Correspondence Analysis and Related Methods

Michael Greenacre Universitat Pompeu Fabra Barcelona

www.econ.upf.edu/~michael

www.globalsong.net

10-26 May 2010

PROGRAM

Monday May 10, 12:00 pm - 4:00 pm - SR Statistik

Tuesday May 11, 2:00 pm - 6:00 pm - 2H564 (PC Labor Statistik)

Wednesday May 12, 12:00 pm - 2:00 pm - SR Statistik

Wednesday May 12, 2:00 pm - 4:00 pm - 2H564 (PC Labor Statistik)

Monday May 17, 12:00 pm - 2:00 pm - SR Statistik

Tuesday May 18, 2:00 pm - 4:00 pm - 2H564 (PC Labor Statistik)

Wednesday May 19, 2:00 pm - 4:00 pm - SR Statistik

Tuesday May 25, 10:00 am – 12:00 – 2H564 (PC Labor Statistik)

Wednesday May 26, 10:00 am - 12:00 - SR Statistik

COURSE CONTENTS: main themes

Theme 1: Introduction to multivariate data and multivariate analysis

Theme 2: Geometric concepts of correspondence analysis and related methods

Theme 3: Theory of correspondence analysis and related methods: the SVD

Theme 4: Biplots

Theme 5: Diagnostics for interpretation

Theme 5: Multiple & joint correspondence analysis

Theme 6: Extension to other types of data: ratings, rankings, square matrices

Theme 7: Investigating stability using bootstrap; testing hypotheses using permutation test

BIBLIOGRAPHY and SUPPORTING MATERIAL

Greenacre, M. and Blasius, J. (2006). Multiple Correspondence Analysis and Related Methods. Chapman & Hall /CRC Press.

Greenacre, M. (2007). Correspondence Analysis in Practice, 2nd edition. Chapman & Hall/ CRC Press.

Some PDFs of selected articles...

Web page of course material and R scripts:

www.econ.upf.edu/~michael/CARME

Introduction to multivariate data and multivariate analysis

Introduction to multivariate data

· Let's start with some simple trivariate data...

Continuous variables

X1 – Purchasing power/capita (euros)

X2 – GDP/capita (index)

X3 – inflation rate (%)

Count		

C1 - Glance reader

C2 - Fairly thorough reader

C3 - Very thorough reader

	Country	X1	X2	X3	Education		C1	C2	СЗ
Be	Belgium	19200	115.2	4.5	Education	1	_		_
De	Denmark	20400	120.1	3.6	Some primary	E1	5	7	2
Ge	Germany	19500	115.6	2.8	· · · · · · · · · · · · · · · · · · ·				
Gr	Greece	18800	94.3	4.2	Primary completed	E2	18	46	20
Sp	Spain	17600	102.6	4.1					
Fr	France	19600	108.0	3.2	Some secondary	E3	19	29	39
ir	Ireland	20800	135.4	3.1					
lt	Italy	18200	101.8	3.5	Secondary completed	E4	12	40	49
Lu	Lu xem bo urg	28800	276.4	4.1					
Ne	Netherlands	20400	134.0	2.2	Some tertiary	E5	3	7	16
Po	Portugal	15000	76.0	2.7					
UK	United Kingdom	22600	116.2	3.6					

Visualizing trivariate continuous data

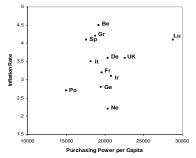
Continuous variables

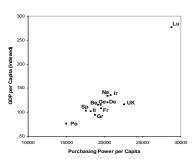
X1 – Purchasing power/capita (euros)

X2 - GDP/capita (index)

X3 – inflation rate (%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
lr	Ireland	20800	135.4	3.1
lt	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6





Visualizing trivariate continuous data

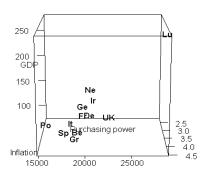
Continuous variables

X1 – Purchasing power/capita (euros)

X2 - GDP/capita (index)

X3 – inflation rate (%)

	Country	X1	X2	X3
Ве	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
lr	Ireland	20800	135.4	3.1
lt	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6
		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·



Visualizing trivariate continuous data

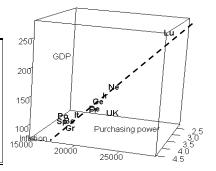
Continuous variables

X1 – Purchasing power/capita (euros

X2 - GDP/capita (index)

X3 – inflation rate (%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
lr	Ireland	20800	135.4	3.1
lt	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6
	_			



Visualizing trivariate continuous data

Continuous variables

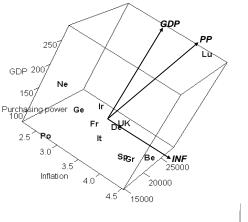
X1 – Purchasing power/capita (euro

X2 – GDP/capita (index)

X3 – inflation rate (%)

		Country	X1	X2	<i>X</i> 3
-	Be	Belgium	19200	115.2	4.5
	De	Denmark	20400	120.1	3.6
	Ge	Germany	19500	115.6	2.8
	Gr	Greece	18800	94.3	4.2
	Sp	Spain	17600	102.6	4.1
	Fr	France	19600	108.0	3.2
	lr	Ireland	20800	135.4	3.1
	lt	Italy	18200	101.8	3.5
	Lu	Luxembourg	28800	276.4	4.1
	Ne	Netherlands	20400	134.0	2.2
	Po	Portugal	15000	76.0	2.7
	UK	United Kingdom	22600	116.2	3.6

cor		X2	
X1	1.000	0.929	0.243
X2	0.929	1.000	0.207
<i>X</i> 3	0.243	0.207	1.000



Visualizing trivariate count data

Count variables

C1 – Glance reader

C2 – Fairly thorough reader

C3 - Very thorough reader

							row	prof	iles	
Education		C1	C2	C3			C1	C2	C3	
Primary incomplete	E1	5	7	2	14	E1	.36	.50	.14	1
Primary completed	E2	18	46	20	84	E2	.21	.55	.24	1
Secondary incomplete	E3	19	29	39	<i>87</i> →	E3	.22	.33	.45	,
	_	12					<u> </u>			_
Secondary completed	E4		40		101	E4	.12	.40	.49	1
Some tertiary	E5	3	7	16	263	E 5	.12	.27	.62	1

Visualizing trivariate count data

Count variables

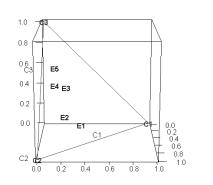
C1 - Glance reader

C2 – Fairly thorough reader

C3 - Very thorough reader

row profiles

		IOVV	pioi	1163	
Education		C1	C2	C3	
Some primary	E1	.36	.50	.14	١
Primary completed	E2	.21	.55	.24	١.
Some secondary	E3	.22	.33	.45	١.
Secondary completed	E4	.12	.40	.49	١
Some tertiary	E5	.12	.27	.62	
	C1	1	0	0	
	C2	1	0	0	
	C3	1	0	0	



Visualizing trivariate count data

Count variables

C1 - Glance reader

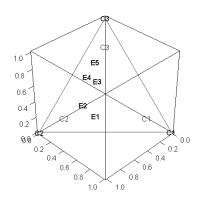
C2 - Fairly thorough reader

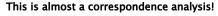
C3 - Very thorough reader

row profiles

0

		I OVV	pioi	1162	
Education		C1	C2	C3	
Some primary	E1	.36	.50	.14	1
Primary completed	E2	.21	.55	.24	1
Some secondary	E3	.22	.33	.45	1
Secondary completed	E4	.12	.40	.49	1
Some tertiary	E5	.12	.27	.62	1
	C1	1	0	0	1
	C2	1	0	0	,





Four corners of multivariate analysis

FUNCTIONAL method

Classification and regression trees

equation models least squares correspondence analysis Generalized linear & additive models (GLMs & GAMs) regression regression

- general linear model

- analysis of (co)variance

CONTINUOUS variable of interest

- scaling
- principal component analysis - factor analysis
- correspondence analysis
- multidimensional scaling

- classification
- discriminant analysis
- logistic regression
- pattern recognition

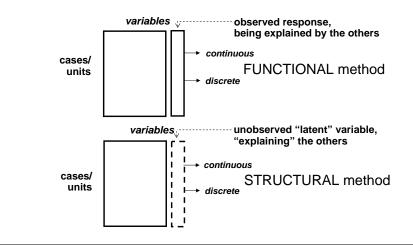
DISCRETE variable of interest

- cluster analysis
- hierarchical clustering
- nonhierarchical clustering
- latent class analysis

STRUCTURAL method

A basic scheme of multivariate analysis

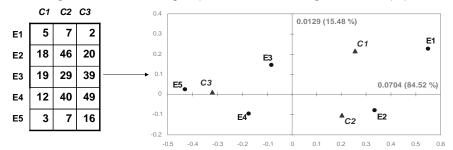
All multivariate methods fall basically into two types, depending on the data structure and the question being asked:



Basic geometric concepts of correspondence analysis and related methods (principal component analysis, log-ratio analysis, discriminant analysis, multidimensional scaling...

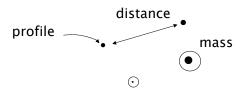
Basic geometric concepts

 312 respondents, all readers of a certain newspaper, cross-tabulated according to their education group and level of reading of the newspaper



- E1: some primary E2: primary completed E3: some secondary E4: secondary completed E5: some tertiary
- C1: glance C2: fairly thorough C3: very thorough
- We use this simple example to explain the three basic concepts of CA: profile, mass and (chi-square) distance

Three basic geometric concepts



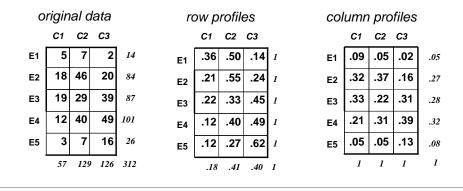
profile - the coordinates (position) of the point

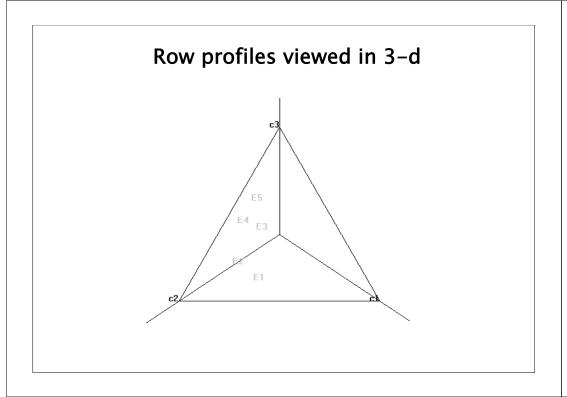
mass - the weight given to the point

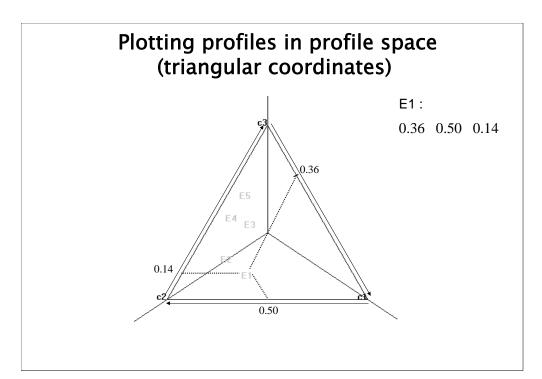
(chi-square) distance - the measure of proximity between points

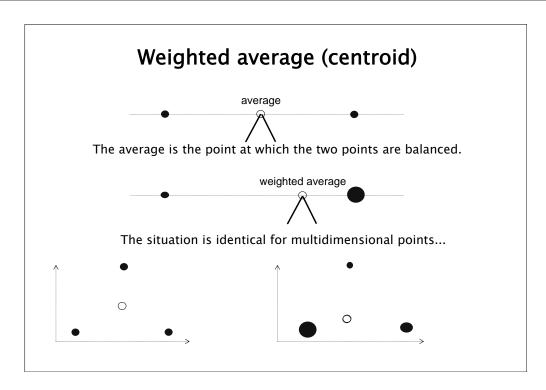
Profile

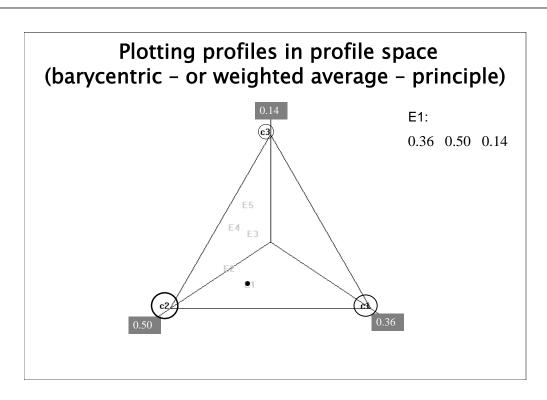
- A profile is a set of relative frequencies, that is a set of frequencies expressed relative to their total (often in percentage form).
- Each row or each column of a table of frequencies defines a different profile.
- It is these profiles which CA visualises as points in a map.



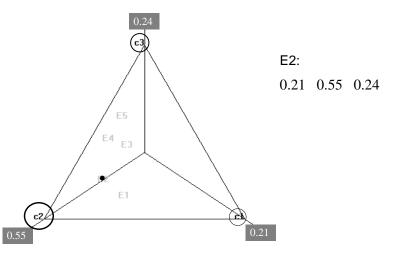


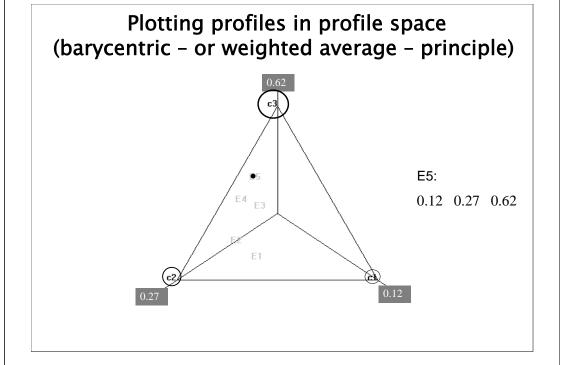




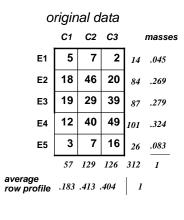


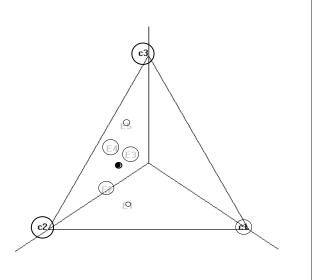
Plotting profiles in profile space (barycentric - or weighted average - principle)





Masses of the profiles





Readership data

	Education Group	C1	C2	СЗ	Total	Mass
E1	Some primary	5 (0.357)	7 (0.500)	2 (0.143)	14	0.045
E2	Primary completed	18 <i>(0.214)</i>	46 (0.548)	20 (0.238)	84	0.269
ЕЗ	Some secondary	19 (0.218)	29 (0.333)	39 (0.448)	87	0.279
E4	Secondary completed	12 (0.119)	40 (0.396)	49 (0.485)	101	0.324
E5	Some tertiary	3 (0.115)	7 (0.269)	16 <i>(0.615)</i>	26	0.083
	Total	57 (0.183)	129 (0.413)	126 (0.404)	312	_

C1: glance C2: fairly thorough C3: very thorough

Calculating chi-square

$$\chi^{2} = 12 \text{ similar terms} + \frac{(3-4.76)^{2}}{4.76} + \frac{(7-10.74)^{2}}{10.74} + \frac{(16-10.50)^{2}}{10.50}$$
$$= 26.0$$

	Education Group	C1	C2	СЗ	Total	Mass
					14	
					84	
					87	
					101	
E5	Observed Frequency Some tertiary	3 (0.115) 4.76	7 (0.269) 10.74	16 (0.615) 10.50	26	0.083
	Expected Fretaliency	57 (0.183)	129 (0.413)	126 (0.404)	312	

For example, expected frequency of (**E5,C1**):

$$0.183 \times 26 = 4.76$$

WEIGHTED

Calculating chi-square

$$\chi^{2} = 12 \text{ similar terms}$$

$$+ 26 \left[\frac{(3/26 - 4.76/26)^{2}}{4.76/26} + \frac{(7/26 - 10.74/26)^{2}}{10.74/26} + \frac{(16/26 - 10.50/26)^{2}}{10.50/26} \right]$$

$$\chi^{2}/_{312} = 12 \text{ similar terms}$$

$$+ 0.083 \left[\frac{(0.115 - 0.183)^{2}}{0.183} + \frac{(0.269 - 0.413)^{2}}{0.413} + \frac{(0.615 - 0.404)^{2}}{0.404} \right]$$

	Education Group	C1	C2	C3	Total	Mass
					14	
					84	
					87	
					101	
E5	Observed Frequency Some tertiary Expected Frequency	3 (0.115) 4.76	7 (0.269) 10.74	16 (0.615) 10.50	26	0.083
	Total	57 (0.183)	129 (0.413)	126 (0.404)	312	

Calculating inertia

Inertia =
$$\chi^2/_{312}$$
 = similar terms for first four rows ...
+ 0.083 $\left[\frac{(0.115-0.183)}{0.183}^2 + \frac{(0.269-0.413)}{0.413}^2 + \frac{(0.615-0.404)}{0.404}^2\right]$

mass (of row E5)

Squared chi-square distance (between the profile of E5 and the average profile)

Inertia = $\sum mass \times (chi\text{-square distance})^2$
 $\frac{(0.115-0.183)}{0.183}^2 + \frac{(0.269-0.413)}{0.413}^2 + \frac{(0.615-0.404)}{0.404}^2$

EUCLIDEAN WEIGHTED

How can we see chi-square distances?

Inertia =
$$\chi^2/_{312}$$
 = similar terms for first four rows ...

+
$$0.083 \left[\frac{(0.115 - 0.183)^2}{0.183} + \frac{(0.269 - 0.413)^2}{0.413} + \frac{(0.615 - 0.404)^2}{0.404} \right]$$

mass (of row **E5**)

squared chi-square distance

(between the profile of E5 and the average profile)

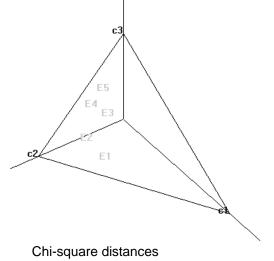
$$\frac{(0.115 - 0.183)}{0.183}^2 + \frac{(0.269 - 0.413)}{0.413}^2 + \frac{(0.615 - 0.404)}{0.404}^2$$
 EUCLIDEAN WEIGHTED

$$\left(\frac{0.115}{0.183} \frac{0.183}{\sqrt{0.183}}\right)^{2} + \left(\frac{0.269}{0.413} \frac{0.413}{\sqrt{0.413}}\right)^{2} + \left(\frac{0.615}{0.404} \frac{0.404}{\sqrt{0.404}}\right)^{2}$$

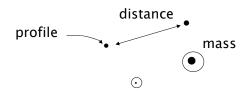
So the answer is to divide all profile elements by the $\sqrt{}$ of their averages

"Stretched" row profiles viewed in 3-d chi-squared space

"Pythagorian" – ordinary Euclidean distances



Three basic geometric concepts

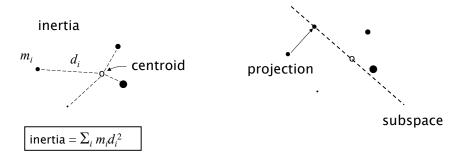


profile - the coordinates (position) of the point

mass - the weight given to the point

(chi-square) distance - the measure of proximity between points

Four derived geometric concepts



centroid - the weighted average position

inertia - the weighted sum-of-squared distances to centroid

subspace – space of reduced dimensionality within the space (it will go through the centroid)

projection - the closest point in the subspace

Summary: Basic geometric concepts

- Profiles are rows or columns of relative frequencies, that is the rows or columns expressed relative to their respective marginals, or bases.
- Each profile has a weight assigned to it, called the **mass**, which is proportional to the original marginal frequency used as a base .
- The average profile is the the centroid (weighted average) of the profiles.
- Vertex profiles are the extreme profiles in the profile space ("simplex").
- Profiles are weighted averages of the vertices, using the profile elements as weights.
- The dimensionality of an $I \times J$ matrix = min $\{I 1, J 1\}$
- The chi-square distance measures the difference between profiles, using an Euclidean-type function which standardizes each profile element by dividing by the square root of its expected value.
- The (total) inertia can be expressed as the weighted average of the squared chi-square distances between the profiles and their average.

The one-minute CA course

· The 'famous' smoking data.

staff						
group		none	lig ht	m ediu m	heavy	sum
Senior managers	SM	4	2	3	2	11
Junior managers	JM	4	3	7	4	18
Senior employees	SE	25	10	12	4	51
Junior employees	JE	18	24	33	13	88
Secretaries	SC	10	6	7	2	25
	sum	61	45	62	25	193

 Now for the one-minute course in correspondence analysis, possible thanks to dynamic graphics!

One minute CA course: slide 1

3 columns

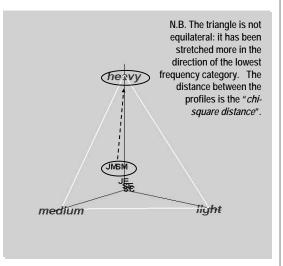
	light	medium	heavy	sum
SM	2	3	2	7
JM	3	7	4	14
SE	10	12	4	26
JE	24	33	13	70
SC	6	7	2	15

express relative to row sums

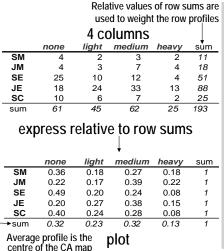
"row profiles" light medium SM 0.29 0.43 0.29 JM 0.21 0.50 0.29 SE 0.38 0.46 0.15 JΕ 0.34 0.19 SC

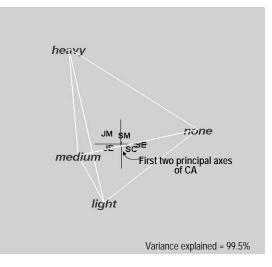
These are called

plot



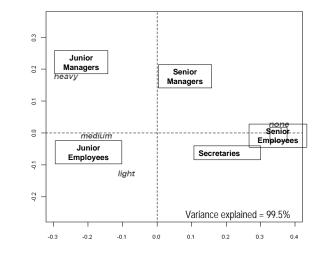
One minute CA course: slide 2



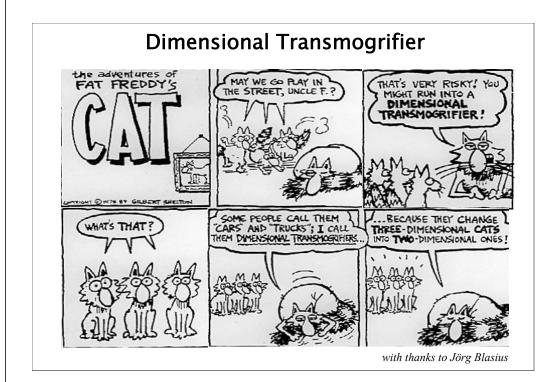


On minute CA course: slide 3

often rescale result so that rows and columns have same dispersions along the axes



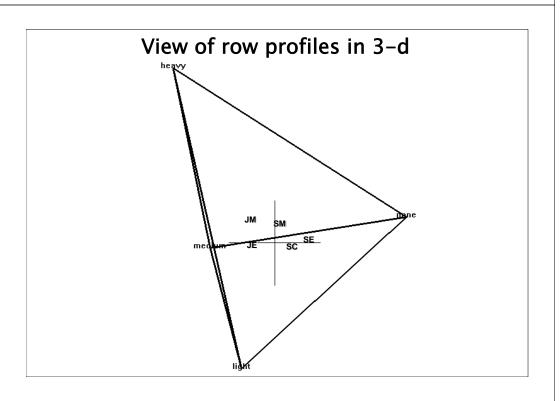
Dimension reduction Joint display of rows and columns



The "famous" smoking data: row problem

Artificial example designed to illustrate two-dimensional maps

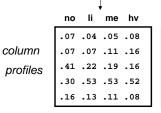
	no	li	me	hv		re	ow p	rofile	es
Senior managers SM	4	2	3	2	SM	.36	.18	.27	.18
Junior managers JM	4	3	7	4	JM	.22	.17	.39	.22
Senior employees SE	25	10	12	4	SE	.49	.20	.24	.08
Junior employees JE	18	24	33	13	JE	.20	.27	.38	.15
Secretaries SC	10	6	7	2	sc	.40	.24	.28	.08
					ave	.32	.23	.32	.13
■193 employees	of	a f	irm	1	ave	.32	.23	.32	.13
• • •						_			
■193 employees ■5 categories of					none	1	0	0	0
• • •	sta	ıff ç	gro	up	none light	1 0	0	0	0

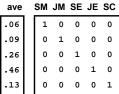


The "famous" smoking data: column problem

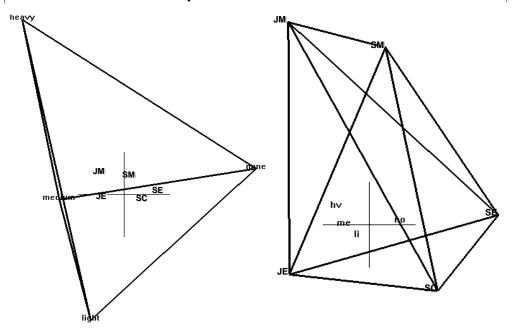
It seems like the column profiles, with 5 elements, are 4-dimensional, BUT there are only 4 points and 4 points lie exactly in 3 dimensions.

So the dimensionality of the columns is the same as the rows.

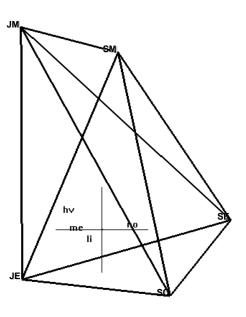




View of both profiles and vertices in 3-d



View of column profiles in 3-d



What CA does...

- ... centres the row and column profiles with respect to their average profiles, so that the origin represents the average.
- ... re-defines the dimensions of the space in an ordered way: first dimension "explains" the maximum amount of inertia possible in one dimension; second adds the maximum amount to first (hence first two explain the maximum amount in two dimensions), and so on... until all dimensions are "explained".
- ... decomposes the total inertia along the principal axes into principal inertias, usually expressed as % of the total.
- ... so if we want a low-dimensional version, we just take the first (principal) dimensions

The row and column problem solutions are closely related, one can be obtained from the other; there are simple scaling factors along each dimension relating the two problems.

Singular value decomposition

Generalized principal component analysis

Generalized SVD

We often want to associate weights on the rows and columns, so that the fit is by weighted least-squares, not ordinary least squares, that is we want to minimize

RSS =
$$\sum_{i=1}^{n} \sum_{j=1}^{p} r_i c_j (x_{ij} - x_{ij}^*)^2$$

$$\mathbf{D}_r^{1/2} \mathbf{X} \mathbf{D}_c^{1/2} = \mathbf{U} \mathbf{D}_{\alpha} \mathbf{V}^{\mathsf{T}}$$
 where $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{I}$, $\alpha_1 \ge \alpha_2 \ge \cdots \ge 0$

$$\mathbf{X} = \mathbf{D}_r^{-1/2} \mathbf{U} \mathbf{D}_{\alpha} (\mathbf{D}_c^{-1/2} \mathbf{V})^{\mathsf{T}}$$

$$X^* = etc...$$

Generalized principal component analysis

- Suppose we want to represent the (centred) rows of a matrix \mathbf{Y} , weighted by (positive) elements down diagonal of matrix \mathbf{D}_r , where distance between rows is in the (weighted) metric defined by matrix \mathbf{D}_m^{-1} .
- Total inertia = $\sum_{i} \sum_{j} q_{i} (1/m_{j}) y_{ij}^{2}$
- $\mathbf{S} = \mathbf{D}_q^{1/2} \mathbf{Y} \mathbf{D}_m^{-1/2} = \mathbf{U} \mathbf{D}_{\alpha} \mathbf{V}^{\mathsf{T}}$ where $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{I}$
- Principal coordinates of rows: $\mathbf{F} = \mathbf{D}_{a}^{-1/2} \mathbf{U} \mathbf{D}_{\alpha}$
- Principal axes of the rows: $\mathbf{D}_{m}^{1/2} \mathbf{V}$
- Standard coordinates of columns: $\mathbf{G} = \mathbf{D}_{m}^{-1/2} \mathbf{V}$
- Variances (inertias) explained: $\lambda_1 = \alpha_1^2, \ \lambda_2 = \alpha_2^2, \dots$

Correspondence analysis

Of the rows:

- Y is the centred matrix of row profiles
- row masses in \mathbf{D}_q are the relative frequencies of the rows
- column weights in \mathbf{D}_{w} are the inverses of the relative frequencies of the columns
- Total inertia = χ^2/n

Of the columns:

- Y is the centred matrix of column profiles
- column masses in \mathbf{D}_q are the relative frequencies of the columns
- row weights in \mathbf{D}_{w} are the inverses of the relative frequencies of the rows
- Total inertia = χ^2/n

Both problems lead to the SVD of the same matrix

Correspondence analysis

- Table of nonnegative data N
- Divide N by its grand total n to obtain the so-called *correspondence matrix* P = (1/n) N
- Let the row and column marginal totals of \mathbf{P} be the vectors \mathbf{r} and \mathbf{c} respectively, that is the vectors of row and column <u>masses</u>, and \mathbf{D}_r and \mathbf{D}_c be the diagonal matrices of these masses

: (to be derived algebraically in class)

$$\mathbf{S} = \mathbf{D}_{r}^{-1/2} (\mathbf{P} - \mathbf{rc}^{\mathsf{T}}) \mathbf{D}_{c}^{-1/2}$$
or equivalently

or equivalently

$$\mathbf{S} = \mathbf{D}_r^{1/2} (\mathbf{D}_r^{-1} \mathbf{P} \mathbf{D}_c^{-1} - \mathbf{1} \mathbf{1}^{\mathsf{T}}) \mathbf{D}_c^{1/2}$$

$$\sqrt{r_i} \left(\frac{p_{ij}}{r_i c_j} - 1 \right) \sqrt{c_j}$$

$$\begin{array}{lll} \text{Principal} & \mathbf{F} = \mathbf{D}_r^{-1/2} \mathbf{U} \mathbf{D}_\alpha & \text{Standard} & \mathbf{\Phi} = \mathbf{D}_r^{-1/2} \mathbf{U} \\ \text{coordinates} & \mathbf{G} = \mathbf{D}_c^{-1/2} \mathbf{V} \mathbf{D}_\alpha & \text{coordinates} & \mathbf{\Gamma} = \mathbf{D}_c^{-1/2} \mathbf{V} \end{array}$$

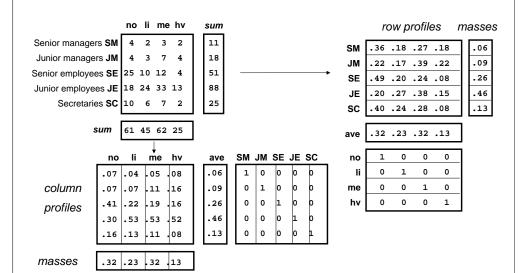
$$\mathbf{\Phi} = \mathbf{D}_r^{-1/2} \mathbf{V}$$

$$\mathbf{\Gamma} = \mathbf{D}_r^{-1/2} \mathbf{V}$$

Decomposition of total inertia along principal axes

	/ rows	(smoking l=	=5)	J columns	(smoking J=4)	
Total inertia	in(<i>1</i>)	0.08519		in(<i>J</i>)	0.08519	
Inertia axis 1	λ_1	0.07476	(87.8%)	λ_1	0.07476	
Inertia axis 2	λ_2	0.01002	(11.8%)	λ_2	0.01002	
Inertia axis 3	λ_3	0.00041	(0.5%)	λ_3	0.00041	

Duality (symmetry) of the rows and columns



Relationship between row and column solutions

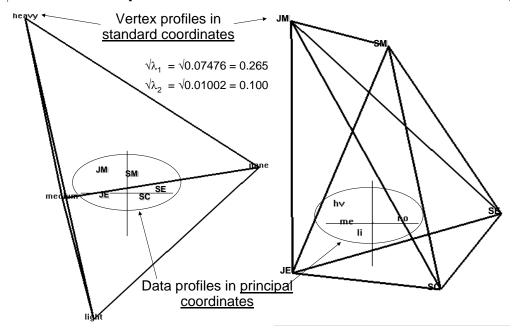
columns rows $\Phi = [\phi_{ik}] \qquad \qquad \Gamma = [\gamma_{jk}]$ standard coordinates $\mathbf{F} = [f_{ik}]$ principal coordinates $\mathbf{G} = [g_{ik}]$ $\mathbf{F} = \mathbf{\Phi} \mathbf{D}_{\alpha}$ $\mathbf{G} = \mathbf{\Gamma} \mathbf{D}_{\alpha}$ relationships between $f_{ik} = \alpha_k x_{ik} \qquad g_{ik} = \alpha_k y_{ik}$ coordinates where $\alpha_k = \sqrt{\lambda_k}$ is the square root of the principal inertia on axis k

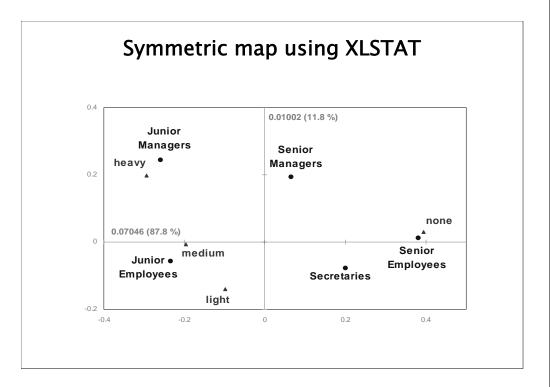
> principal = standard $\times \alpha_k$ standard = principal / α_{k}

Data profiles in principal coordinates

Vertiex profiles in standard coordinates

Relationship between row and column solutions





Summary: Relationship between row and column solutions

- 1. Same dimensionality $(rank) = min\{I-1, J-1\}$
- 2. Same total inertia and same principal inertias $\lambda_1, \lambda_2, ...,$ on each dimension (i.e., same decomposition of inertia along principal axes), hence same percentages of inertia on each dimension
- 3. "Same" coordinate solutions, up to a scalar constant along each principal axis, which depends on the square root $\sqrt{\lambda_k} = \alpha_k$ of the principal inertia on each axis:

principal = standard ×
$$\sqrt{\lambda_k}$$

standard = principal / $\sqrt{\lambda_k}$

- 4. Asymmetric map: one set principal, other standard
- 5. Symmetric map: both sets principal