1

Introduction

Non-uniform random variate generation is a small field of research somewhere
between mathematics, statistics and computer science. It started in the fifties
of the last century in the “stone-age” of computers. Since then its development
has mainly been driven by the wish of researchers to solve generation problems
necessary to run their simulation models. Also the need for fast generators has
been an important driving force. The main mathematical problems that have
to be solved concern the distribution of transformed random variates and find-
ing tight inequalities. Also implementing and testing the proposed algorithms
has been an important part of the research work. A large number of research
papers in this field has been published in the seventies and early eighties. The
main bibliographical landmark of this development is the book of Devroye
(1986a), that is commonly addressed as the “bible” of random variate gen-
eration. We can certainly say that random variate generation has become an
accepted research area considered as a subarea of statistical computing and
simulation methodology. Practically all text-books on discrete event simula-
tion or Monte Carlo methods include at least one chapter on random variate
generation; within simulation courses it is taught even to undergraduate stu-
dents.

More important is the fact that random variate generation is used by lots
of more or less educated users of stochastic simulation. Random variate gener-
ation code is found in spreadsheets and in expensive discrete event simulation
software and of course in a variety of programming languages. Probably many
of these users do not bother about the methods and ideas of the generation
algorithms. They just want to generate random variates with the desired dis-
tribution. “The problems of random variate generation are solved” these peo-
ple may say. And they are right as long as they are only interested in popular
standard distributions like normal, gamma, beta, or Weibull distributions.

4 1 Introduction
Why Universal Random Variate Generation?

The situation changes considerably if the user is interested in non standard
distributions. For example, she wants to simulate models that include the
generalized inverse Gaussian distribution, the hyperbolic distribution, or any
other distribution that is less common or even newly defined for her purpose.
Then the user had two possibilities: She could either find some code (or a
paper) dealing with the generation of random variates from her distribution,
or she needed some knowledge on random variate generation (or find an ex-
pert) to design her own algorithm. Today the user has a third possibility: She
can find a universal generator suitable for her distribution, perhaps in our
C library UNU.RAN (Universal Non-Uniform RANdom variate generation).
Then she can generate variates without designing a new generator; a func-
tion that evaluates e.g. the density of the distribution or the hazard rate is
sufficient.

This book is concentrating on the third possibility. We present ideas and
unifying concepts of universal random variate generation, and demonstrate
how they can be used to obtain fast and robust algorithms. The book is
presenting the first step of random variate generation, the design of the al-
gorithms. The second step, i.e. the implementation of most of the presented
algorithms, can be found in our C library UNU.RAN (Universal Non-Uniform
RANdom number generators, Leydold, Hérmann, Janka, and Tirler, 2002).
As some of these algorithms are rather long it is not possible, and probably
not desirable, to present all implementation details in this book as they would
hide the main ideas.

‘What Is Non-Uniform Random Variate Generation?

Usually random variates are generated by transforming a sequence of inde-
pendent uniform random numbers on (0,1) into a sequence of independent
random variates of the desired distribution. This transformation needs not be
one-to-one. We assume here, as it is generally done in the literature, that we
have an ideal source of uniform random numbers available. An assumption
which is not too unrealistic if we think of fast, modern uniform random num-
ber generators that have cycle lengths in the order 2 raised to the power of
several hundreds or even thousands and equidistribution property up to sev-
eral hundred dimensions, e.g., Matsumoto and Nishimura (1998) or L’Ecuyer
(1999); see also the pLab website maintained by Hellekalek (2002) for further
links. A collection of many published uniform random number generators —
good ones and bad ones — is compiled by Entacher (2000).

Given that (ideal) source of uniform random numbers, the well known in-
version, (acceptance-) rejection and decomposition methods can be used to
obtain exact random variate generation algorithms for standard distributions.
We do not want to give a historical overview here but it is remarkable that the
rejection method dates back to von Neumann (1951). Later refinements of the

1 Introduction 5

general methods were developed mainly to design fast algorithms, if possible
with short code and small memory requirements. For the normal distribution
compare e.g. Box and Muller (1958), Marsaglia, MacLaren, and Bray (1964),
Ahrens and Dieter (1972, 1973, 1988), and Kinderman and Ramage (1976).
For the gamma distribution see e.g. Cheng (1977), Schmeiser and Lal (1980),
Cheng and Feast (1980), and Ahrens and Dieter (1982). In the books of De-
vroye (1986a) and Dagpunar (1988) you can find an impressive number of
references for articles dealing with random variate generation for standard
distributions. The techniques and general methods we describe in this book
are very closely related to those developed for standard distributions. We
know what we owe to these “pioneers” in random variate generation. Even
more as we have started our research in this field with generators for standard
distributions as well (see e.g. Hérmann and Derflinger, 1990). However, in this
book we try to demonstrate that several of these main ideas can be applied
to build universal generators for fairly large distribution families. Thus we do
not concentrate on standard distributions but try to identify large classes of
distributions that allow for universal generation. Ideally these classes should
contain most important standard distributions. So the reader will come across
quite a few standard distributions as we use them as examples for figures and
timings. They are best suited for this purpose as the reader is familiar with
their properties. We could have included fairly exotic distributions as well, as
we have done it in some of the empirical comparisons.

What Is a Universal Generator?

A universal (also called automatic or black-box) generator is a computer pro-
gram that can sample from a large family of distributions. The distributions
are characterized by a program that evaluates (e.g.) the density, the cumu-
lative distribution function, or the hazard rate; often some other information
like the mode of the distribution is required. A universal generator typically
starts with a setup that computes all constants necessary for the generation,
e.g. the hat function for a rejection algorithm. In the sampling part of the
program these constants are used to generate random variates. If we want to
generate a large sample from a single distribution, the setup part is executed
only once whereas the sampling is repeated very often. The average execu-
tion time of the sampling algorithm to generate one random variate (without
taking the setup into account) is called marginal execution time. Clearly the
setup time is less important than the marginal execution time if we want to
generate a large sample from a single distribution.

Fast universal generators for discrete distributions are well known and fre-
quently used. The indexed search method (Chen and Asau, 1974) and the alias
method (Walker, 1974, 1977) can generate from any discrete distribution with
known probability vector and bounded domain. For continuous distributions
the design of universal generators started in the eighties and is mainly linked
with the name of Luc Devroye. During the last decade research in this direc-

6 1 Introduction

tion was intensified (see e.g. Gilks and Wild, 1992; Hérmann, 1995; Ahrens,
1995; Leydold, 2000a) and generalized to random vectors (see e.g. Devroye,
1997a; Leydold and Hérmann, 1998). However it seems that these develop-
ments are little known and hardly used. When we have started our UNU.RAN
project in 1999 we checked several well known scientific libraries: IMSL, Cern,
NAG, Crand, Ranlib, Numerical recipes, and GSL (Gnu Scientific Library).
Although all of them include quite a few random variate generation algo-
rithms for continuous standard distributions we were not able to find a single
universal generator for continuous distributions in any of them. And the situ-
ation is similar for random-vector generation methods. This has been a main
motivation for us to start our project with the aim to write both a book and
a C library to describe and realize theory and practice of universal random
variate and random vector generation.

Why We Have Written this Book?

We are convinced that universal random variate generation is a concept of
greatest practical importance. It also leads to nice mathematical theory and
results. Neither the mathematics nor the implemented algorithms have been
easily accessible up to now, as there is — up to our knowledge — no book and
no software library available yet that includes the main concepts of universal
random variate generation.

Implementation of Universal Algorithms

One main problem when implementing universal algorithms for continuous
distributions in a software library is certainly the application programming
interface (API). Considering generators for a fixed distribution everything is
simple. Any programmer can easily guess that the following C statements are
assigning a realization from a uniform, a standard normal, and a gamma(5)
random variate to the respective variables.

x = random();
xn = randnormal();
xg = randgamma(5.);

For a universal method the situation is clearly more complicated. The
setup often is very expensive compared to the marginal generation time and
thus has to be separated from the sampling part of a universal algorithm.
Moreover, to run such a setup routine we need a lot more parameters. In
a routine like randgamma(5.) all required information is used to build the
algorithm and is thus contained implicitly in the algorithm. For black-box
algorithms we of course have to provide this information explicitly. This may
include — depending on the chosen algorithm — the density, its derivative and
its mode, its cumulative distribution function, its hazard rate, or similar data

1 Introduction 7

and functions to describe the desired distribution. Furthermore, all the black-
box algorithms have their own parameters to adjust the algorithm to the
given distribution. All of this information is needed in the setup routine to
construct a generator for the distribution and to store all necessary constants.
The sampling program then uses these constants to generate random variates.

There are two very different general solutions for the implementation of
automatic algorithms. First, we can make a library that contains both a setup
routine and a sampling routine using an object-oriented design. The setup
routine creates an instance of a generator object that contains all necessary
constants. The sampling routine is using this generator object for generation.
If we want to sample from several different distributions in one simulation we
can create instances of such generator objects for all of them and can use them
for sampling as required. In our library UNU.RAN we have implemented this
idea. For further details see Sect. 8.1.

Our experiences with the implementation of universal algorithms in a flex-
ible, reliable, and robust way results in rather large computer code. As the
reader will find out herself, the complexity of such a library arises from the
setup step, from parts performing adaptive steps, and (especially) from check-
ing the data given by the user, since not every method can be used for every
distribution. The sampling routine itself, however, is very simple and consists
only of a few lines of code. Installing and using such a library might seem
too tedious for “just a random number generator” at a first glance, especially
when only a generator for a particular distribution is required. As a solution
to this problem we can use universal methods to realize the concept of an
automatic code generator for random wariate generation. In this second ap-
proach we use the constants that are computed in the setup to produce a
single piece of code in a high level language for a generator of the desired
distribution. Such a code generator has the advantage that it is also compara-
tively simple to generate code for different programming languages. Moreover,
we can use a graphical user interface (GUI) to simplify the task of obtaining
a generator for the desired distribution for a practitioner or researcher with
little background in random variate generation. We also have implemented
a proof of concept study using a web based interface. It can be found at
http://statistik.wu-wien.ac.at/anuran/. Currently, program code in C,
FORTRAN, and Java can be generated and downloaded. For more details see
Leydold, Derflinger, Tirler, and Hérmann (2003).

It should be clear that the algorithm design of the setup and the sampling
routine remain the same for both possible implementation concepts. Thus we
will not consider the differences between these two approaches throughout
the book. The only important difference to remember is that the speed of the
setup is of little or no concern for the code generator whereas it may become
important if we use generator objects.

8 1 Introduction

Theoretical Concepts in the Book

We have spoken quite a lot about algorithms and implementation so far but
most of the pages of the book are devoted to the theoretical concepts we
need for designing random variate generation algorithms. Typically we are
concerned with the following problems:

e We have to show that the algorithms generate variates from the desired
distribution.

e For rejection algorithms we use inequalities to design upper and lower
bounds for densities.

e The automatic construction of hat functions for rejection methods requires
design points. Hence we also need algorithms to find such points. These
algorithms are either simple and fast, or provide optimal solutions (or
both).

e We need properties of the distribution families associated with the univer-
sal algorithms.

e We need simple (sufficient) conditions for the (large) class of distributions
for which an algorithm is applicable. When the condition is not easily
computable either for the routines in the library or for the user of such a
library, a black-box algorithm is of little practical use.

e The complexity of an algorithm is the number of operations it requires
for generating a random variate. For most algorithms the complexity is
a random variate itself that depends on the number of iterations I till
an algorithm terminates. For many universal algorithms we can obtain
bounds for the expected number of iterations E([).

e We want to have some estimates on the “quality” of the generated ran-
dom variates. In simulation studies streams of pseudo-random numbers are
used, i.e. streams of numbers that cannot be distinguished from a stream
of (real) random numbers by means of some statistical tests. Such streams
always have internal structures (see e.g. L’Ecuyer (1998) for a short re-
view) and we should take care that the transformation of the uniform
pseudo-random numbers into non-uniform pseudo-random variates do not
interfere with the structures of this stream.

Chapters of the Book

Chapter 2 presents the most important basic concepts of random variate gen-
eration: Inversion, rejection, and composition for continuous random variates.
Thus it is crucial to the rest of the book as practical all of the algorithms
presented in the book depend on one or several of these principles. Chapter 3
continues with the basic methods for generating from discrete distributions,
among them inversion by sequential search, the indexed search and the alias
method.

Part II of the book deals with continuous univariate distributions. Chap-
ters 4, 5, and 6 present three quite different approaches to design universal

1 Introduction 9

algorithms by utilizing the rejection method. Chapter 7 realizes the same task
using numerical inversion. Chapter 8 compares different aspects of the uni-
versal algorithms presented so far including our computational experiences
when using the UNU.RAN library. It also describes the main design of the
UNU.RAN programming interface that can be used for generating variates
from discrete distributions and from random vectors as well. Part II closes
with Chap. 9 that collects different special algorithms for the case that the
density or cumulative distribution function of the distribution is not known.

Part III consists only of Chap. 10. It explains recent universal algorithms
for discrete distributions, among them the indexed search method for distri-
butions with unbounded domain and different universal rejection methods.

Part IV, that only consists of Chap. 11, presents general methods to gen-
erate random vectors. It also demonstrates how the rejection method can
be utilized to obtain universal algorithms for multivariate distributions. The
practical application of these methods are restricted to dimensions up to about
ten.

Part V contains different methods and applications that are closely related
to random variate generation. Chapter 12 collects random variate generation
procedures for different situations where no full characterization of the dis-
tribution is available. Thus the decision about the generation procedures is
implicitly also including a modeling decision. Chapter 13 (co-authored by M.
Hauser) presents very efficient algorithms to sample Gaussian time series and
time series with non-Gaussian one-dimensional marginals. They work for time
series of length up to one million. Markov Chain Monte Carlo (MCMC) algo-
rithms have become frequently used in the last years. Chapter 14 gives a short
introduction into these methods. It compares them with the random vector
generation algorithms of Chap. 11 and discusses how MCMC can be used to
generate iid. random vectors. The final Chap. 15 presents some simulation
examples for financial engineering and Bayesian statistics to demonstrate, at
least briefly, how some of the algorithms presented in the book can be used
in practice.

Reader Guidelines

This book is a research monograph as we tried to cover — at least shortly — all
relevant universal random variate generation methods found in the literature.
On the other hand the necessary mathematical and statistical tools are fairly
basic which should make most of the concepts and algorithms accessible for all
graduate students with sound background in calculus and probability theory.
The book mainly describes the mathematical ideas and concepts together
with the algorithms; it is not closely related to any programming language
and is generally not discussing technical details of the algorithm that may
depend on the implementation. The interested reader can use the source code
of UNU.RAN to see possible solutions to the implementation details for most
of the important algorithms. Of course the book can also be seen as the

10 1 Introduction

“documentation” explaining the deeper mathematics behind the UNU.RAN
algorithms. Thus it should also be useful for all users of simulations who want
to gain more insight into the way random variate generation works.

In general the chapters collect algorithms that can be applied to similar
random variate generation problems. Only the generation of continuous one-
dimensional random variates with known density contains so much material
that is was partitioned into the Chaps. 4, 5, and 6. Several of the chapters are
relatively self contained. Nevertheless, there are some dependencies that lead
to the following suggestions: For readers not too familiar with random variate
generation we recommend to read Chap. 2 and Chap. 3 before continuing
with any of the other chapters. Chapters 4 to 7 may be read in an arbitrary
order; some readers may want to consult Chap. 8 first to decide which of the
methods is most useful for them. Chapters 9, 12, and 13 are self contained,
whereas some sections of Chaps. 10 and 11 are are generalizations of ideas
presented in Chaps. 4 and 6. Chapter 14 is self contained, but to appreciate
its developments we recommend to have a look at Chap. 11 first. In Chap. 15
algorithms of Chaps. 2, 4, 11 and 12 are used for the different simulations.

Course Outlines

We have included exercises at the end of most of the chapters as we used
parts of the book also for teaching courses in simulation and random variate
generation. It is obvious that the random variate generation part of a sim-
ulation course will mainly use Chaps. 2 and 3. Therefore we tried to give a
broad and simple development of the main ideas there. It is possible to add
the main idea of universal random variate generation by including for example
Sect. 4.1. Selected parts of Chap. 15 are useful for a simulation course as well.

A special course on random variate generation should start with most
of the material of Chaps. 2 and 3. It can continue with selected sections of
Chap. 4. Then the instructor may choose chapters freely, according to her or
the students’ preferences: For example, for a course with special emphasis on
multivariate simulation she could continue with Chaps. 11 and 14; for a course
concentrating on the fast generation of univariate continuous distributions
with Chaps. 5, 7, and 8. Parts of Chap. 15 can be included to demonstrate
possible applications of the presented algorithms.

What Is New?

The main new point in this book is that we use the paradigm of universal
random variate generation throughout the book. Looking at the details we
may say that the rigorous treatment of all conditions and all implications
of transformed density rejection in Chap. 4 is probably the most important
contribution. The second is our detailed discussion of the universal generation
of random vectors. The discussion of Markov chain Monte Carlo methods for

1 Introduction 11

generating iid. random vectors and its comparison with standard rejection
algorithms is new.

Throughout the book we present new improved versions of algorithms:
Among them are variants of transformed density rejection, fast numerical
inversion, universal methods for increasing hazard rate, indexed search for
discrete distributions with unbounded domain, improved universal rejection
algorithms for orthomonotone densities, and exact universal algorithms based
on MCMC and perfect sampling.

Practical Assumptions

All of the algorithms of this book were designed for practical use in simulation.
Therefore we need the simplifying assumption of above that we have a source
of truly uniform and iid. (independent and identically distributed) random
variates available. The second problem we have to consider is related to the
fact that a computer cannot store and manipulate real numbers.

Devroye (1986a) assumes an idealized numerical model of arbitrary pre-
cision. Using this model inversion requires arbitrary precision as well and is
therefore impossible in finite time unless we are given the inverse cumulative
distribution function. On the other hand there are generation algorithms (like
the series method) that require the evaluation of sums with large summands
and alternating signs, which are exact in the idealized numerical model of
arbitrary precision.

If we consider the inversion and the series method implemented in a mod-
ern computing environment (e.g. compliant with the IEEE floating point stan-
dard) then — using bisection — inversion may be slow but it is certainly possi-
ble to implement it with working precision close to machine precision. On the
other hand, the series method may not work as — due to extinction — an alter-
nating series might “numerically” converge to wrong values. We do not know
the future development of floating point arithmetic but we do not want to use
an idealized model that is so different from the behavior of today’s standard
computing environments. Therefore we decided to include numerical inversion
algorithms in this book as long as we can easily reach error bounds that are
close to machine precision (i.e. about 1071% or 107'2). We also include the se-
ries method but in the algorithm descriptions we clearly state warnings about
the possible numerical errors.

The speed of random variate generation procedures is still of some impor-
tance as faster algorithms allow for larger sample sizes and thus for shorter
confidence intervals for the simulation results. In our timing experiments we
have experienced a great variability of the results. They depended not only
on the computing environment, the compiler, and the uniform generator but
also on coding details like stack variables versus heap for storing the con-
stants etc. To decrease this variability we decided to define the relative gen-
eration time of an algorithm as the generation time divided by the genera-
tion time for the exponential distribution using inversion which is done by

12 1 Introduction

X «— —log(1 — random()). Of course this time has to be taken in exactly the
same programming environment, using the same type of function call etc. The
relative generation time is still influenced by many factors and we should not
consider differences of less than 25 %. Nevertheless, it can give us a crude idea
about the speed of a certain random variate generation method.

We conclude this introduction with a statement about the speed of our
universal generators. The relative generation time for the fastest algorithms
of the Chaps. 4, 5 and 7 are not depending on the desired density and are
close to one; i.e. these methods are about as fast as the inversion method for
exponential variates and they can sample at that speed from many different
distributions.

