Fitting Finite Mixtures of
Generalized Linear Regressions in R

Bettina Griin Friedrich Leisch
Vienna University of Technology  University of Munich

This is a preprint of an article accepted for publication in:
Computational Statistics and Data Analysis, 2006.
http://www.elsevier.com/locate/csda

Abstract

R package flexmix provides flexible modelling of finite mixtures
of regression models using the EM algorithm. Several new features
of the software such as fixed and nested varying effects for mixtures
of generalized linear models and multinomial regression for a-priori
probabilities given concomitant variables are introduced. The use
of the software in addition to model selection is demonstrated on a
logistic regression example.
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1 Introduction

Finite mixtures of regression models are a popular method to model un-
observed heterogeneity or to account for overdispersion in data. They are
flexible models and in theory it is easy to modify and extend them by using
more complex models for the component distribution functions and estimate
the corresponding parameters, e.g., using the EM algorithm.

R (R Development Core Team, 2006) features several extension packages
for estimation of mixture regression models, e.g., fpc for mixtures of linear
regression models (Hennig, 2000) and mmler for mixed-mode latent class
regression (Buyske, 2006). However, like virtually all other (non-R) imple-
mentations, they consider only a few particular types of mixture models and



do not reflect the generality of the theoretical model class in the software de-
sign. R package flexmix (Leisch, 2004) tries to fill this gap by encapsulating
the abstract statistical objects of interest into S4 classes and methods such
that the resulting software can be easily extended.

This paper is organized as follows: Section 2 gives notation and the model
class, the main new functions of flexmix are presented in Section 3, and we
end with a short demonstration in Section 4. The latest development version
of the package sources and all R code necessary to reproduce the results
in this article are available from http://www.ci.tuwien.ac.at/research/
mixtures.

2 Model specification

We consider finite mixtures of regression models of form

K
H(y|w7w7®) = Zﬂ'k(’lﬂ,@)F(ZAw,ﬁk,(bk),
k=1

where © denotes the vector of all parameters, y the dependent, x the inde-
pendent, w the concomitant variable, and F' is the component specific distri-
bution function. For component-wise generalized linear models (GLMs), F'
must be a member of the exponential family (McCullagh and Nelder, 1989).
The component specific parameters are the regression coefficients 3, and
dispersion parameters ¢,. The component weights 7 need to satisfy

K
Zﬂk(w,a) =1 and m(w,a) >0, VEkw,a, (1)

k=1

where ¢ are the parameters of the concomitant variable model.

Different concomitant variable models are possible to determine the com-
ponent weights (Dayton and Macready, 1988), as the mapping function only
has to fulfill condition (1). In the following a multinomial logit model for the
7, is assumed with the first component as baseline.

This class of finite mixtures of generalized linear models with concomitant
variable models is given in McLachlan and Peel (2000, p. 145). Special cases
are for example random intercept models (see Follmann and Lambert, 1989;
Aitkin, 1999) where the coefficients of all independent variables are assumed
to be equal over the mixture components.

Our software implementation allows to specify such equality constraints
for parameters over mixture components: (3, @) may be restricted to be



equal over all components, to vary between groups of components, or to be
different for all components. Variation between groups is referred to as vary-
ing effects with one level of nesting. In addition, each (group of) components
may use different sets of covariates. Due to space restrictions we cannot
give full details of parameter estimation, but extension from standard linear
models (Griin and Leisch, 2006) to GLMs is rather straightforward.

3 Design principles

Functions and model formulae are first class objects in the S language, which
allows in combination with the lexical scoping rules of R (Gentleman and
Thaka, 2000) for very modular software design. Rather than using text mode
arguments used as switches within function bodies, flexmix uses driver func-
tions to specify all aspects of the mixture model. Users can either use the
growing collection of drivers distributed as part of flexmix, or write and use
their own drivers.

In a first step the (unfitted) component specific model F(y|x, B, ¢r) and
the concomitant variable model 7(w, &) have to be specified. For this no
data are needed, only the names of the independent and dependent variables
and their respective interaction structure are defined.

FLXglm() only allows varying effects for the coefficients and the disper-
sion parameters. In this case the likelihood can be maximized separately
for each component in the M-step of the EM algorithm. If there are also
fixed and nested varying effects for the regression coefficients and dispersion
parameters, our new driver FLXglmFix () has to be used and the likelihood
is maximized simultaneously for all components. The design matrix is con-
structed by replicating the observations K times with suitable columns of
zeros added. Model formulae for the varying, nested varying and fixed ef-
fects have to be provided. These are evaluated by successively updating the
formula of the random effects with the formula for the fixed and then the
nested varying effects.

The concomitant variable model is specified in a similar fashion. The
default dummy driver FLXconstant () uses no concomitant variables and acts
only as a placeholder. For multinomial logistic regression our new function
FLXmultinom() can be used (see example section). The main estimation
engine of flexmix has changed to be able to use the new functionality, however
this are changes behind the scenes in unexported functions, all existing user
code should run unaffected.

By default, EM is initialized using random assignment of observations to
mixture components, function stepFlexmix () can be used to automatically



try out several initializations. We now also provide the choice of starting EM
with user-specified posteriors or (more common) posteriors from a previous
run. To select a model with a suitable number of components information
criteria such as the Akaike information criterion (AIC), the Bayesian infor-
mation criterion (BIC) and the integrated completed likelihood information
criterion (ICL; Biernacki et al., 2000) can be used.

flexmix () returns an object of class flexmix and methods defined for
this class include show (), summary () and plot(). show() gives the call, the
table of cluster assignments and the number of iterations until convergence.
Further details are given by summary () which provides the prior probabilities
together with the table of cluster assignments, the number of observations
with a-posteriori probability larger than eps and the ratio of these numbers,
which indicates how well separated the components are. In addition the like-
lihood (with degrees of freedom used), the AIC and the BIC are printed. The
default plot is a rootogram of the a-posteriori probabilities for each compo-
nent. In addition there are accessor functions for the component specific pa-
rameters (parameters()), for the a-posteriori probabilities (posterior()),
the maximum a-posteriori class assignments (cluster()) and the fitted val-
ues for each component (fitted()). More information on the estimated
parameters of the component specific and concomitant variable models can
be obtained using refit() and the corresponding summary () method (see
example section).

4 Logistic Regression Example

We now illustrate model fitting and model selection in R on simple artifi-
cial data from a mixture of binomial regression models. More examples for
both logistic regression and other members of the GLM family are provided
as part of the software package through a collection of artificial and real
world data sets, most of which have been previously used in the literature
(see references in the online help pages). Each data set can be loaded to R
with data(name) and the fitting of the proposed models can be replayed
using example(name). Further details on these examples are given in a
user guide which can be accessed using vignette("regression-examples",
package="flexmix") from within R.

The artificial data considered here are sampled from a mixture distribu-
tion with three components and with varying effects for the intercept and



nested varying effects for covariate x. The mixture distribution is given by:

H(ylz,w,0) = > m,(w,a)Bi(y|T6,)

s=1

where Bi(+|7, 8) denotes the binomial distribution with success probability 6
and number of trials T'. The success probabilities are given by

logit(61) = xB21 + Bs1
logit(0s) = xF21 + B52
logit(fs) = xf22 + F53

where 5 = (2,0) and 5 = (—4,1,3). The component weights depend on
the variable w and are determined by

Class 2: logit[me(w, )] =1 — w
Class 3:logit[ms3(w, a)] = w.

A random sample with 200 observations is drawn from this mixture distribu-
tion for 7' = 20, = standard Gaussian and w from the set {0, 1} with equal
probability (and independent of z). The observations are plotted separately
for the two levels of w in Figure 1, the plotting symbol corresponds to the
true component membership. It can be clearly seen that most observations
are from Class 2 for w = 0 and from Class 3 for w = 1.

In practice the true structure of the data is unknown, so we start by fitting
a full model with different parameters for each component, the corresponding
R code is shown in Figure 2. After loading package and data as well as
setting a random seed, we define the concomitant variable model and store
it in object Conc. Then we define the full model using function FLXglm()
and store it in Model.1, note that the actual data have not been used so
far. Finally, we fit a 3-component mixture model using nrep=5 replications
of the EM algorithm and store the best in Fitted.1. Selection of the correct
number of components using AIC or BIC is straightforward in this simple
example, consult the user guide cited above for details. Instead, we will
concentrate on determining the correct structure for the fixed and varying
effects in this paper.

Figure 3 depicts the values of the intercept and coefficients for covariate
x together with 95% confidence intervals. The intercepts in the three compo-
nents are all different and the confidence intervals do not overlap. For z we
get a completely different picture: The coefficient for Component 3 is almost
zero (and hence greyed out), and the confidence intervals for the other two
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Figure 1: Sample with 200 observations from a mixture of binomial regression
models. The plotting symbols correspond to the true component member-
ships and the lines are the fitted values.

library(flexmix)

data(BregFix)

set.seed(4)

Conc <- FLXmultinom(~w)

Model.1 <- FLXglm("x, family = "binomial")

Fitted.1l <- stepFlexmix(cbind(yes, no) ~ 1, data = BregFix,
model = Model.1l, k = 3, concomitant = Conc, nrep = 5)

Model.2 <- FLXglmFix(~1, nested = list(formula = c("x,
“0), k = c(2, 1)), family = "binomial")

Fitted.2 <- flexmix(cbind(yes, no) ~ 1, data = BregFix,
model = Model.2, concomitant = Conc, cluster = posterior(Fitted.1))

+ V+V+VVVYVVYV

Figure 2: Fitting mixtures of binomial regression models without constraints
(Model.1) and with grouped varying effects (Model.?2).
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Figure 3: Coefficients of the larger Model. 1.

components overlap. Note that the confidence intervals are not taking into
account that the components have been estimated simultaneously and are
not independent, hence overlaps with zero or other components should only
be interpreted as hints for model selection, not as formal significance tests.

We now use function FLXglmFix () to specify a more parsimonious model:
We have a varying effect for the intercept (formula ~1) and restrict the first
two components to have the same coefficient for = (nested formula “x) and
the third component to have only the intercept (nested formula ~0). The
concomitant variable model remains unchanged. To get the same ordering
of the components and speed up computations we initialize EM with the
posteriors of the first model. Fitted.1 has a BIC of 903.57, while the BIC
of Fitted.2 is 893.58, so the smaller model is prefered (AIC and ICL lead
to the same result). Details of the smaller model are shown in Figure 4,
all coefficients differ from zero and between components. Thus the correct
model would have been obtained even without knowledge of the true data
generating process. Figure 1 shows the corresponding predicted values as
lines.

5 Summary & outlook

R package flexmix provides functionality for fitting models from a general
class of mixtures of regressions. This class includes popular special cases as
for example random intercept models. Model specification and estimation
is possible with a consistent and convenient user interface as differences in
estimation are hidden from the user.

In the future we want to work on high-level tools for model selection and
diagnostics. An expedient extension of the provided model class is to allow
for component specific offsets instead of only an overall offset, as this would
allow to fit zero-inflated models. Another line of research are more robust
models, e.g. by using a background noise component. For large numbers of
observations and/or components the block matrices needed for the design of



> summary(refit(Fitted.2))

Call:
refit(Fitted.?2)

Model:

Component 1 :

Estimate Std. Error z value Pr(>|zl|)
X 2.00419 0.10094 19.856 < 2.2e-16
(Intercept) -4.28641 0.22399 -19.137 < 2.2e-16

Component 2 :

Estimate Std. Error z value Pr(>|zl)
X 2.004194 0.100936 19.856 < 2.2e-16
(Intercept) 1.005767 0.068437 14.696 < 2.2e-16

Component 3 :
Estimate Std. Error z value Pr(>|zl)
(Intercept) 2.89578 0.12147 23.840 < 2.2e-16

Concomitant Variables:

Component 2 :

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 1.19611 0.25460 4.6979 2.628e-06
wl -1.23517 0.39169 -3.1535 0.001614

Component 3 :

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.031747 0.318045 -0.0998 0.92049
wl 0.783617 0.406279 1.9288 0.05376

Figure 4: Summary and parameters of the model with nested varying effects.




nested effects may use too much memory and using sparse matrix algebra
may help to reduce the effect.
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