model
   {
      for (i in 1:I) {
         cases[i] ~ dpois(mu[i])
         log(mu[i]) <- log(pyr[i]) + alpha[age[i]] + beta[year[i]]
      }
      betamean[1] <- 2 * beta[2] - beta[3]
      Nneighs[1] <- 1
      betamean[2] <- (2 * beta[1] + 4 * beta[3] - beta[4]) / 5
      Nneighs[2] <- 5
      for (k in 3 : K - 2) {
         betamean[k] <- (4 * beta[k - 1] + 4 * beta[k + 1]- beta[k - 2] - beta[k + 2]) / 6
         Nneighs[k] <- 6
      }
      betamean[K - 1] <- (2 * beta[K] + 4 * beta[K - 2] - beta[K - 3]) / 5
      Nneighs[K - 1] <- 5
      betamean[K] <- 2 * beta[K - 1] - beta[K - 2]
      Nneighs[K] <- 1
      for (k in 1 : K) {
         betaprec[k] <- Nneighs[k] * tau
      }
      for (k in 1 : K) {
         beta[k] ~ dnorm(betamean[k], betaprec[k])
         logRR[k] <- beta[k] - beta[5]
         tau.like[k] <- Nneighs[k] * beta[k] * (beta[k] - betamean[k])
      }
      alpha[1] <- 0.0
      for (j in 2 : Nage) {
         alpha[j] ~ dnorm(0, 1.0E-6)
      }
      d <- 0.0001 + sum(tau.like[]) / 2
      r <- 0.0001 + K / 2
      tau ~ dgamma(r, d)
      sigma <- 1 / sqrt(tau)
   }