueness

▶ A function need not have maxima or minima:

f : (0, 1)→ R, x 7→ x

(Points 0 and 1 are not in domain (0, 1).)

▶ (Global) maxima need not be unique:

f : R→ R, x 7→ x4 − 2 x2

has two global minima at −1 and 1.
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Example – Local Extrema

-2 -1 0 1 2 -2
-1

0
1

2

-1

0

1

f (x, y) =
1
6

x3 − x +
1
4

x y2
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Local Extremum

A point x0 is a local maximum (or local minimum) of f , if
▶ x0 is a critical point of f ,
▶ f is locally concave (and locally convex, resp.) around x0.

Sufficient condition for two times differentiable functions:

Let x0 be a critical point of f . Then

▶ f ′′(x0) negative definite ⇒ x0 is local maximum

▶ f ′′(x0) positive definite ⇒ x0 is local minimum

It is sufficient to evaluate f ′′(x) at the critical point x0.
(In opposition to the condition for global extrema.)
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Necessary and Sufficient

We again want to explain two important concepts using the example of
local minima.

Condition “ f ′(x0) = 0” is necessary for a local minimum:

Every local minimum must have this properties.
However, not every point with such a property is a local minimum
(e.g. x0 = 0 in f (x) = x3).
Stationary points are candidates for local extrema.

Condition “ f ′(x0) = 0 and f ′′(x0) is positive definite” is sufficient for a
local minimum.

If it is satisfied, then x0 is a local minimum.
However, there are local minima where this condition does not hold
(e.g. x0 = 0 in f (x) = x4).
If it is not satisfied, we cannot draw any conclusion.
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Procedure – Univariate Functions∗

Sufficient condition
for local extrema of a differentiable function in one variable:

1. Compute f ′(x) and f ′′(x).

2. Find all roots xi of f ′(xi) = 0 (critical points).

3. If f ′′(xi) < 0 ⇒ xi is a local maximum.

If f ′′(xi) > 0 ⇒ xi is a local minimum.

If f ′′(xi) = 0 ⇒ no conclusion possible!

If f ′′(xi) = 0 we need more sophisticated methods!
(E.g., terms of higher order of the Taylor series expansion around xi.)
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Example – Local Extrema∗

Find all local extrema of

f (x) =
1
12

x3 − x2 + 3 x + 1

x1 x2

1. f ′(x) = 1
4 x2 − 2 x + 3,

f ′′(x) = 1
2 x− 2.

2. 1
4 x2 − 2 x + 3 = 0
has roots

x1 = 2 and x2 = 6.

3. f ′′(2) = −1 ⇒ x1 is a local maximum.

f ′′(6) = 1 ⇒ x2 is a local minimum.
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Example – Critical Points

Compute all critical points of

f (x, y) =
1
6

x3 − x +
1
4

x y2

Partial derivatives:

(I) fx = 1
2 x2 − 1 + 1

4 y2 = 0
(I I) fy = 1

2 x y = 0

(I I) ⇒ x = 0 or y = 0
(I) ⇒ −1 + 1

4 y2 = 0
y = ±2

1
2 x2 − 1 = 0

x = ±
√

2

Critical points:

x1 = (0, 2) x3 = (
√

2, 0)

x2 = (0, −2) x4 = (−
√

2, 0)
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Critical Point – Local Extrema

local maximum local minimum
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Critical Point – Saddle Point

saddle point example for higher order
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Procedure – Local Extrema

1. Compute gradient ∇ f (x) and Hessian matrix H f .

2. Find all xi with ∇ f (xi) = 0 (critical points).

3. Compute leading principle minors Hk for all critical points xi:

(a) All leading principle minors Hk > 0
⇒ x0 is a locale minimum of f .

(b) For all leading principle minors, (−1)k Hk > 0
[ i.e., H1, H3, . . . < 0 and H2, H4, . . . > 0 ]
⇒ x0 is a locale maximum of f .

(c) det(H f (xi)) ̸= 0 but neither (a) nor (b) is satisfied
⇒ x0 is a saddle point of f .

(d) Otherwise no conclusion can be drawn,
i.e., xi may or may not be an extremum or saddle point.
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Procedure – Bivariate Function

1. Compute gradient ∇ f (x) and Hessian matrix H f .

2. Find all xi with ∇ f (xi) = 0 (critical points).

3. Compute leading principle minors Hk for all critical points xi:

(a) H2 > 0 and H1 > 0
⇒ x0 is a locale minimum of f .

(b) H2 > 0 and H1 < 0
⇒ x0 is a locale maximum of f .

(c) H2 < 0
⇒ x0 is a saddle point of f .

(d) H2 = det(H f (x0)) = 0
⇒ no conclusion can be drawn,

i.e., xi may or may not be an extremum or saddle point.
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Example – Bivariate Function

Compute all local extrema of of

f (x, y) =
1
6

x3 − x +
1
4

x y2

1. ∇ f = ( 1
2 x2 − 1 + 1

4 y2, 1
2 x y)

H f (x, y) =

(
x 1

2 y
1
2 y 1

2 x

)
2. Critical points:

x1 = (0, 2), x2 = (0,−2), x3 = (
√

2, 0), x4 = (−
√

2, 0)
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Example – Bivariate Function / Cont.

3. Leading principle minors:

H f (x1) = H f (0, 2) =

(
0 1
1 0

)
H2 = −1 < 0 ⇒ x1 is a saddle point

H f (x2) = H f (0,−2) =

(
0 −1
−1 0

)
H2 = −1 < 0 ⇒ x2 is a saddle point
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Example – Bivariate Function / Cont.

3. Leading principle minors:

H f (x3) = H f (
√

2, 0) =

(√
2 0

0
√

2
2

)
H2 = 1 > 0 and H1 =

√
2 > 0

⇒ x3 is a local minimum

H f (x4) = H f (−
√

2, 0) =

(
−
√

2 0

0 −
√

2
2

)
H2 = 1 > 0 and H1 = −

√
2 < 0

⇒ x4 is a local maximum
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Derivative of Optimal Value

Let p, r > 0 and f : D = [0, ∞)2 → R, f (x, y) = 4 x
1
4 y

1
4 − px− ry

Hessian matrix: H f (x) =

(
− 3

4 x−
7
4 y

1
4 1

4 x−
3
4 y−

3
4

1
4 x−

3
4 y−

3
4 − 3

4 x
1
4 y−

7
4

)
Leading principle minors:

H1 = − 3
4 x−

7
4 y

1
4 < 0

H2 = 1
2 x−

3
2 y−

3
2 > 0

f is strictly concave in D.

Critical point: ∇ f = (x−
3
4 y

1
4 − p, x

1
4 y−

3
4 − r) = 0

fx = x−
3
4 y

1
4 − p = 0

fy = x
1
4 y−

3
4 − r = 0

⇒ x0 =
(√

1
r p3 ,

√
1

r3 p

)
x0 is the global maximum of f .

Question:
What is the derivative of optimal value f ∗ = f (x0) w.r.t. r or p?
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Envelope Theorem

We are given function
x 7→ f (x, r)

x = (x1, . . . , xn) . . . variable (endogeneous)

r = (r1, . . . , rk) . . . parameter (exogeneous)
with extremum x∗.

This extremum depends on parameter r:

x∗ = x∗(r)

and so does the optimal value f ∗:

f ∗(r) = f (x∗(r), r)

We have:
∂ f ∗(r)

∂rj
=

∂ f (x, r)
∂rj

∣∣∣∣
x=x∗(r)
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Envelope Theorem / Proof Idea

∂ f ∗(r)
∂rj

=
∂ f (x∗(r), r)

∂rj

∣∣∣∣
x=x∗(r)

[ chain rule ]

=
n

∑
i=1

fxi(x
∗(r), r)︸ ︷︷ ︸
= 0

as x∗ is a critical point

·
∂x∗i (r)

∂rj
+

∂ f (x, r)
∂rj

∣∣∣∣
x=x∗(r)

=
∂ f (x, r)

∂rj

∣∣∣∣
x=x∗(r)
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Example – Envelope Theorem

The (unique) maximum of

f : D = [0, ∞)2 → R, f (x, y) = 4 x
1
4 y

1
4 − px− ry

is x∗(p, r) = (x∗(p, r), y∗(p, r)) =
(√

1
r p3 ,

√
1

r3 p

)
.

Question:
What is the derivative of optimal value f ∗ = f (x0) w.r.t. r or p?

∂ f ∗(p, r)
∂p

=
∂ f (x; p, r)

∂p

∣∣∣∣
x=x∗(p,r)

= −x
∣∣∣
x=x∗(p,r)

= −
√

1
r p3

∂ f ∗(p, r)
∂r

=
∂ f (x; p, r)

∂r

∣∣∣∣
x=x∗(p,r)

= −y
∣∣∣
x=x∗(p,r)

= −
√

1
r3 p
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A Geometric Interpretation

Let f (x, r) =
√

x− rx. We want f ∗(r) = maxx f (x, r).

Graphs of gx(r) = f (x, r) for various values of x.

r

g4/11
g1/2

g2/3

g1

g3/2
f ∗(r)
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Summary

▶ global extremum
▶ local extremum
▶ minimum, maximum and saddle point
▶ critical point
▶ hessian matrix and principle minors
▶ envelope theorem
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Chapter 15

Lagrange Function
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Constraint Optimization

Find the extrema of function

f (x, y)

subject to
g(x, y) = c

Example:
Find the extrema of function

f (x, y) = x2 + 2 y2

subject to
g(x, y) = x + y = 3
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Graphical Solution

For the case of two variables we can find a solution graphically.

1. Draw the constraint g(x, y) = c in the xy-plain.
(The feasible region is a curve in the plane)

2. Draw appropriate contour lines of objective function f (x, y).

3. Investigate which contour lines of the objective function intersect
with the feasible region.
Estimate the (approximate) location of the extrema.
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Example – Graphical Solution

1

2
x + y = 3

∇g

∇ f ∇ f = λ∇g

minimum in (2, 1)

Extrema of f (x, y) = x2 + 2 y2 subject to g(x, y) = x + y = 3
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Lagrange Approach

Let x∗ be an extremum of f (x, y) subject to g(x, y) = c.
Then ∇ f (x∗) and ∇g(x∗) are proportional, i.e.,

∇ f (x∗) = λ∇g(x∗)

where λ is some proportionality factor.

fx(x∗) = λ gx(x∗)
fy(x∗) = λ gy(x∗)
g(x∗) = c

∇g

∇ f

x∗

Transformation yields

fx(x∗)− λ gx(x∗) = 0
fy(x∗)− λ gy(x∗) = 0
c− g(x∗) = 0

The l.h.s. is the gradient of L(x, y; λ) = f (x, y) + λ (c− g(x, y)) .
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Lagrange Function

We create a new function from f , g and an auxiliary variable λ,
called Lagrange function:

L(x, y; λ) = f (x, y) + λ (c− g(x, y))

Auxiliary variable λ is called Lagrange multiplier.

Local extrema of f subject to g(x, y) = c are critical points of
Lagrange function L:

Lx = fx − λ gx = 0
Ly = fy − λ gy = 0
Lλ = c− g(x, y) = 0
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Example – Lagrange Function

Compute the local extrema of

f (x, y) = x2 + 2y2 subject to g(x, y) = x + y = 3

Lagrange function:

L(x, y, λ) = (x2 + 2y2) + λ(3− (x + y))

Critical points:
Lx = 2x− λ = 0
Ly = 4y− λ = 0
Lλ = 3− x− y = 0

⇒ unique critical point: (x0; λ0) = (2, 1; 4)
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Bordered Hessian Matrix

Matrix

H̄(x; λ) =

 0 gx gy

gx Lxx Lxy

gy Lyx Lyy


is called the bordered Hessian Matrix.

Sufficient condition for local extremum:

Let (x0; λ0) be a critical point of L.
▶ |H̄(x0; λ0)| > 0 ⇒ x0 is a local maximum
▶ |H̄(x0; λ0)| < 0 ⇒ x0 is a local minimum
▶ |H̄(x0; λ0)| = 0 ⇒ no conclusion possible
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Example – Bordered Hessian Matrix

Compute the local extrema of

f (x, y) = x2 + 2y2 subject to g(x, y) = x + y = 3

Lagrange function: L(x, y, λ) = (x2 + 2y2) + λ(3− x− y)
Critical point: (x0; λ0) = (2, 1; 4)

Determinant of the bordered Hessian:

|H̄(x0; λ0)| =

∣∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy

gy Lyx Lyy

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
0 1 1
1 2 0
1 0 4

∣∣∣∣∣∣∣ = −6 < 0

⇒ x0 = (2, 1) is a local minimum.
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Many Variables and Constraints

Objective function

f (x1, . . . , xn)

and constraints
g1(x1, . . . , xn) = c1

...

gk(x1, . . . , xn) = ck

(k < n)

Optimization problem: min / max f (x) subject to g(x) = c.

Lagrange Function:

L(x; λ) = f (x) + λT(c− g(x))
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Recipe – Critical Points

1. Create Lagrange Function L:

L(x1, . . . , xn; λ1, . . . , λk)

= f (x1, . . . , xn) +
k

∑
i=1

λi (ci − gi(x1, . . . , xn))

2. Compute all first partial derivatives of L.

3. We get a system of n + k equations in n + k unknowns.
Find all solutions.

4. The first n components (x1, . . . , xn) are the elements of the critical
points.
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Example – Critical Points

Compute all critical points of

f (x1, x2, x3) = (x1 − 1)2 + (x2 − 2)2 + 2 x2
3

subject to
x1 + 2 x2 = 2 and x2 − x3 = 3

Lagrange function:

L(x1, x2, x3; λ1, λ2) = ((x1 − 1)2 + (x2 − 2)2 + 2 x2
3)

+ λ1 (2− x1 − 2 x2) + λ2 (3− x2 + x3)
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Example – Critical Points

Partial derivatives (gradient):

Lx1 = 2 (x1 − 1)− λ1 = 0
Lx2 = 2 (x2 − 2)− 2 λ1 − λ2 = 0
Lx3 = 4 x3 + λ2 = 0
Lλ1 = 2− x1 − 2 x2 = 0
Lλ2 = 3− x2 + x3 = 0

We get the critical points of L by solving this system of equations.

x1 = − 6
7 , x2 = 10

7 , x3 = − 11
7 ; λ1 = − 26

7 , λ2 = 44
7 .

The unique critical point of f subject to these constraints is
x0 = (− 6

7 , 10
7 ,− 11

7 ) .
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Bordered Hessian Matrix

H̄(x; λ) =



0 . . . 0 ∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

...
...

. . .
...

0 . . . 0 ∂gk
∂x1

. . . ∂gk
∂xn

∂g1
∂x1

. . . ∂gk
∂x1

Lx1x1 . . . Lx1xn

...
. . .

...
...

. . .
...

∂g1
∂xn

. . . ∂gk
∂xn

Lxnx1 . . . Lxnxn



For r = k + 1, . . . , n
let Br(x; λ) denote the (k + r)-th leading principle minor of H̄(x; λ).
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Sufficient Condition for Local Extrema

Assume that (x0; λ0) is a critical point of L. Then

▶ (−1)k Br(x0; λ0) > 0 for all r = k + 1, . . . , n
⇒ x0 is a local minimum

▶ (−1)r Br(x0; λ0) > 0 for all r = k + 1, . . . , n
⇒ x0 is a local maximum

(n is the number of variables xi and k is the number of constraints.)

Josef Leydold – Foundations of Mathematics – WS 2024/25 15 – Lagrange Function – 15 / 28



Example – Sufficient Condition for Local Extrema

Compute all extrema of f (x1, x2, x3) = (x1 − 1)2 + (x2 − 2)2 + 2 x2
3

subject to constraints x1 + 2 x2 = 2 and x2 − x3 = 3

Lagrange Function:

L(x1, x2, x3; λ1, λ2) = ((x1 − 1)2 + (x2 − 2)2 + 2 x2
3)

+ λ1 (2− x1 − 2 x2) + λ2 (3− x2 + x3)

Critical point of L:

x1 = − 6
7 , x2 = 10

7 , x3 = − 11
7 ; λ1 = − 26

7 , λ2 = 44
7 .
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Example – Sufficient Condition for Local Extrema

Bordered Hessian matrix:

H̄(x; λ) =


0 0 1 2 0
0 0 0 1 −1
1 0 2 0 0
2 1 0 2 0
0 −1 0 0 4


3 variables, 2 constraints: n = 3, k = 2 ⇒ r = 3

B3 = |H̄(x; λ)| = 14

(−1)kBr = (−1)2B3 = 14 > 0 condition satisfied

(−1)rBr = (−1)3B3 = −14 < 0 not satisfied

Critical point x0 = (− 6
7 , 10

7 ,− 11
7 ) is a local minimum.
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Sufficient Condition for Global Extrema

Let (x∗, λ∗) be a critical point of the Lagrange function L of optimization
problem

min / max f (x) subject to g(x) = c

If L(x, λ∗) is concave (convex) in x, then x∗ is a global maximum
(global minimum) of f (x) subject to g(x) = c.
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Example – Sufficient Condition for Global Extrema

(x∗, y∗; λ∗) = (2, 1; 4) is a critical point of the Lagrange function L of
optimization problem

min / max f (x, y) = x2 + 2y2 subject to g(x, y) = x + y = 3

Lagrange function:

L(x, y, λ∗) = (x2 + 2y2) + 4 · (3− (x + y))

Hessian matrix:

HL(x, y) =

(
2 0
0 4

)
H1 = 2 > 0
H2 = 8 > 0

L is convex in (x, y).

Thus (x∗, y∗) = (2, 1) is a global minimum.
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Example – Sufficient Condition for Global Extrema

(x∗; λ∗) = (− 6
7 , 10

7 ,− 11
7 ;− 26

7 , 44
7 )

is a critical point of the Lagrange function of optimization problem

min / max f (x1, x2, x3) = (x1 − 1)2 + (x2 − 2)2 + 2 x2
3

subject to g1(x1, x2, x3) = x1 + 2 x2 = 2
g2(x1, x2, x3) = x2 − x3 = 3

Lagrange function:

L(x; λ∗) = ((x1 − 1)2 + (x2 − 2)2 + 2 x2
3)

− 26
7 (2− x1 − 2 x2) +

44
7 (3− x2 + x3)

Josef Leydold – Foundations of Mathematics – WS 2024/25 15 – Lagrange Function – 20 / 28



Example – Sufficient Condition for Global Extrema

Hessian matrix:

HL(x1, x2, x3) =

2 0 0
0 2 0
0 0 4

 H1 = 2 > 0
H2 = 4 > 0
H3 = 16 > 0

L is convex in x.

x∗= (− 6
7 , 10

7 ,− 11
7 ) is a global minimum.
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Interpretation of Lagrange Multiplier

Extremum x∗ of optimization problem

min / max f (x) subject to g(x) = c

depends on c, x∗= x∗(c), and so does the extremal value

f ∗(c) = f (x∗(c))

How does f ∗(c) change with varying c?

∂ f ∗

∂cj
(c) = λ∗j(c)

That is, Lagrange multiplier λj is the derivative of the extremal value
w.r.t. exogeneous variable cj in constraint gj(x) = cj.
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Proof Idea

Lagrange function L and objective function f coincide in extemum x∗.

∂ f ∗(c)
∂cj

=
∂L(x∗(c), λ(c))

∂cj
[ chain rule ]

=
n

∑
i=1
Lxi(x

∗(c), λ(c))︸ ︷︷ ︸
= 0

as x∗ is a critical point

·
∂x∗i (c)

∂cj
+

∂L(x, c)
∂cj

∣∣∣∣
(x∗(c),λ∗(c))

=
∂L(x, c)

∂cj

∣∣∣∣
(x∗(c),λ∗(c))

=
∂

∂cj

(
f (x) +

k

∑
i=1

λi(ci − gi(x))
)∣∣∣∣∣

(x∗(c),λ∗(c))

= λ∗j(c)
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Example – Lagrange Multiplier

(x∗, y∗) = (2, 1) is a minimum of optimization problem

min / max f (x, y) = x2 + 2y2

subject to g(x, y) = x + y = c = 3

with λ∗ = 4.

How does the minimal value f ∗(c) change with varying c?

d f ∗

dc
= λ∗= 4
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Envelope Theorem

What is the derivative of the extremal value f ∗of optimization problem

min / max f (x, p) subject to g(x, p) = c

w.r.t. parameters (exogeneous variables) p?

∂ f ∗(p)
∂pj

=
∂L(x, p)

∂pj

∣∣∣∣
(x∗(p),λ∗(p))
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Example – Roy’s Identity

Maximize utility function

max U(x) subject to pT · x = w

The maximal utility depends on prices p and income w ab:

U∗= U∗(p, w) [ indirect utility function ]

Lagrange function L(x, λ) = U(x) + λ (w− pT · x)

∂U∗

∂pj
=

∂L
∂pj

= −λ∗x∗j and
∂U∗

∂w
=

∂L
∂w

= λ∗

and thus

x∗j = −
∂U∗/∂pj

∂U∗/∂w
[ Marshallian demand function ]
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Example – Shephard’s Lemma

Minimize expenses

min pT · x subject to U(x) = ū

The expenditure function (minimal expenses) depend on prices p and
level ū of utility: e = e(p, ū)

Lagrange function L(x, λ) = pT · x + λ (ū−U(x))

∂e
∂pj

=
∂L
∂pj

= x∗j [ Hicksian demand function ]
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Summary

▶ constraint optimization
▶ graphical solution
▶ Lagrange function and Lagrange multiplier
▶ extremum and critical point
▶ bordered Hessian matrix
▶ global extremum
▶ interpretation of Lagrange multiplier
▶ envelope theorem
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Chapter 16

Kuhn Tucker Conditions
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Constraint Optimization

Find the maximum of function

f (x, y)

subject to
g(x, y) ≤ c, x, y ≥ 0

Example:
Find the maxima of

f (x, y) = −(x− 5)2 − (y− 5)2

subject to
x2 + y ≤ 9, x, y ≥ 0
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Graphical Solution

For the case of two variables we can find a solution graphically.

1. Draw the constraint g(x, y) ≤ c in the xy-plain (feasible region).

2. Draw appropriate contour lines of objective function f (x, y).

3. Investigate which contour lines of the objective function intersect
with the feasible region.
Estimate the (approximate) location of the maxima.
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Example – Graphical Solution

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

maximum in (2.2, 4.3)

Maximum of f (x, y) = −(x− 5)2 − (y− 5)2

subject to g(x, y) = x2 + y ≤ 9, x, y ≥ 0.
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Example – Graphical Solution

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

maximum in (1, 1)

Maximum of f (x, y) = −(x− 1)2 − (y− 1)2

subject to g(x, y) = x2 + y ≤ 9, x, y ≥ 0.
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Constraint Optimization

Compute the maximum of function

f (x1, . . . , xn)

subject to

g1(x1, . . . , xn) ≤ c1
...

gk(x1, . . . , xn) ≤ ck

x1, . . . , xn ≥ 0 (non-negativity constraint)

Optimization problem:

max f (x) subject to g(x) ≤ c and x ≥ 0.
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Non-Negativity Constraint

Univariate function f with non-negativity constraint.

We find for the maximum x∗ of f :
▶ x∗ is an interior point of the feasible region:

x∗ > 0 and f ′(x∗) = 0; or
▶ x∗ is a boundary point of the feasible region:

x∗ = 0 and f ′(x∗) ≤ 0.

Summary:

f ′(x∗) ≤ 0, x∗ ≥ 0 and x∗ f ′(x∗) = 0
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Non-Negativity Constraint

For the case of a multivariate function f (x) with non-negativity
constraints xj ≥ 0, we obtain such a condition for each of the variables:

fxj(x
∗) ≤ 0, x∗j ≥ 0 and x∗j fxj(x

∗) = 0
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Slack Variables

Maximize
f (x1, . . . , xn)

subject to

g1(x1, . . . , xn) + s1 = c1
...

gk(x1, . . . , xn) + sk = ck

x1, . . . , xn ≥ 0
s1, . . . , sk ≥ 0 (new non-negativity constraint)

Lagrange function:

L̃(x, s, λ) = f (x1, . . . , xn) +
k

∑
i=1

λi(ci − gi(x1, . . . , xn)− si)
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Slack Variables

L̃(x, s, λ) = f (x1, . . . , xn) +
k

∑
i=1

λi(ci − gi(x1, . . . , xn)− si)

Apply non-negativity conditions:

∂L̃
∂xj
≤ 0, xj ≥ 0 and xj

∂L̃
∂xj

= 0

∂L̃
∂si
≤ 0, si ≥ 0 and si

∂L̃
∂si

= 0

∂L̃
∂λi

= 0 (no non-negativity constraint)
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Elimination of Slack Variables

Because of
∂L̃
∂si

= −λi the second line is equivalent to

λi ≥ 0, si ≥ 0 and λisi = 0

Equations
∂L̃
∂λi

= ci − gi(x)− si = 0 imply si = ci − gi(x)

and consequently the second line is equivalent to

λi ≥ 0, ci − gi(x) ≥ 0 and λi(ci − gi(x)) = 0 .

Therefore there is no need of slack variables any more.
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Elimination of Slack Variables

So we replace L̃ by Lagrange function

L(x, λ) = f (x1, . . . , xn) +
k

∑
i=1

λi(ci − gi(x1, . . . , xn))

Observe that

∂L
∂xj

=
∂L̃
∂xj

and
∂L
∂λi

= ci − gi(x)

So the second line of the condition for a maximum now reads

λi ≥ 0,
∂L
∂λi
≥ 0 and λi

∂L
∂λi

= 0
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Kuhn-Tucker Conditions

L(x, λ) = f (x1, . . . , xn) +
k

∑
i=1

λi(ci − gi(x1, . . . , xn))

The Kuhn-Tucker conditions for a (global) maximum are:

∂L
∂xj
≤ 0, xj ≥ 0 and xj

∂L
∂xj

= 0

∂L
∂λi
≥ 0, λi ≥ 0 and λi

∂L
∂λi

= 0

Notice that these Kuhn-Tucker conditions are not sufficient.
(Analogous to critical points.)
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Example – Kuhn-Tucker Conditions

Find the maximum of

f (x, y) = −(x− 5)2 − (y− 5)2

subject to
x2 + y ≤ 9, x, y ≥ 0

Lagrange function:

L(x, y; λ) = −(x− 5)2 − (y− 5)2 + λ(9− x2 − y)
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Example – Kuhn-Tucker Conditions

Lagrange function:

L(x, y; λ) = −(x− 5)2 − (y− 5)2 + λ(9− x2 − y)

Kuhn-Tucker Conditions:

(A) Lx = −2(x− 5)− 2λx ≤ 0
(B) Ly = −2(y− 5)− λ ≤ 0
(C) Lλ = 9− x2 − y ≥ 0

(N) x, y, λ ≥ 0

(I) xLx = −x(2(x− 5) + 2λx) = 0
(I I) yLy = −y(2(y− 5) + λ) = 0
(I I I) λLλ = λ(9− x2 − y) = 0
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Example – Kuhn-Tucker Conditions

Express equations (I)–(I I I) as

(I) x = 0 or 2(x− 5) + 2λx = 0
(I I) y = 0 or 2(y− 5) + λ = 0
(I I I) λ = 0 or 9− x2 − y = 0

We have to compute all 8 combinations and check whether the resulting
solutions satisfy inequalities (A), (B), (C), and (N).
▶ If λ = 0 (I I I, left), then by (I) and (I I) there exist four solutions

for (x, y; λ):

(0, 0; 0), (0, 5; 0), (5, 0; 0), and (5, 5; 0).

However, none of these points satisfies
all inequalities (A), (B), (C).
Hence λ ̸= 0.
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Example – Kuhn-Tucker Conditions

If λ ̸= 0, then (I I I, right) implies y = 9− x2.
▶ If λ ̸= 0 and x = 0, then y = 9 and because of (I I, right),

λ = −8. A contradiction to (N).
▶ If λ ̸= 0 and y = 0, then x = 3 and because of (I, right),

λ = 2
3 . A contradiction to (B).

▶ Consequently all three variables must be non-zero.
Thus y = 9− x2 and λ = −2(y− 5) = −2(4− x2).
Substituted in (I) yields 2(x− 5)− 4(4− x2)x = 0 and

x =
√

11+1
2 ≈ 2.158 y = 12−

√
11

2 ≈ 4.342
λ =
√

11− 2 ≈ 1.317
The Kuhn-Tucker conditions are thus satisfied only in point

(x, y; λ) =
(√

11+1
2 , 12−

√
11

2 ;
√

11− 2
)

.
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Kuhn-Tucker Conditions

Unfortunately the Kuhn-Tucker conditions are not necessary!

That is, there exist optimization problems where the maximum does not
satisfy the Kuhn-Tucker conditions.

maximum
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Kuhn-Tucker Theorem

We need a tool to determine whether a point is a (global) maximum.

The Kuhn-Tucker theorem provides a sufficient condition:

(1) Objective function f (x) is differentiable and concave.

(2) All functions gi(x) from the constraints are differentiable and
convex.

(3) Point x∗ satisfy the Kuhn-Tucker conditions.

Then x∗ is a global maximum of f subject to constraints gi ≤ ci.

The maximum is unique, if function f is strictly concave.
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Example – Kuhn-Tucker Theorem

Find the maximum of

f (x, y) = −(x− 5)2 − (y− 5)2

subject to
x2 + y ≤ 9, x, y ≥ 0

The respective Hessian matrices of f (x, y) and g(x, y) = x2 + y are

H f =

(
−2 0
0 −2

)
and Hg =

(
2 0
0 0

)

(1) f is strictly concave.

(2) g is convex.
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Example – Kuhn-Tucker Theorem

H f =

(
−2 0
0 −2

)
and Hg =

(
2 0
0 0

)
(1) f is strictly concave.

(2) g is convex.

(3) Point (x, y; λ) =
(√

11+1
2 , 12−

√
11

2 ;
√

11− 2
)

satisfy the
Kuhn-Tucker conditions.

Thus by the Kuhn-Tucker theorem, x∗ = (
√

11+1
2 , 12−

√
11

2 ) is the
maximum we sought for.
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Summary

▶ constraint optimization
▶ graphical solution
▶ Lagrange function
▶ Kuhn-Tucker conditions
▶ Kuhn-Tucker theorem
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Chapter 17

Differential Equation
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A Simple Growth Model (Domar)

In Domar’s growth model we have the following assumptions:

(1) An increase of the rate of investments I(t) increases income Y(t):
dY
dt

=
1
s
· dI

dt
(s = constant)

(2) Ratio of capital stock K(t) and production capacity κ(t) is
constant:

κ(t)
K(t)

= ϱ (= constant)

(E) In equilibrium we have:

Y = κ

Problem: Which flow of investment causes our model to remain in
equilibrium for all times t ≥ 0?
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A simple Growth Model (Domar)

We search for a function I(t) which satisfies model assumptions and
equilibrium condition for all times t ≥ 0.

Y(t) = κ(t) for all t implies Y′(t) = κ′(t).

We thus find

1
s
· dI

dt
(1)
=

dY
dt

(E)
=

dκ

dt
(2)
= ϱ

dK
dt

= ϱ I(t)

or in short
1
s
· dI

dt
= ϱ I(t)

This equation contains a function and its derivative.
It must hold for all t ≥ 0.
The unknown in this equation is a function.
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Differential Equation of First Order

An ordinary differential equation (ODE) of first order is an equation
where the unknown is a univariate function and which contains the first
(but not any higher) derivative of that function.

y′ = F(t, y)

Examples:

y′ = a y

y′ + a y = b

y′ + a y = b y2

are ODEs of first order which describe exponential, exponentially
bounded, and logistic growth, resp.
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Remarks

▶ When time t is the independent variable of a function y(t),
then often Newton’s notation is used for its derivatives:

ẏ(t) =
dy
dt

and ÿ(t) =
d2y
dt2

▶ The independent variable is often not given explicitly:

y′ = a y is short for y′(t) = a y(t).
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Solution of Domar’s Model

Transformation of the differential equation yields

1
I(t)

I′(t) = ϱ s

This equation must hold for all t:

ln(I) =

ln(I) + c2 =

∫ 1
I

dI =
∫ 1

I(t)
I′(t) dt =

∫
ϱ s dt

= ϱ s t + c1= ϱ s t + (c1 − c2)

= ϱ s t + c

Substitution: I = I(t) ⇒ dI = I′(t) dt

Thus we get
I(t) = eϱst · ec = C eϱst (C > 0)
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General Solution

All solutions of ODE I′ = ϱsI can be written as

I(t) = C eϱst (C > 0)

This representation is called the general solution of the ODE.

We obtain infinitely many solutions!

We can easily verify the correctness of these solutions:

dI
dt

= ϱs · C eϱst = ϱs · I(t)
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Initial Value Problem

In our model investment rate I(t) is known at time t = 0 (i.e., “now”).
So we have two equations:{

I′(t) = ϱs · I
I(0) = I0

We have to find some function I(t) which satisfies both the ODE and
the initial value.

We have to solve the so called initial value problem.

We obtain the so called particular solution of the initial value problem
by substituting the initial values into the general solution of the ODE.
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Solution of Domar’s Model

We obtain the particular solution of initial value problem{
I′(t) = ϱs · I
I(0) = I0

by substituting into the general solution:

I0 = I(0) = C eρs0 = C

and thus
I

t

I0

I(t) = I0 eϱst
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Graphical Interpretation

Equation y′ = F(t, y) assigns the slope of a tangent to each point
(t, y). We get a so called vector field.

y

t
y0
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Separation of Variables

Differential equations of the form

y′ = f (t) · g(y)

can be solved by means of separation of variables:

dy
dt

= f (t) · g(y) ⇐⇒ 1
g(y)

dy = f (t) dt

Integration of either side yields:∫ 1
g(y)

dy =
∫

f (t) dt + c

We thus obtain the solution of the ODE as implicit function.

We have solved the ODE of Domar’s model by separation of variables.
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Example – Separation of Variables

Find the solutions of ODE

y′ + t y2 = 0

Separation of variables:

dy
dt

= −t y2 ⇒ −dy
y2 = t dt

Integration yields

−
∫ dy

y2 =
∫

t dt + c ⇒ 1
y
=

1
2

t2 + c

and thus we obtain the general solution as

y(t) =
2

t2 + 2c
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Example – Initial Value Problem

Compute the solution of the initial value problem

y′ + t y2 = 0, y(0) = 1

Particular solution by substitution:

1 = y(0) =
2

02 + 2c
⇒ c = 1

and thus

y(t) =
2

t2 + 2
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Linear ODE of First Order

A linear differential equation of first order is of form

y′(t) + a(t) y(t) = s(t)

It is called
▶ homogeneous ODE, if s = 0, and
▶ inhomogeneous ODE, if s ̸= 0.

Homogeneous linear ODE of first order can be solved by separation of
variables.
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Example – Homogeneous Linear ODE

Find the general solution of the homogeneous linear ODE

y′ + 3 t2y = 0

Separation of variables:

dy
dt

= −3 t2 y ⇒ 1
y

dy = −3t2 dt ⇒ ln y = −t3 + c

General solution thus is
y(t) = C e−t3
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Inhomogeneous Linear ODE of First Order

The general solution of inhomogeneous linear ODE

y′(t) + a y(t) = s

can be written as

y(t) = yh(t) + yp(t)

where
▶ yh(t) is the general solution of the corresponding homogeneous

equation y′(t) + a y(t) = 0, and
▶ yp(t) is some particular solution of the inhomogeneous equation.

If coefficients a and b are constants we set yp(t) = const.
Then y′p = 0 and yp(t) = s

a .
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Inhomogeneous Linear ODE of First Order

For the case where all coefficients a and b are constants and non-zero
the general solution of

y′(t) + a y(t) = s

is given as

y(t) = C e−at +
s
a

Observe that C e−at is just the solution of the corresponding
homogeneous ODE y′(t) + a y(t) = 0.
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Inhomogeneous Linear ODE of First Order

For the initial value problem

y′(t) + a y(t) = s, y(0) = y0

we obtain the particular solution

y(t) = (y0 − ȳ) e−at + ȳ with ȳ =
s
a

We find this solution by substituting the initial value into the particular
solution.
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Example – Inhomogeneous Linear ODE

Find the solution of the initial value problem

y′ − 3y = 6, y(0) = 1

We find

ȳ =
s
a
=

6
−3

= −2

y(t) = (y0 − ȳ) e−at + ȳ = (1− (−2)) e3t − 2 = 3e3t − 2

The particular solution thus is

y(t) = 3e3t − 2
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Model – Dynamic of Market Price

Assume that demand and supply functions are linear:

qd(t) = α− β p(t) (α, β > 0)
qs(t) = −γ + δ p(t) (γ, δ > 0)

The rate of price change is directly proportional to the difference
(qd − qs):

dp
dt

= j (qd(t)− qs(t)) (j > 0)

How does price p(t) evolve in time?

dp
dt

= j (qd − qs) = j (α− βp− (−γ + δp))

= j (α + γ)− j (β + δ)p

i.e., we obtain the inhomogeneous linear ODE of first order

p′(t) + j (β + δ) p(t) = j (α + γ)
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Model – Dynamic of Market Price

The solution of initial value problem

p′(t) + j (β + δ) p(t) = j (α + γ), p(0) = p0

is
p(t) = (p0 − p̄) e−j(β+δ)t + p̄

with

p̄ =
s
a
=

j(α + γ)

j(β + δ)
=

α + γ

β + δ

Observe that p̄ is just the
price in market equilibrium.

t

p̄

p0

p0
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Logistic Differential Equation

A logistic differential equation is of form

y′(t)− k y(t) (L− y(t)) = 0

where k, L > 0 and 0 ≤ y(t) ≤ L.

▶ y ≈ 0: y′(t)− k L y(t) ≈ 0 ⇒ y(t) ≈ C ek L t

▶ y ≈ L: y′(t) + k L y(t) ≈ k L2 ⇒ y(t) ≈ L− C e−k L t

t

L

C ek L t

L− C e−k L t
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Logistic Differential Equation

We can find general solution by separation of variables:

y(t) =
L

1 + C e−L k t

All solutions have an inflection point in y = L
2 .

t

L

L
2
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Example – Logistic Differential Equation

A flu epidemic happens in a city with 8100 inhabitants. When the
epidemic has been detected 100 persons have been infected. Twenty
days later 1000 persons have been infected. It is expected that all
inhabitants eventually will be infected.
Give a model for the number of infected persons.

We use a logistic ODE with L = 8100.
Let q(t) denote the number of infected persons,
where q(0) = 100 and q(20) = 1000.

The general solution of this ODE is

q(t) =
8100

1 + C e−8100kt

We have to estimate parameters k and C.
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Example – Logistic Differential Equation

q(0) = 100 ⇒ 8100
1 + C

= 100 ⇒ C = 80

q(20) = 1000 ⇒ 8100
1 + 80 e−8100·20 k = 1000 ⇒ k = 0.00001495

The number of infected persons can be described by means of function

q(t) =
8100

1 + 80 e−0.121 t .
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Differential Equation of Second Order

An ordinary differential equation (ODE) of second order is an
equation where the unknown is a univariate function and which
contains the second (but not any higher) derivative of that function.

y′′ = F(t, y, y′)

We restrict our interest to linear differential equations of second
order with constant coefficients:

y′′(t) + a1 y′(t) + a2 y(t) = s
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Homogeneous Linear ODE of Second Order

We obtain the general solution of the homogeneous linear ODE

y′′(t) + a1 y′(t) + a2 y(t) = 0

by means of the ansatz
y(t) = C eλt

where λ satisfies the characteristic equation

λ2 + a1λ + a2 = 0

This condition immediately follows from

y′′(t) + a1 y′(t) + a2 y(t) = λ2 C eλt + a1 λ C eλt + a2 C eλt

= C eλt(λ2 + a1 λ + a2) = 0
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Characteristic Equation

The characteristic equation

λ2 + a1λ + a2 = 0

has solutions

λ1,2 = − a1

2
±

√
a2

1
4
− a2

We have three cases:

1. a2
1

4 − a2 > 0: two distinct real solutions

2. a2
1

4 − a2 = 0: exactly one real solution

3. a2
1

4 − a2 < 0: two complex (non-real) solutions

Josef Leydold – Foundations of Mathematics – WS 2024/25 17 – Differential Equation – 28 / 44



Case: a2
1

4 − a2 > 0

The general solution of the homogeneous ODE is given by

y(t) = C1 eλ1t + C2 eλ2t , with λ1,2 = − a1

2
±

√
a2

1
4
− a2

where C1 and C2 are arbitrary real numbers.
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Example: a2
1

4 − a2 > 0

Compute the general solution of ODE

y′′ − y′ − 2y = 0 .

Characteristic equation
λ2 − λ− 2 = 0

has distinct real solutions

λ1 = −1 and λ2 = 2 .

Thus the general solution of the homogeneous ODE is given by

y(t) = C1e−t + C2e2t .
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Case: a2
1

4 − a2 = 0

The general solution of the homogeneous ODE is given by

y(t) = (C1 + C2 t) eλt , with λ = − a1

2

We can verify the validity of solution t eλt by a simple (but tedious)
straight-forward computation.
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Example: a2
1

4 − a2 = 0

Compute the general solution of ODE

y′′ + 4y′ + 4y = 0 .

Characteristic equation

λ2 + 4λ + 4 = 0

has the unique solution
λ = −2 .

The general solution of the homogeneous ODE is thus given by

y(t) = (C1 + C2t) e−2t .
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Case: a2
1

4 − a2 < 0

In this case root
√

a2
1

4 − a2 is a non-real (imaginary) number.

From the rules for complex numbers one can derive purely real
solutions:

y(t) = eat [C1 cos(bt) + C2 sin(bt)
]

with a = − a1
2 and b =

√∣∣∣ a2
1

4 − a2

∣∣∣
Notice that a is the real part of the solution of the characteristic
equation and b the imaginary part.
Computations with complex numbers however are beyond the scope of
this course.
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Example: a2
1

4 − a2 < 0

Compute the general solution of ODE

y′′ + y′ + y = 0 .

Characteristic equation
λ2 + λ + 1 = 0

does not have real solutions as a2
1

4 − a2 = 1
4 − 1 = − 3

4 < 0.

a = − a1
2 = − 1

2 and b =

√∣∣∣ a2
1

4 − a2

∣∣∣ = √ 3
4 =

√
3

2

The general solution of the homogeneous ODE is thus given by

y(t) = e−
1
2 t
[
C1 cos

(√
3

2 t
)
+ C2 sin

(√
3

2 t
)]

.
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Inhomogeneous Linear ODE of Second Order

We obtain the general solution of the inhomogeneous ODE

y′′(t) + a1 y′(t) + a2 y(t) = s

by mean so (provide that a2 ̸= 0)

y(t) = yh(t) +
s
a2

where yh(t) is the general solution of the corresponding homogeneous
ODE

y′′h (t) + a1 y′h(t) + a2 yh(t) = 0 .
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Example – Inhomogeneous Linear ODE of Second Order

Compute the general solution of ODE

y′′(t) + y′(t)− 2y(t) = −10

Characteristic equation of the homogeneous ODE

λ2 + λ− 2 = 0

has real solutions
λ1 = 1 and λ2 = −2 .

The general solution of the inhomogeneous ODE is thus given by

y(t) = C1 eλ1t + C2 eλ2t +
s
a2

= C1 et + C2 e−2t +
−10
−2

.
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Initial Value Problem

All general solutions of linear ODEs of second order contain two
independent integration constants C1 and C2.

Consequently we need two initial values for the particular solution of the
initial value problem

y′′(t) + a1 y′(t) + a2 y(t) = s
y(t0) = y0

y′(t0) = y′0
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Example – Initial Value Problem

Find the particular solution of initial value problem

y′′(t) + y′(t)− 2y(t) = −10, y(0) = 12, y′(0) = −2 .

Its general solution is given by

y(t) = C1 et + C2 e−2t + 5

y′(t) = C1 et − 2C2 e−2t

Substitution of the initial values yields equations

12 = y(0) = C1 + C2

−2 = y′(0) = C1 − 2C2

with solutions C1 = 4 and C2 = 3.
Thus the particular solution of the initial value problem is given by

y(t) = 4et + 3e−2t + 5 .
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Fixed Point of an ODE

The inhomogeneous linear ODE

y′′(t) + a1 y′(t) + a2 y(t) = s

has the special constant solution

y(t) = ȳ =
s
a2

(= constant)

Point ȳ is called fixed point, stationary point, or equilibrium point of
the ODE.

Josef Leydold – Foundations of Mathematics – WS 2024/25 17 – Differential Equation – 39 / 44



Stable and Unstable Fixed Points

The value of a determines the qualitative behavior of solution curve

y(t) = eat [C1 cos(bt) + C2 sin(bt)
]
+ ȳ .

t t t

a < 0 a = 0 a > 0

stable fixed point unstable fixed point
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Asymptotically Stable Fixed Point

If a < 0, then every solution

y(t) = eat [C1 cos(bt) + C2 sin(bt)
]
+ ȳ

converges to ȳ. The fixed point ȳ is then asymptotically stable.

t
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Unstable Fixed Point

If a > 0, then every solution

y(t) = eat [C1 cos(bt) + C2 sin(bt)
]
+ ȳ

with initial value y(0) = y0 ̸= ȳ diverges.
Such a fixed point ȳ is called unstable.

t
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Example – Asymptotically Stable Fixed Point

The general solution of
y′′ + y′ + y = 2

is given

y(t) = 2 + e−
1
2 t
[
C1 cos

(√
3

2 t
)
+ C2 sin

(√
3

2 t
)]

Fixed point ȳ = 2 is asymptotically stable as a = − 1
2 < 0.
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Summary

▶ differential equation of first order
▶ ODE
▶ vector field
▶ separation of variables
▶ homogeneous and inhomogeneous linear ODE of first order
▶ logistic ODE
▶ homogeneous and inhomogeneous linear ODE of second order
▶ stable and unstable equilibrium points
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Chapter 18

Difference Equation
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First Difference

Suppose a state variable y can only be estimated at discrete time
points t1, t2, t3, . . . . In particular we assume that ti ∈N. Thus we can
describe the behavior of such a variable by means of a map

N→ R, t 7→ y(t)

i.e., a sequence. We write yt instead of y(t).

For the marginal changes of y we have to replace the differential
quotient dy

dt by the difference quotient ∆y
∆t .

So if ∆t = 1 this reduces to the first difference

∆yt = yt+1 − yt
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Rules for Differences

For differences similar rules can be applied as for derivatives:

▶ ∆(c yt) = c ∆yt

▶ ∆(yt + zt) = ∆yt + ∆zt Summation rule

▶ ∆(yt · zt) = yt+1 ∆zt + zt ∆yt Product rule

▶ ∆
(

yt

zt

)
=

zt ∆yt − yt ∆zt

zt zt+1
Quotient rule
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Differences of Higher Order

The k-th derivative dky
dtk has to be replaced by the difference of order k:

∆kyt = ∆(∆k−1yt) = ∆k−1yt+1 − ∆k−1yt

For example the second difference is then

∆2yt = ∆(∆yt) = ∆yt+1 − ∆yt

= (yt+2 − yt+1)− (yt+1 − yt)

= yt+2 − 2 yt+1 + yt
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Difference Equation

A difference equation is an equation that contains the differences of a
sequence. It is of order n if it contains a difference of order n (but not
higher).

∆yt = 3 difference equation of first order

∆yt =
1
2 yt difference equation of first order

∆2yt + 2 ∆yt = −3 difference equation of second order

If in addition an initial value y0 is given
we have a so called initial value problem.
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Equivalent Representation

Difference equations can equivalently written without ∆-notation.

∆yt = 3 ⇔ yt+1 − yt = 3 ⇔ yt+1 = yt + 3

∆yt =
1
2 yt ⇔ yt+1 − yt =

1
2 yt ⇔ yt+1 = 3

2 yt

∆2yt + 2 ∆yt = −3 ⇔
⇔ (yt+2 − 2 yt+1 + yt) + 2 (yt+1 − yt) = −3

⇔ yt+2 = yt − 3

These can be seen as recursion formulæ for sequences.

Problem:
Find a sequence yt which satisfies the given recursion formula for all
t ∈N.
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Initial Value Problem and Iterations

Difference equations of first order can be solved by iteratively
computing the elements of the sequence if the initial value y0 is given.

Compute the solution of yt+1 = yt + 3 with initial value y0.

y1 = y0 + 3
y2 = y1 + 3 = (y0 + 3) + 3 = y0 + 2 · 3
y3 = y2 + 3 = (y0 + 2 · 3) + 3 = y0 + 3 · 3
. . .
yt = y0 + 3 t

For initial value y0 = 5 we obtain yt = 5 + 3 t.
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Example – Iterations

Compute the solution of yt+1 = 3
2 yt with initial value y0.

y1 = 3
2 y0

y2 = 3
2 y1 = 3

2 (
3
2 y0) =

( 3
2

)2 y0

y3 = 3
2 y2 = 3

2 (
3
2

2y0) =
( 3

2

)3 y0

. . .
yt =

( 3
2

)t y0

For initial value y0 = 5 we obtain yt = 5 ·
( 3

2

)t
.
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Homogeneous Linear Difference Equation of First Order

A homogeneous linear difference equation of first order is of form

yt+1 + a yt = 0

Ansatz for general solution:

yt = C βt, C β ̸= 0, for some fixed C ∈ R.

It has to satisfy the difference equation for all t:

yt+1 + a yt = C βt+1 + a C βt = 0.

Division by C βt yields β + a = 0 and thus β = −a and

yt = C (−a)t
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Example – Homogeneous Equation

Homogeneous linear difference equation

yt+1 −
3
2

yt = 0

has general solution

yt = C
(

3
2

)t

.
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Properties of Solutions

The behavior of solution

yt = C βt = C (−a)t

obviously depends on parameter β = −a which can be summarized as
following:

oscillating ⇔ β < 0
convergent ⇔ |β| < 1

We want to note that β is the root of the characteristic equation
β + a = 0.
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Properties of Solutions

yt

t

yt

t

yt

t

β > 1 β = 1 0 < β < 1

yt

t

yt

t

yt

t

−1 < β < 0 β = −1 β < −1
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Inhomogeneous Linear Difference Equation

The general solution of inhomogeneous linear difference equation

yt+1 + a yt = s

can be written as

yt = yh,t + yp,t

where
▶ ph,t is the general solution of the corresponding homogeneous

equation yt+1 + a yt = 0, and
▶ yh,t is some particular solution of the inhomogeneous equation.

How can we find yp,t?
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Inhomogeneous Linear Difference Equation

As parameters a and s are constant we may set yh,t = c = const.

Then
yp,t+1 + a yp,t = c + a c = s

which implies

yp,t = c =
s

1 + a
if a ̸= −1.

If a = −1 we set yp,t = c t. Then

c (t + 1) + (−1) c t = s

which implies c = s and
yp,t = s t .
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Inhomogeneous Linear Difference Equation

An inhomogeneous linear difference equation of first order with
constant coefficients is of form

yt+1 + a yt = s

The general solution is given by

yt =


C (−a)t +

s
1 + a

if a ̸= −1,

C + s t if a = −1.

Observe that C (−a)t is just the solution of the corresponding
homogeneous difference equation yt+1 + a yt = 0.
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Asymptotically Stable

Observe that yp,t = ȳ = s
1+a is a fixed point (or equilibrium point) of

the inhomogeneous equation yt+1 + a yt = s.
Obviously solution

yt = C (−a)t + ȳ (C ̸= 0)

converges to ȳ if and only if |a| < 1.

In this case ȳ is (locally ) asymptotically stable.

Otherwise if |a| > 1, yt diverges and ȳ is called unstable.
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Example – Inhomogeneous Equation

The inhomogeneous linear difference equation

yt+1 − 2 yt = 2

has general solution
yt = C 2t − 2 .

We get the particular solution of the initial value problem with y0 = 1 by

1 = y0 = C 20 − 2 .

Thus C = 3 and consequently

yt = 3 · 2t − 2 .
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Example – Inhomogeneous Equation

The inhomogeneous linear difference equation

yt+1 − yt = 3

has general solution
yt = C + 3 t.

We get the particular solution of the initial value problem with y0 = 4 by

4 = y0 = C + 3 · 0 .

Thus C = 4 and consequently

yt = 4 + 3 t .
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Model – Dynamic of Market Price

Assume that demand and supply functions are linear:

qd,t = α− β pt (α, β > 0)
qs,t = −γ + δ pt (γ, δ > 0)

and the change of price is directly proportional to the difference
(qd − qs):

pt+1 − pt = j (qd,t − qs,t) (j > 0)

How does price pt evolve in time?

pt+1 − pt = j (qd,t − qs,t) = j (α− βpt − (−γ + δpt))

= j (α + γ)− j (β + δ)pt

i.e., we obtain the inhomogeneous linear difference equation

pt+1 + (j(β + γ)− 1) pt = j(α + γ)
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Model – Dynamic of Market Price

The general solution

pt+1 + (j(β + γ)− 1) pt = j(α + γ)

is then
pt = C (1− j(β + δ))t + p̄

where p̄ = α+γ
β+δ is the price in market equilibrium.

For initial value p0 we finally obtain the particular solution

pt = (p0 − p̄)(1− j(β + δ))t + p̄

The difference equation has fixed point p̄.
It is asymptotically stable if and only if j(β + δ) < 2.
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Model – Dynamic of Market Price

Consider the following market model:

qd,t = qs,t

qd,t = α− βpt (α, β > 0)
qs,t = −γ + δpt−1 (γ, δ > 0)

Observe that we have market equilibrium in each period.
The supply depends on the price of the preceding period.
Substituting of the second and third equation onto the first yields the
inhomogeneous linear difference equation

β pt + δ pt−1 = α + γ ⇔ pt+1 +
δ

β
pt =

α + γ

β
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Model – Dynamic of Market Price

Inhomogeneous linear first order difference equation

pt+1 +
δ

β
pt =

α + γ

β

with initial value p0 has solution

pt = (p0 − p̄)
(
− δ

β

)t

+ p̄ where p̄ =
α + γ

β + δ
.

As all constants are positive, root − δ
β < 0 and thus all solutions of such

a market model oscillate.

The solution converges to the p̄ if
∣∣∣ δ

β

∣∣∣ < 1.
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Cobweb Model

We also can analyze this model graphically.
Demand and supply are functions of price p:

D(p) = α− βp, and S(p) = −γ + δp

qt

pt

S

D
p0p1 p2p3 p4

q1

q2

q3

q4

q5

p̄

qt

pt

S

D
p0p1 p2p3 p4

q1

q2

q3

q4

q5

p̄

δ > β δ < β
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Cobweb Model

↑ We start in period 0 with price
p0 and get supply q1 = S(p0)
in period 1.

← Market equilibrium implies new
price p1 given implicitly by
D(p1) = q1.

↓ In period 2 price p1 yields
supply q2 = S(p1).

→ Market equilibrium implies new
price p2 given implicitly by
D(p2) = q2.

qt

pt

S

D
p0p1 p2p3 p4

q1

q2

q3

q4

q5

p̄

q̄

Iterating this procedure spins a
cobweb around equilibrium point
( p̄, q̄) with q̄ = S( p̄) = D( p̄).
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Cobweb Model – Nonlinear Functions

Cobweb models also work when functions D(p) and S(p) are
nonlinear.

Then there may not exist a solution in closed form.
However, we still have an equilibrium point p̄ with D( p̄) = S( p̄).
Linearized versions of D and S:

D̂(p) = D( p̄) + D′( p̄)(p− p̄)

Ŝ(p) = S( p̄) + S′( p̄)(p− p̄)

Equilibrium point p̄ is locally
asymptotically stable if
▶ D′( p̄) < 0 < S′( p̄), and
▶ |S′( p̄)| < |D′( p̄)|.

qt

pt
D

S

p̄

q̄
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Linear Difference Equation of Second Order

A difference equation is an equation that contains the differences of
second order of a sequence.

We restrict our interest to linear difference equations of second
order with constant coefficients:

yt+2 + a1 yt+1 + a2 yt = s
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Homogeneous Linear Difference Equation

We obtain the general solution of the homogeneous linear ODE

yt+2 + a1 yt+1 + a2 yt = 0

by means of the ansatz

yt = C βt, C β ̸= 0

which has to satisfies the difference equation :

C βt+2 + a1 C βt+1 + a2 C βt = 0 .

Hence β has to satisfy the characteristic equation

β2 + a1 β + a2 = 0
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Characteristic Equation

The characteristic equation

β2 + a1 β + a2 = 0

has solutions

β1,2 = − a1

2
±

√
a2

1
4
− a2

We have three cases:

1. a2
1

4 − a2 > 0: two distinct real solutions

2. a2
1

4 − a2 = 0: exactly one real solution

3. a2
1

4 − a2 < 0: two complex (non-real) solutions
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Case: a2
1

4 − a2 > 0

The general solution of the homogeneous difference equation

yt+2 + a1 yt+1 + a2 yt = 0

is given by

y(t) = C1 βt
1 + C2 βt

2 , with β1,2 = − a1

2
±

√
a2

1
4
− a2

where C1 and C2 are arbitrary real numbers.
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Example: a2
1

4 − a2 > 0

Compute the general solution of difference equation

yt+2 − 3 yt+1 + 2 yt = 0 .

Characteristic equation

β2 − 3 β + 2 = 0

has distinct real solutions

β1 = 1 and β2 = 2 .

Thus the general solution of the homogeneous equation is given by

yt = C1 1t + C2 2t = C1 + C2 2t .

Josef Leydold – Foundations of Mathematics – WS 2024/25 18 – Difference Equation – 30 / 44



Case: a2
1

4 − a2 = 0

The general solution of the homogeneous difference equation

yt+2 + a1 yt+1 + a2 yt = 0

is given by

yt = C1 βt + C2 t βt , with β = − a1

2

We can verify the validity of solution t βt by a simple (but tedious)
straight-forward computation.
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Example: a2
1

4 − a2 = 0

Compute the general solution of difference equation

yt+2 − 4 yt+1 + 4 yt = 0 .

Characteristic equation

β2 − 4 β + 4 = 0

has the unique solution
β = 2 .

Thus the general solution of the homogeneous equation is given by

yt = C1 2t + C2 t 2t .
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Case: a2
1

4 − a2 < 0

In this case root
√

a2
1

4 − a2 is a non-real (imaginary) number:

β1,2 = a± b i

where
▶ a = − a1

2 is called the real part, and

▶ b =

√∣∣∣a2 −
a2

1
4

∣∣∣ the imaginary part of root β.

Alternatively β can be represent by so called polar coordinates

β1,2 = r(cos θ ± i sin θ)

where

▶ r = |β| =
√

a2 + b2 =

√
a2

1
4 + a2 −

a2
1

4 =
√

a2
is called the modulus (or absolute value) of β, and

▶ θ = arg(β) the argument of β.
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Modulus and Argument

A complex number z = a + b i can be
interpreted as point (a, b) in the (real) plane.

This point can also can be given by polar
coordinates with
radius r = |z| (absolute value or modulus),
and angle θ (called the argument of z).

θ

r
r sin θ

r cos θ

(a, b)

We then have

r = |z| =
√

a2 + b2

and

tan θ =
b
a

because cos θ = a
r and sin θ = b

r .
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Case: a2
1

4 − a2 < 0

From the rules for complex numbers one can derive purely real
solutions of the homogeneous difference equation

yt+2 + a1 yt+1 + a2 yt = 0

given by

yt = rt [C1 cos(θt) + C2 sin(θt)
]

with r = |β| = √a2 and θ = arg(β)

Argument arg(β) is given by

cos θ = a
r = − a1

2
√

a2

sin θ = b
r =

√
1− a2

1
4 a2
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Example: a2
1

4 − a2 < 0

Compute the general solution of difference equation

yt+2 + 2 yt+1 + 4 yt = 0 .

Characteristic equation

β2 + 2 β + 4 = 0

has the complex solutions

β1,2 = −1±
√

3 i

i.e., a = −1 and b =
√

3.
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Example: a2
1

4 − a2 < 0

Complex root β = a + b i with a = −1 and b =
√

3
has polar coordinates:
▶ r =

√
12 + 3 =

√
4 = 2, and

▶ θ = 2π
3 , as sin θ = a

r = − 1
2 and cos θ = b

r =
√

3
2 .

Thus the general solution of the homogeneous equation is given by

yt = 2t
[

C1 cos
(

2π

3
t
)
+ C2 sin

(
2π

3
t
)]

.

Argument θ can be computed by means of the arcus tangens function
arctan(b/a).
A more convenient way is to use function atan2 which is available in
programs like R.
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Inhomogeneous Linear Difference Equation

The general solution of inhomogeneous linear difference equation

yt+2 + a1 yt+1 + a2 yt = s

can be written as

yt = yh,t + yp,t

where
▶ yh,t is the general solution of the corresponding homogeneous

equation yt+2 + a1 yt+1 + a2 yt = s, and
▶ yh,t is some particular solution of the inhomogeneous equation.

How can we find yp,t?
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Inhomogeneous Linear Difference Equation

By assumption all coefficients a1, a2, and s. So we may assume that
yp,t = c = const:

c + a1 c + a2 c = s

which implies

yp,t = c =
s

1 + a1 + a2
if a1 + a2 ̸= −1.

If a1 + a2 ̸= −1 we may use yp,t = ct and get

yp,t =
s

a1 + 2
t if a1 + a2 = −1 and a1 ̸= −2.
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Example – Inhomogeneous Equation

Compute the general solution of difference equation

yt+2 + 2 yt+1 + 4 yt = 14 .

General solution of homogeneous equation yt+2 + 2 yt+1 + 4 yt = 0:

yh,t = 2t
[

C1 cos
(

2π

3
t
)
+ C2 sin

(
2π

3
t
)]

.

As a1 + a2 = 2 + 4 ̸= −1 we use yp,t =
14

1+2+4 = 2 and obtain the
general solution of the inhomogeneous equation as

yt = yh,t + yp,t = 2t
[

C1 cos
(

2π

3
t
)
+ C2 sin

(
2π

3
t
)]

+ 2 .
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Example – Inhomogeneous Equation

Compute the general solution of difference equation

yt+2 − 3 yt+1 + 2 yt = 2 .

General solution of homogeneous equation yt+2 − 3 yt+1 + 2 yt = 0:

yh,t = C1 + C22t .

As a1 + a2 = −3 + 2 = −1 and a1 ̸= −2 we use yp,t =
2

−3+2 t = −2t
and obtain the general solution of the inhomogeneous equation as

yt = yh,t + yp,t = C1 + C22t − 2t .
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Fixed Point of a Difference Equation

The inhomogeneous linear difference equation

yt+2 + a1 yt+1 + a2 yt = s

has the special constant solution (for a1 + a2 ̸= −1)

yp,t = ȳ =
s

1 + a1 + a2
(= constant)

Point ȳ is called fixed point, or equilibrium point of the difference
equation.
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Stable and Unstable Fixed Points

When we review general solutions of linear difference equations (with
constant coefficients) we observe that these solutions converge to a
fixed point ȳ for all choices of constants C if the absolute values of the
roots β of the characteristic equation are less than one:

yt → ȳ for t→ ∞ if |β| < 1.

In this case ȳ is called an asymptotically stable fixed point.
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Summary

▶ differences of sequences
▶ difference equation
▶ homogeneous and inhomogeneous linear difference equation of

first order with constant coefficients
▶ cobweb model
▶ homogeneous and inhomogeneous linear difference equation of

second order with constant coefficients
▶ stable and unstable fixed points
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Chapter 19

Control Theory
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Economic Growth

Problem: Maximize consumption in period [0, T]:

max
0≤s(t)≤1

∫ T

0
(1− s(t)) f (k(t)) dt

f (k) . . . production function

k(t) . . . capital stock at time t
s(t) . . . rate of investment at time t , s ∈ [0, 1]

We can control s(t) at each time freely.
s is called control function.

k(t) follows the differential equation

k′(t) = s(t) f (k(t)), k(0) = k0, k(T) ≥ kT .
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Oil Extraction

y(t) . . . amount of oil in reservoir at time t
u(t) . . . rate of extraction at time t: y′(t) = −u(t)
p(t) . . . market price of oil at time t

C(t, y, u) . . . extraction costs per unit of time

r . . . (constant) discount rate

Problem I: Maximize revenue in fixed time horizon [0, T]:

max
u(t)≥0

∫ T

0

[
p(t)u(t)− C(t, y(t), u(t))

]
e−rt dt

We can control u(t) freely at each time where u(t) ≥ 0.

y(t) follows the differential equation:

y′(t) = −u(t), y(0) = K, y(T) ≥ 0 .
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Oil Extraction

Problem I:
Find an extraction process u(t) for a fixed time period [0, T] that
optimizes the profit.

Problem II:
Find an extraction process u(t) and time horizon T that optimizes the
profit.
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The Standard Problem (T Fixed)

1. Maximize for objective function f

max
u

∫ T

0
f (t, y, u) dt, u ∈ U ⊆ R .

u is the control function, U is the control region.

2. Controlled differential equation (initial value problem)

y′ = g(t, y, u), y(0) = y0 .

3. Terminal value
(a) y(T) = y1
(b) y(T) ≥ y1 [or: y(T) ≤ y1]
(c) y(T) free

(y, u) is called a feasible pair if (2) and (3) are satisfied.
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Hamiltonian

Analogous to the Lagrange function we define function

H(t, y, u, λ) = λ0 f (t, y, u) + λ(t)g(t, y, u)

which is called the Hamiltonian of the standard problem.

Function λ(t) is called the adjoint function.

Scalar λ0 ∈ {0, 1} can be assumed to be 1.
(However, there exist rare exceptions where λ0 = 0.)

In the following we always assume that λ0 = 1. Then

H(t, y, u, λ) = f (t, y, u) + λ(t)g(t, y, u)
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Maximum Principle

Let (y∗, u∗) be an optimal pair of the standard problem.
Then there exists a continuous function λ(t) such that for all t ∈ [0, T]:

(i) u∗ maximizes H w.r.t. u, i.e.,

H(t, y∗, u∗, λ) ≥ H(t, y∗, u, λ) for all u ∈ U

(ii) λ satisfies the differential equation

λ′ = − ∂

∂y
H(t, y∗, u∗, λ)

(iii) Transversality condition
(a) y(T) = y1: λ(T) free

(b) y(T) ≥ y1: λ(T) ≥ 0 [with λ(T) = 0 if y∗(T) > y1]

(c) y(T) free: λ(T) = 0
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A Necessary Condition

The maximum principle gives a necessary condition for an optimal
pair of the standard problem, i.e., a feasible pair which solves the
optimization problem.

That is, for every optimal pair we can find such a function λ(t).

On the other hand if we can find such a function for some feasible pair
(y0, u0) then (y0, u0) need not be optimal.

However, it is a candidate for an optimal pair.

(Comparable to the role of stationary points in static constraint
optimization problems.)
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A Sufficient Condition

Let (y∗, u∗) be a feasible pair of the standard problem and λ(t) some
function that satisfies the maximum principle.

If U is convex and H(t, y, u, λ) is concave in (y, u) for all t ∈ [0, T],
then (y∗, u∗) is an optimal pair.
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Recipe

1. For every triple (t, y, λ) find a (global) maximum û(t, y, λ) of
H(t, y, u, λ) w.r.t. u.

2. Solve system of differential equations

y′ = g(t, y, û(t, y, λ), λ)

λ′ = −Hy(t, y, û(t, y, λ), λ)

3. Find particular solutions y∗(t) and λ∗(t) which satisfy initial
condition y(0) = y0 and the transversality condition, resp.

4. We get candidates for an optimal pair by y∗(t) and
u∗(t) = û(t, y∗, λ∗).

5. If U is convex and H(t, y, u, λ∗) is concave in (y, u),
then (y∗, u∗) is an optimal pair.

Josef Leydold – Foundations of Mathematics – WS 2024/25 19 – Control Theory – 10 / 19



Example 1

Find optimal control u∗ for

max
∫ 2

0
y(t) dt, u ∈ [0, 1]

y′ = y + u, y(0) = 0, y(2) free

Heuristically:
Objective function y and thus u should be as large as possible.
Therefore we expect that u∗(t) = 1 for all t.

Hamiltonian:

H(t, y, u, λ) = f (t, y, u) + λg(t, y, u) = y + λ(y + u)
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Example 1

H(t, y, u, λ) = y + λ(y + u)

Maximum û of H w.r.t. u:

û =

{
1, if λ ≥ 0,

0, if λ < 0.

Solution of the (inhomogeneous linear) ODE

λ′ = −Hy = −(1 + λ), λ(2) = 0

⇒ λ∗(t) = e2−t − 1 .

As λ∗(t) = e2−t − 1 ≥ 0 for all t ∈ [0, 2] we have û(t) = 1.
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Example 1

Solution of the (inhomogeneous linear) ODE

y′ = y + û = y + 1, y(0) = 0

⇒ y∗(t) = et − 1 .

We thus obtain

u∗(t) = û(t) = 1 .

Hamiltonian H(t, y, u, λ) = y + λ(y + u) is linear
and thus concave in (y, u).

u∗(t) = 1 is the optimal control we sought for.
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Example 2

Find the optimal control u∗ for

min
∫ T

0

[
y2(t) + cu2(t)

]
dt, u ∈ R, c > 0

y′ = u, y(0) = y0, y(T) free

We have to solve the maximization problem

max
∫ T

0
−
[
y2(t) + cu2(t)

]
dt

Hamiltonian:

H(t, y, u, λ) = f (t, y, u) + λg(t, y, u) = −y2 − cu2 + λu
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Example 2

Maximum û of H w.r.t. u:

0 = Hu = −2cû + λ ⇒ û = λ
2c

Solution of the (system of) differential equations

y′ = û =
λ

2c
λ′= −Hy = 2y

By differentiating the second ODE we get

λ′′ = 2y′ =
λ

c
⇒ λ′′ − 1

c
λ = 0

Solution of the (homogeneous linear) ODE of second order

λ∗(t) = C1ert + C2e−rt, with r = 1√
c

(± 1√
c are the two roots of the characteristic polynomial.)
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Example 2

Initial condition y(0) = y0 and transversality condition, resp., yield

λ∗′(0) = 2y(0) = 2y0
λ∗(T) = 0

and thus

r(C1 − C2) = 2y0

C1erT + C2e−rT = 0

with solutions

C1 = 2y0e−rT

r(erT+e−rT)
, C2 = − 2y0erT

r(erT+e−rT)
.
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Example 2

Consequently we obtain

λ∗(t) = 2y0
r(erT+e−rT)

(
e−r(T−t) − er(T−t)

)
y∗(t) = 1

2 λ∗(t) = y0
e−r(T−t)−er(T−t)

r(erT+e−rT)

u∗(t) = û(t, y∗, λ∗) = 1
2c λ∗(t) = y0

c
e−r(T−t)−er(T−t)

r(erT+e−rT)

It is easy to verify that Hamiltonian H(t, y, u, λ) = −y2 − cu2 + λu is
concave in y and u.

u∗(t) = y0
c

e−r(T−t)−er(T−t)

r(erT+e−rT)
is the optimal control.
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Standard Problem (T Variable)

If time horizon [0, T] is not fixed in advanced we have to find an optimal
time period [0, T∗] in addition to the optimal control u∗.

For this purpose we have to add the following condition to the maximum
principle (in addition to (i)–(iii)).

(iv) H(T∗, y∗(T∗), u∗(T∗), λ(T∗)) = 0

The recipe for solving the optimization problem remains essentially the
same.
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Summary

▶ standard problem
▶ Hamiltonian function
▶ maximum principle
▶ a sufficient condition
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