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Measuring variable importance in random forests

I Gini importance

mean Gini gain produced by Xj over all trees

(can be severely biased due to estimation bias and

mutiple testing; Strobl et al., 2007)

I permutation importance

mean decrease in classification accuracy after

permuting Xj over all trees

(unbiased when subsampling is used; Strobl et al., 2007)
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The permutation importance

within each tree t

VI (t)(xj) =

∑
i∈B

(t) I
(
yi = ŷ

(t)
i

)
∣∣∣B(t)

∣∣∣ −
∑

i∈B
(t) I

(
yi = ŷ

(t)
i ,πj

)
∣∣∣B(t)

∣∣∣
ŷ

(t)
i = f (t)(xi ) = predicted class before permuting

ŷ
(t)
i ,πj

= f (t)(xi ,πj
) = predicted class after permuting Xj

xi ,πj
= (xi ,1, . . . , xi ,j−1, xπj (i),j , xi ,j+1, . . . , xi ,p

)
Note: VI (t)(xj) = 0 by definition, if Xj is not in tree t
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The permutation importance

over all trees:

VI (xj) =

∑ntree
t=1 VI (t)(xj)

ntree
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What kind of independence corresponds to

this kind of permutation?

obs Y Xj Z

1 y1 xπj (1),j z1

...
...

...
...

i yi xπj (i),j zi

...
...

...
...

n yn xπj (n),j zn

H0 : Xj ⊥ Y ,Z or Xj ⊥ Y ∧ Xj ⊥ Z

P(Y ,Xj ,Z )
H0= P(Y ,Z ) · P(Xj)
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What kind of independence corresponds to

this kind of permutation?

the original permutation scheme reflects independence of Xj

from both Y and the remaining predictor variables Z

⇒ a high variable importance can result from violation of

either one!
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Suggestion: Conditional permutation scheme

obs Y Xj Z

1 y1 xπj|Z=a(1),j z1 = a

3 y3 xπj|Z=a(3),j z3 = a

27 y27 xπj|Z=a(27),j z27 = a

6 y6 xπj|Z=b(6),j z6 = b

14 y14 xπj|Z=b(14),j z14 = b

33 y33 xπj|Z=b(33),j z33 = b
...

...
...

...

H0 : Xj ⊥ Y |Z

P(Y ,Xj |Z )
H0= P(Y |Z ) · P(Xj |Z )

or P(Y |Xj ,Z )
H0= P(Y |Z )
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Technically

I use any partition of the feature space for conditioning

I here: use binary partition already learned by tree

for each tree

I determine variables to condition on (via threshold)

I extract their cutpoints

I generate partition using cutpoints as bisectors

Strobl et al. (2008)
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Toy example

spurious correlation between shoe size and reading skills in

school-children

> mycf <- cforest(score ~ ., data = readingSkills,

+ control = cforest_unbiased(mtry = 2))

> varimp(mycf)

nativeSpeaker age shoeSize

12.62926 74.89542 20.01108

> varimp(mycf, conditional = TRUE)

nativeSpeaker age shoeSize

11.808192 46.995336 2.092454

from party 0.9-991
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Simulation results
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Other variable importance measures

I partial correlation, standardized beta

conditional effect of Xj given all other variables

in the model

I “averaging over orderings”

I for linear models (relaimpo, Grömping, 2006)

LMG Lindeman, Merenda, and Gold (1980),

≈ “dominance analysis” Azen and Budescu (2003)

PMVD Feldman (2005)

I for GLMs (hier.part, Walsh and Nally, 2008)

“hierarchical partitioning” Chevan and Sutherland

(1991)

R2 decomposition
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Other variable importance measures

I random forest permutation importance

≈ “averaging over trees”

unconditional varimp (randomForest, party,

Breiman et al., 2006; Hothorn et al., 2008)

conditional varimp (party, Hothorn et al., 0089)

I elastic net (elasticnet, caret, Zou and Hastie,

2008; Kuhn, 2008)

grouping property: correlated predictors get similar

(largest) score
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Desirable (?) properties

I proper decomposition: scores sum up to model R2

LMG, PMVD

I non-negativity

LMG, PMVD, RF varimp (in principle)

I exclusion: βj = 0 ⇒ score = 0

partial correlation, standardized betas, PMVD,

RF conditional varimp (in principle), elasticnet?

I inclusion: βj 6= 0 ⇒ score 6= 0

all

Grömping (2007)
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Simulation study

dgp: yi = β1 · xi,1 + · · ·+ β12 · xi,12 + εi , εi
i.i.d.∼ N(0, 1)

X1, . . . ,X12 ∼ N(0,Σ)

Σ =



1 0.9 0.9 0.9 0.9 0.9 0 · · · 0

0.9 1 0.9 0.9 0.9 0.9 0 · · · 0

0.9 0.9 1 0.9 0.9 0.9 0 · · · 0

0.9 0.9 0.9 1 0.9 0.9 0 · · · 0

0.9 0.9 0.9 0.9 1 0.9 0 · · · 0

0.9 0.9 0.9 0.9 0.9 1 0 · · · 0

0 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
. . .

0 0 0 0 0 0 0 0 1


Xj X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

βj 10 10 7 7 0 0 10 10 7 7 0 0
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Now wait a second...

what about elastic net’s grouping property?
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I if you want elastic net to group: don’t tune!?
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