The MOSEK optimization tools

manual.
Version 6.0 (Revision 135).

WWW.mosek.com

ii

Published by MOSEK ApS, Denmark.
Copyright (¢) 1998-2012 MOSEK ApS, Denmark. All rights reserved..

Disclaimer: MOSEK ApS (the author of MOSEK) accepts no responsibility for damages resulting
from the use of the MOSEK software and makes no warranty, neither expressed nor implied,
including, but not limited to, any implied warranty of fitness for a particular purpose. The
software is provided as it is, and you, its user, assume all risks when using it.

Contact information

Phone +45 3917 9907
Fax +45 3917 9823

WEB http://www.mosek.com

Email sales@mosek.com Sales, pricing, and licensing.
support@mosek.com Technical support, questions and bug reports.
info@mosek.com Everything else.

Mail MOSEK ApS
C/O Symbion Science Park
Fruebjergvej 3, Box 16
2100 Copenhagen @
Denmark

iii

http://www.mosek.com
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com

iv

Contents

Changes and new features in MOSEK

1.1 Compilers used to build MOSEK
1.2 General changes e
1.3 Optimizers 0 o e
1.3.1 Imterior point optimizer L L
1.3.2 The simplex optimizers e
1.3.3 Mixed-integer optimizero
1.4 License system L e e
1.5 Other changes e
1.6 Interfaces o . . o e
1.7 Platform changes L
The MOSEK optimization tools
2.1 What is MOSEK e
2.1.1 Imterfaces e
2.2 How to use thismanual L

Getting support and help

3.1 MOSEK documentation
3.2 Additional reading L.
Using the MOSEK command line tool
4.1 Getting started Lo
4.2 Examples e e e e e e e e e e
4.2.1 Linear optimization L e
4.2.2 Quadratic optimizationo
4.2.3 Conic optimization
4.3 Passing options to the command line tool
4.4 Reading and writing problem data files. o0 oo
4.4.1 Reading compressed data files
4.4.2 Converting from one format and to another
4.5 Hot-start e
4.5.1 Anexampleo
4.6 Further information L
4.7 Solution file filtering L e

vi CONTENTS
5 MOSEK and AMPL 21
5.1 Invoking the AMPL shell 21
5.2 Applicabilityo 21
5.3 Anexample L 21
5.4 Determining the outcome of an optimization. 0L, 22
5.5 Optimizer options oL L e e e 22
5.5.1 The MOSEK parameter database 22

5.5.2 Options e 23

5.6 Constraint and variable names 23
5.7 Which solution is returned to AMPL o oo 24
5.8 Hot-start e e e 24
5.9 Conic constraints 26
5.10 Sensitivity analysis oL L e 28
5.11 Using the command line version of the AMPL interface 29

6 MOSEK and GAMS 31
7 MOSEK and MATLAB 33
8 Interfaces to MOSEK 35
8.1 The optimizer APT 35

9 Modelling 37
9.1 Linear optimization L L e e e e 37
9.1.1 Duality for linear optimization 38

9.1.2 Primal and dual infeasible case o 40

9.2 Quadratic and quadratically constrained optimization 40
9.2.1 A general recommendation oL oL 41

9.2.2 Reformulating as a separable quadratic problem 41

9.3 Conic optimization e 42
9.3.1 Duality for conic optimization L. L 43

9.3.2 Infeasibility 44

9.3.3 Examples e 44

9.3.4 Potential pitfalls in conic optimization L. 50

9.4 Nonlinear convex optimization L L o o 52
9.4.1 Duality e 53

9.5 Recommendations 53
9.5.1 Avoid near infeasible models Lo 54

9.6 Examples continued L L L e 54
9.6.1 The absolute value L L 54

9.6.2 The Markowitz portfolio model o 55

10 The optimizers for continuous problems 59
10.1 How an optimizer works L. e 59
10.1.1 Presolve e 59

10.1.2 Dualizer o e 61

10.1.3 Scaling e 61

CONTENTS

10.2

10.3

10.4

10.5

10.6

10.7

11 The
11.1
11.2
11.3

11.4
11.5
11.6

12 The
12.1

12.2

10.1.4 Using multiple CPU’S e
Linear optimization Lo
10.2.1 Optimizer selection L
10.2.2 The interior-point optimizer L e
10.2.3 The simplex based optimizero oL

10.2.5 The primal or the dual simplex variant?
Linear network optimization Lo o
10.3.1 Network flow problems
10.3.2 Embedded network problems L oo
Conic optimization L
10.4.1 The interior-point optimizer
Nonlinear convex optimization
10.5.1 The interior-point optimizer L
Solving problems in parallel L L
10.6.1 Thread safety« . e
10.6.2 The parallelized interior-point optimizer
10.6.3 The concurrent optimizer
Understanding solution quality L L
10.7.1 The solution SUMMATY« o v v v vt e e e e e

optimizer for mixed integer problems

Some notation e e e e e e e e e e e e e
An important fact about integer optimization problems
How the integer optimizer works Lo
11.3.1 Presolve o e
11.3.2 Heuristic o e
11.3.3 The optimization phase Lo
Termination criterion L L e e e
How to speed up the solution process i e
Understanding solution quality L o
11.6.1 Solutionsummary ot e e e e e e e

analyzers

The problem analyzer e
12.1.1 General characteristics
12.1.2 Objective o o e e
12.1.3 Linear constraints L L e
12.1.4 Constraint and variable bounds oL oL Lo
12.1.5 Quadratic constraints
12.1.6 Conic constraints L L e
Analyzing infeasible problems
12.2.1 Example: Primal infeasibility,
12.2.2 Locating the cause of primal infeasibility
12.2.3 Locating the cause of dual infeasibility
12.2.4 The infeasibility report L e

vii

61
62
62
62
66
67
68
68
68
68
69
69
69
69
71
71
71
71
73
73

77
7
78
78
78
79
79
79
80
81
81

viii CONTENTS

12.2.5 Theory concerning infeasible problems 93
12.2.6 The certificate of primal infeasibility 93
12.2.7 The certificate of dual infeasibility 94

13 Feasibility repair 95
13.1 The main idea o L o e e e e e e 95
13.2 Feasibility repair in MOSEK o 96
13.2.1 Usage of negative weights 97
13.2.2 Automatical naming 97
13.2.3 Anexample e e 98

14 Sensitivity analysis 99
14.1 Introduction o L L e e 99
14.2 Restrictions o 0 e e e e e e e e 99
14.3 References L e 99
14.4 Sensitivity analysis for linear problems L L Lo 99
14.4.1 The optimal objective value function L oL 99
14.4.2 The basis type sensitivity analysis o oo 101
14.4.3 The optimal partition type sensitivity analysis 101
14.4.4 Anexampleo e 103

14.5 Sensitivity analysis with the command line tool 106
14.5.1 Sensitivity analysis specification file 0 0oL 106
14.5.2 Example: Sensitivity analysis from command line 107
14.5.3 Controlling log output 108

A MOSEK command line tool reference 109
A1 Introduction L o e 109
A2 Command line arguments oL e 109
A.3 The parameter file L 111
A.3.1 Using the parameter file L 111

B The MPS file format 113
B.1 The MPS file format e 113
B.1.1 Anexample 115
B.1.2 NAME . . . o o e e e 115
B.1.3 OBJSENSE (optional) 115
B.1.4 OBJNAME (optional) 115
B.1.b ROWS . . o o o e e 116
B.1.6 COLUMNS o ot e e e e e e e e e e e e e e 116
B.1.7 RHS (optional) 117
B.1.8 RANGES (optional) 117
B.1.9 QSECTION (optional) 118
B.1.10 BOUNDS (optional) 119
B.1.11 CSECTION (0ptional) v oo v v e et e e e 120
B.1.12 ENDATA . . . o o o e e e e 122

B.2 Imteger variables L e 122

B.3 General limitations L 123

CONTENTS ix
B.4 Interpretation of the MPS format 123
B.5 The free MPS format L 123

C The LP file format 125
C.l Awarningo e e e e e 125
C.2 The LP file format e e e e e 125

C.2.1 Thesections v v v v it e e e e 126
C.2.2 LP format peculiarities Lo 129
C.2.3 The strict LP format 130
C.24 Formattingofan LP file o 130

D The OPF format 133
D.1 Imtended use e e 133
D.2 The file format e 133

D.2.1 Sections v i i e e e e 134
D.2.2 Numbers e 138
D.2.3 Names e e e 138
D.3 Parameters section L L 138
D.4 Writing OPF files from MOSEK o 139
D.5 Examples L e e e e e 139
D.5.1 Linear example lol.opf L 139
D.5.2 Quadratic example gqol.opf 140
D.5.3 Conic quadratic example cqol.opf L L oL 141
D.5.4 Mixed integer example milol.opf 142

E The XML (OSiL) format 145

F The solution file format 147
F.1 The basic and interior solution files L. 147
F.2 The integer solution file L 148

G The ORD file format 149
G.1 Anexample L e e 149

H Parameters reference 151
H.1 Parameter groups e 151

H.1.1 Logging parameters. i 151
H.1.2 Basis identification parameters. oL 153
H.1.3 The Interior-point method parameters. 153
H.1.4 Simplex optimizer parameters. oo 156
H.1.5 Primal simplex optimizer parameters., 157
H.1.6 Dual simplex optimizer parameters., 158
H.1.7 Network simplex optimizer parameters. 158
H.1.8 Nonlinear convex method parameters. 158
H.1.9 The conic interior-point method parameters. 159
H.1.10 The mixed-integer optimization parameters. 159

H.1.11 Presolve parameters. e 162

CONTENTS

H.1.12 Termination criterion parameters. 162
H.1.13 Progress call-back parameters. 164
H.1.14 Non-convex solver parameters. v 164
H.1.15 Feasibility repair parameters. L oo 165
H.1.16 Optimization system parameters. 165
H.1.17 Output information parameters. 166
H.1.18 Extra information about the optimization problem. 167
H.1.19 Overall solver parameters. o i v vttt 168
H.1.20 Behavior of the optimization task. 169
H.1.21 Data input/output parameters.o 170
H.1.22 Analysis parameters. e e 175
H.1.23 Solution input/output parameters. 175
H.1.24 Infeasibility report parameters. L o 176
H.1.25 License manager parameters.o 177
H.1.26 Data check parameters. L o 177
H.1.27 Debugging parameters. oo e e e e e e e 178
H.2 Double parameters e 178
H.3 Integer parameters L e 200
H.4 String parameter types oL e e e e e 276
Symbolic constants reference 285
[.L1 Constraint or variable access modes oL o e 285
.2 Function opcode 285
.3 Function operand type L 286
I.4 Basis identification L 286
L5 Bound keyso 286
[.6 Specifies the branching direction. Lo 287
1.7 Progress call-back codes 287
.8 Types of convexity checks. 295
1.9 Compression types o o e e 295
L10 Come types o o o i i e e e e 295
L11 CPU type . .« o o e e e e 295
[.12 Data format types e 296
I.13 Double information items oL L 297
1.14 Double parameters L oL e e e e e e 301
I.15 Feasibility repair types o . . L L 307
[.16 License feature e 307
[.17 Integer information items. L L e 307
[.18 Information item types o L L e 313
I.19 Input/output modes L 313
I1.20 Integer parameters 314
[.21 Language selection constants L o 330
[.22 Long integer information items. L L oo 330
123 Mark o o e e 331
[.24 Continuous mixed-integer solution type L L oL 331
I.25 Imteger restrictions L e 332

CONTENTS xi

1.26 Mixed-integer node selection types Lo oo 332
.27 MPS file format type o 332
[.28 Message keys o o o e e 333
.29 Network detection method 333
.30 Objective sense types« .« o v o v i e e e e 333
I31 Onjoff o o 334
.32 Optimizer types o o o e e e 334
[.33 Ordering strategies« L e e 335
1.34 Parameter type e e e e 335
.35 Presolve method. L 335
[.36 Problem data items. L e 336
1.37 Problem types e e e e e 336
[.38 Problem status keys L L 336
1.39 Interpretation of quadratic terms in MPS files 337
140 Response codes oo v it i e e e 337
I.41 Response code type« . . oL e e e 356
.42 Scaling type« o e e 357
[.43 Scaling type o o e e e 357
[44 Sensitivity types o e 357
I.45 Degeneracy strategies L L 358
[.46 Exploit duplicate columns. oL L 358
1.47 Hot-start type employed by the simplex optimizer 358
[.48 Problem reformulation. 359
[.49 Simplex selection strategy L e 359
I.50 Solution items. L 359
.51 Solution status keys oL 360
52 Solution types o o e e e 361
.53 Solve primal or dual form 361
[.54 String parameter types oL Lo e e e e 361
55 Status keys o e 363
.56 Starting point types oL e 364
LB7 Stream types o o e e e e e e 364
.58 Imteger values L e e 365
.59 Variable types oL 365
.60 XML writer output mode 365
J Problem analyzer examples 367
J1 airO4d .« .o e e e e e 367
J.2 arkiO0L . . . L e 368
J.3 Problem with both linear and quadratic constraints 369
J.4 Problem with both linear and conic constraints 371

xii CONTENTS

License agreement

Before using the MOSEK software, please read the license agreement available in the distribution at

mosek\6\license.pdf

CONTENTS

Chapter 1

Changes and new features in

MOSEK

The section presents improvements and new features added to MOSEK in version 6.0.

1.1 Compilers used to build MOSEK

MOSEK has been build with the compiler shown in Table 1.1.

Platform

C compiler

linux32x86
linux64x86
08x32x86
0sx64x86
solaris32x86
solaris64x86
win3d2x86
win64x86

Intel C 11.0 (gec 4.3, glibe 2.3.4)
Intel C 11.0 (gec 4.3, glibe 2.3.4)
Intel C 11.1 (gce 4.0)

Intel C 11.1 (gec 4.0)

Sun Studio 12

Sun Studio 12

Tntel C 11.0 (VS 2005)

Intel C 11.0 (VS 2005)

Table 1.1: Compiler version used to build MOSEK

1.2 General changes

e A problem analyzer is now available. It generates an simple report with of statisics and informa-
tion about the optimization problem and relevant warnings about the problem formulation are

included.

e A solution analyzer is now available.

4 CHAPTER 1. CHANGES AND NEW FEATURES IN MOSEK

e All timing measures are now wall clock times

e MOSEK employs version 1.2.3 of the zlib library.

e MOSEK employs version 11.6.1 of the FLEXnet licensing tools.

e The convexity of quadratic and quadratic constrained optimization is checked explicitly.
e On Windows all DLLs and EXEs are now signed.

e On all platforms the Jar files are signed.

e MOSEK no longer deals with ctrl-c. The user is responsible for terminating MOSEK in the
callback.

1.3 Optimizers

1.3.1 Interior point optimizer

e The speed and stability of interior-point optimizer for linear problems has been improved.
e The speed and stability of the interior-point optimizer for conic problems has been improved. In

particular, it is much better at dealing with primal or dual infeasible problems.

1.3.2 The simplex optimizers

e Presolve is now much more effective for simplex optimizers hot-starts.

1.3.3 Mixed-integer optimizer

e The stopping criteria for the mixed-integer optimizer have been changed to conform better with
industry standards.

1.4 License system

e The license conditions have been relaxed, so that a license is shared among all tasks using a
single environment. This means that running several optimizations in parallel will only consume
one license, as long as the associated tasks share a single MOSEK environment. Please note this
is NOT useful when using the MATLAB parallel toolbox.

e By default a license remains checked out for the lifetime of the environment. This behavior can
be changed using the parameter MSK_IPAR_CACHE _LICENSE.

e Flexlm has been upgraded to version 11.6 from version 11.4.

1.5 Other changes

e The documentation has been improved.

1.6. INTERFACES)

1.6 Interfaces

e The AMPL interface has been augmented so it is possible to pass an initial (feasible) integer
solution to mixed-integer optimizer.

e The AMPL interface is now capable of reading the constraint and variable names if they are
avialable.

1.7 Platform changes

e MAC OSX on the PowerPC platform is no longer supported.
e Solaris on the SPARC platform is no longer supported.

e MAC OSX is supported on Intel 64 bit X86 i.e. 0sx64x86.

e Add support for MATLAB R2009b.

CHAPTER 1. CHANGES AND NEW FEATURES IN MOSEK

Chapter 2

The MOSEK optimization tools

2.1 What is MOSEK

MOSEK is a software package for solving mathematical optimization problems.

The core of MOSEK consists of a number of optimizers that can solve various optimization prob-
lems. The problem clases MOSEK is designed to solve are:

e Linear problems.

e Conic quadratic problems. (also known as second order optimization).

e General convex problems. In particular, MOSEK is wellsuited for:

— Convex quadratic problems.
— Convex quadratically constrained problems.

— Geometric problems (posynomial case).
e Integer problems, i.e. problems where some of the variables are constrained to integer values.
These problem classes can be solved using an appropriate optimizer built into MOSEK:
e Interior-point optimizer for all continuous problems.
e Primal or dual simplex optimizer for linear problems.
e Conic interior-point optimizer for conic quadratic problems.
e Mixed-integer optimizer based on a branch and cut technology.

All the optimizers available in MOSEK are built for solving large-scale sparse problems and have
been extensively tuned for stability and performance.

7

8 CHAPTER 2. THE MOSEK OPTIMIZATION TOOLS

2.1.1 Interfaces

There are several ways to interface with MOSEK:
e Files:

— MPS format: MOSEK reads the industry standard MPS file format for specifying (mixed
integer) linear optimization problems. Moreover an MPS file can also be used to specify
quadratic, quadratically constrained, and conic optimization problems.

— LP format: MOSEK can read and write the CPLEX LP format with some restrictions.
— OPF format: MOSEK also has its own text based format called OPF. The format is closely

related to the LP but is much more robust in its specification

e APIs: MOSEK can also invoked from various programming languages.

- C/C++,

— C# (plus other .NET languages),
— Delphi,

Java and

— Python.

e Thrid party programs:

— AMPL: MOSEK can easily be used from the modeling language AMPL' which is a high-
level modeling language that makes it possible to formulate optimization problems in a
language close to the original “pen and paper” model formulation.

— MATLAB: When using the MOSEK optimization toolbox for Matlab the functionality of
MOSEK can easily be used within MATLAB.

2.2 How to use this manual

This manual consists of two parts each consisting of several chapters.

The first part consists of the Chapters 4 to 14 and is a User’s guide which provides a quick
introduction to the usage of MOSEK. The last part consists of appendixes A - I is a reference manual
for the MOSEK command line tool, file formats and parameters.

1See http://www.ampl.com for further information.

http://www.ampl.com

Chapter 3

Getting support and help

3.1 MOSEK documentation

For an overview of the available MOSEK documentation please see
mosek\6\help\index.html

in the distribution.

3.2 Additional reading

In this manual it is assumed that the reader is familiar with mathematics and in particular math-
ematical optimization. Some introduction to linear programming is found in books such as “Linear
programming” by Chvétal [12] or “Computer Solution of Linear Programs” by Nazareth [18]. For more
theoretical aspects see e.g. “Nonlinear programming: Theory and algorithms” by Bazaraa, Shetty, and
Sherali [10]. Finally, the book “Model building in mathematical programming” by Williams [22] pro-
vides an excellent introduction to modeling issues in optimization.

Another useful resource is “Mathematical Programming Glossary” available at

http://glossary.computing.society.informs.org

http://glossary.computing.society.informs.org

10

CHAPTER 3. GETTING SUPPORT AND HELP

Chapter 4

Using the MOSEK command line
tool

This chapter introduces the MOSEK command line tool which allows the user to solve optimization
problems specified in a text file. The main reasons to use the command line tool are

e to solve small problems by hand, and

e as a debugging tool for large problems generated by other programs.

4.1 Getting started

The syntax for the mosek command line tool is
mosek [options] filename

[options] are some options which modify the behavior of MOSEK such as whether the optimization
problem is minimized or maximized. filename is the name of the file which contains the problem
data. E.g the

mosek -min afiro.mps

command line tells MOSEK to read data from the afiro.mps file and to minimize the objective
function.

By default the solution to the optimization problem is stored in the files afiro.sol and afiro.bas.
The .sol and .bas files contains the interior and basis solution respectively. For problems with integer
variables the solution is written to a file with the extension .int.

For a complete list of command line parameters type

mosek -h

or see Appendix A.

11

12 CHAPTER 4. USING THE MOSEK COMMAND LINE TOOL

4.2 Examples
Using several examples we will subsequently demonstrate how to use the MOSEK command line tool.

4.2.1 Linear optimization

A linear optimization problem is a problem where a linear objective function is optimized subject to
linear constraints. An example of a linear optimization problem is

minimize —10z; —9z,,
subject to 7/10x; + laxs < 630,
1/2$1 + 5/6$2 S 600, (4 1)
1931 + 2/3562 S 708, ’
1/10z; + 1/4zs < 135,
I, T2 Z 0.

The solution of the example (4.1) using MOSEK consists of three steps:
e Creating an input file describing the problem.
e Optimizing the problem using MOSEK.
e Viewing the solution reports.

The input file for MOSEK is a plain text file containing a description of the problem and it must
be in either the MPS, the LP, or the OPF format. Below we present the example encoded as an OPF
file:

[comment]
Example lol.mps converted to OPF.
[/comment]

[hints]
Give a hint about the size of the different elements in the problem.
These need only be estimates, but in this case they are exact.
(hint NUMVAR] 2 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 8 [/hint]
[/hints]

[variables]
All variables that will appear in the problem
x1 x2

[/variables]

[objective minimize ’obj’]
- 10 x1 - 9 x2
[/objectivel

4.2. EXAMPLES 13

[constraints]
[con ’c1’] 0.7 x1 + x2 <= 630 [/con]
[con ’c2’] 0.5 x1 + 0.8333333333 x2 <= 600 [/conl]
[con ’c3’] x1 + 0.66666667 x2 <= 708 [/conl]
[con ’c4’] 0.1 x1 + 0.25 x2 <= 135 [/con]

[/constraints]

[bounds]

By default all variables are free. The following line will
change this to all variables being nonnegative.
[b] 0 <= * [/b]

[/bounds]

For details on the syntax of the OPF format please consult Appendix D.
After the input file has been created, the problem can be optimized. Assuming that the input file
has been given the name lol.opf, then the problem is optimized using the command line

mosek lol.opf

Two solution report files 1o1l.sol and lol.bas are generated where the first file contains the interior
solution and the second file contains the basic solution. In this case the lo1l.bas file has the format:

NAME : EXAMPLE
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL

OBJECTIVE NAME : obj
PRIMAL OBJECTIVE 1 —7.66799999e+003
DUAL OBJECTIVE 1 —7.66799999e+003

CONSTRAINTS

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER

1 cl UL 6.30000000e+002 NONE 6.30000000e+002 0.00000000e+000 4.37499996e+000
2 c2 BS 4.80000000e+002 NONE 6.00000000e+002 0.00000000e+000 0.00000000e+000
3 c3 UL 7.08000000e+002 NONE 7.08000000e+002 0.00000000e+000 6.93750003e+000
4 c4 BS 1.17000000e+002 NONE 1.35000000e+002 0.00000000e+000 0.00000000e+000
VARIABLES

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER

1 x1 BS 5.39999998e+002 0.00000000e+000 NONE 0.00000000e+000 0.00000000e+000
2 x2 BS 2.52000001e+002 0.00000000e+000 NONE 0.00000000e+000 0.00000000e+000

The interpretation of the solution file should be obvious. E.g the optimal values of x1 and x2 are
539.99 and 252.00 respectively. A detailed discussion of the solution file format is given in Appendix

F.

4.2.2 Quadratic optimization

An example of a quadratic optimization problem is

minimize

2?2 +0.123 + 23 — x123 — T2

subject to 1 <

1+ T9 + T3,

x> 0.

(4.2)

The problem is a quadratic optimization problem because all the constraints are linear and the objective
can be stated on the form

0527 Qx + T

14 CHAPTER 4. USING THE MOSEK COMMAND LINE TOOL

where in this particular case we have that

2 0 -1 0
Q=] 0 02 0 andc=| -1 |. (4.3)
-1 0 2 0

MOSEK assumes that) is symmetric and positive semi-definite. If these assumptions are not
satisfied, MOSEK will most likely not compute a valid solution. Recall a matrix is symmetric if it
satisfies the condition

Q=0Q"
and it is positive semi-definite if
zTQxz >0, for all z.

An OPF file specifying the example can have the format:

[comment]
Example qol.mps converted to OPF.
[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[/hints]

[variables]
x1 x2 x3
[/variables]

[objective minimize ’obj’]
The quadratic terms are often multiplied by 1/2,
but this is not required.

-x2+0.5 (2x1 " 2-2x3*%xx1+0.2x2"2+2x3"2)
[/objectivel

[constraints]
[con ’c1’] 1 <= x1 + x2 + x3 [/con]
[/constraints]

[bounds]
[b] 0 <= * [/b]
[/bounds]

Please note that the quadratic terms in objective are stated very naturally in the OPF format as
follows

-x2+0.5(2x1 " 2-2=x3*xx1+0.2x2"2+2x3"2)

4.2. EXAMPLES 15

The example is solved using the
mosek qol.opf
command line. In this case only one solution file named qol.sol is produced. A .bas file is only

produced for linear problems.

4.2.3 Conic optimization

Conic optimization is a generalization of linear optimization which allows the formulation of nonlinear
convex optimization problems.
The main idea in conic optimization is to include constraints of the form

zted

in the optimization problem where z! consists of a subset of the variables and C is a convex cone.
Recall that C is a convex cone if and only if C is a convex set and

rzeC = arecCforall a>0.

MOSEK cannot handle arbitrary conic constraints, only the two types

reR™"™ 2 > (4.4)
and
n+2
re€R"2: 2 29 > Zx?, T1,22 >0 . (4.5)
j=2
(4.4) is called a quadratic cone whereas (4.5) is called a rotated quadratic cone.
Consider the problem
minimize 1lxq + 2z
subject to % + ;22 < 5 (4.6)

x>0

which may not initially look like a conic optimization problem. It can however be reformulated to

minimize 1z + 2z

subject to 2z3+4z4y = 5,
x2 < 2ryx3,
x3 < 2x9my, (4.7)
Is = 1,
Te = 1,
xz > 0.

Problem (4.6) and problem (4.7) are equivalent because the constraints of (4.7)

2 2
x 1 x 1
—5:—§2z3and—6§—§21‘4
T €1 X2 Z2

16 CHAPTER 4. USING THE MOSEK COMMAND LINE TOOL

and hence 1 5
— 4+ — < 2x3+4x4 =5.
T T2

The problem (4.7) is a conic quadratic optimization problem.

Using the MOSEK OPF format the problem can be represented as follows:

[comment]
Example cqol.mps converted to OPF.
[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 2 [/hint]
[/hints]

[variables]
x1 x2 x3 x4 x5 x6
[/variables]

[objective minimize ’obj’]
x1 + 2 x2
[/objective]

[constraints]
[con ’c1’] 2 x3 + 4 x4 =5 [/con]
[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/b]
... and change those that differ from the default.
[b] x5,x6 = 1 [/b]

We define two rotated quadratic cones

kl: 2 x1 * x3 >= x572
[cone rquad ’k1’] x1, x3, x5 [/cone]

k2: 2 x2 x x4 >= x672
[cone rquad ’k2’] x2, x4, x6 [/cone]
[/bounds]

For details on the OPF format please consult Appendix D. Finally, the example can be solved using
the

mosek cqol.opf

command line call and the solution can be studied by inspecting the cqol.sol file.

4.3. PASSING OPTIONS TO THE COMMAND LINE TOOL 17

Format name Standard Read Write File type File extension Reference
OPF No Yes Yes ASCII/UTFS opf Appendix D
MPS Yes Yes Yes ASCII mps Appendix B
LP Partially Yes Yes ASCII Ip Appendix C
OSiL XML Yes No Yes ASCII/UTF8 xml Appendix E
Binary task format No Yes Yes Binary mbt

Table 4.1: Supported file formats.

4.3 Passing options to the command line tool

It is possible to modify the behavior of MOSEK by setting appropriate parameters. E.g assume that
a linear optimization problem should be solved with the primal simplex optimizer rather than the
default interior-point optimizer. This is done by setting the parameter MSK_IPAR OPTIMIZER to the
value MSK_OPTIMIZER_PRIMAL_SIMPLEX. To accomplish this append

-d MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_PRIMAL_SIMPLEX.

to the command line. E.g the command

mosek -d MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_PRIMAL_SIMPLEX lol.opf

solves the problem specified by lol.opf using the primal simplex optimizer. For further information
on the parameters available in MOSEK please see Appendix H.

4.4 Reading and writing problem data files

MOSEK reads and writes problem data files in the formats presented in Table 4.1. The columns of
Table 4.1 show:

e The name of the format.

e Whether the format is an industry standard format.

e If the format can be read by MOSEK.

e If the format can be written by MOSEK.

e The generic file type of the format, i.e. ASCII, UTFS, or binary.
e The file extension for the format

e The location of information about the format.

18 CHAPTER 4. USING THE MOSEK COMMAND LINE TOOL

4.4.1 Reading compressed data files

MOSEK can read and write data files compressed with gzip !
For mosek to recognize a file as a gzip compressed file it must have the extension .gz. E.g the
command

mosek myfile.mps.gz

will automatically decompress the file while reading it.

4.4.2 Converting from one format and to another

It is possible to use MOSEK to convert a problem file from one format to another. For instance assume
the MPS file myprob.mps should be converted to an LP file named myprob.1lp. This can be achieved
with the command

mosek myprob.mps -out myprob.lp -x

Converting an MPS file to a LP file and back to an MPS file permutes the rows and columns of
the original problem; this has no influence on the problem, but variables and constraints may appear
in a different order.

4.5 Hot-start

Often a sequence of closely related optimization problems has to be solved. In such a case it can
be expected that a previous optimal solution can serve as a good starting point when the modified
problem is optimized.

Currently, only the simplex optimizer and the mixed-integer optimizer in MOSEK can exploit a
guess for the optimal solution. The simplex optimizer can exploit an arbitrary guess for the optimal
solution whereas the mixed-integer optimizer requires a feasible integer solution. For both the simplex
optimizer and the mixed-integer optimizer it holds that if the guess is good then the optimizer may
be able to reduce the solution time significantly when exploiting the guess.

4.5.1 An example

Assume that the example

minimize 1T —9x9,
subject to 7/10z; + las < 630,
1/2z1 + 5/6z2 < 600, (4.8)
1z, + 2/3582 < 708, ’
1/10z; + 1/4my < 135,
T, Xro Z 0.

should be solved for ¢; identical to —5 and —10. Clearly, a solution for one ¢; value will also be feasible
for another value. Therefore, it might be worthwhile to exploit the previous optimal solution when
reoptimizing the problem.

lgzip is a public domain compression format. For further details about gzip consult http://www.gzip.org

http://www.gzip.org

4.6. FURTHER INFORMATION 19

Assume that two MPS files have been created each corresponding to one of the ¢; values then the
commands?

mosek lol.mps -baso .\lol.bas
mosek lol-b.mps -basi .\lol.bas -baso .\lol-b.bas
-d MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_PRIMAL_SIMPLEX

demonstrates how to exploit the previous optimal solution in the second optimization.

In the first line MOSEK optimizes the first version of the optimization problem where c; is identical
to —10. The -baso .\lol.bas command line option makes sure that the optimal basic solution is
written to the file .\lo1l.bas.

In the second line the second instance of the problem is optimized. The -basi .\lo1l.bas command
line option forces MOSEK to read the previous optimal solution which MOSEK will try to exploit
automatically. The -baso .\lol-b.bas command line option makes sure that the optimal basic
solution is written to the .\lol-b.bas file. Finally, the

-d MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_PRIMAL_SIMPLEX

command line option makes sure that the primal simplex optimizer is used for the reoptimization. This
is important because the interior-point optimizer used by default does not exploit a previous optimal
solution.

4.6 Further information

Additional information about the MOSEK command line tool is available in Appendix A.

4.7 Solution file filtering

The MOSEK solution files can be very space consuming for large problems. One way to cut down the
solution file size is only to include variables which optimal value is in a certain interesting range i.e
[0.01,0.99]. This can be done by setting the MOSEK parameters

MSK_SPAR_SOL_FILTER_XX_LOW 0.01
MSK_SPAR_SOL_FILTER_XX_UPR 0.99

For further details consult the parameters MSK_SPAR_SOL_FILTER_XC_LOW and MSK_SPAR_SOL_FILTER_XC_UPR.

2The second line should not be broken into two separate lines.

20

CHAPTER 4. USING THE MOSEK COMMAND LINE TOOL

Chapter 5

MOSEK and AMPL

AMPL is a modeling language for specifying linear and nonlinear optimization models in a natural
way. AMPL also makes it easy to solve the problem and e.g. display the solution or part of it.

We will not discuss the specifics of the AMPL language here but instead refer the reader to [13]
and the AMPL website http://www.ampl.com.

AMPL cannot solve optimization problems by itself but requires a link to an appropriate optimizer
such as MOSEK. The MOSEK distribution includes an AMPL link which makes it possible to use
MOSEK as an optimizer within AMPL.

5.1 Invoking the AMPL shell

The MOSEK distribution by default comes with the AMPL shell installed. To invoke the AMPL shell
type:

mampl

5.2 Applicability

It is possible to specify problems in AMPL that cannot be solved by MOSEK. The optimization
problem must be a smooth convex optimization problem as discussed in Section 9.4.

5.3 An example

In many instances, you can successfully apply MOSEK simply by specifying the model and data,
setting the solver option to MOSEK, and typing solve. First to invoke the AMPL shell type:

mampl
when the AMPL shell has started type the commands:

ampl: model diet.mod;
ampl: data diet.dat;

21

http://www.ampl.com

22 CHAPTER 5. MOSEK AND AMPL

Value Message

0 the solution is optimal.

100 suboptimal primal solution.

101 superoptimal (dual feasible) solution.
150 the solution is near optimal.

200 primal infeasible problem.
300 dual infeasible problem.

400 too many iterations.
500 solution status is unknown.
501 ill-posed problem, solution status is unknown.

> 501 The value - 501 is a MOSEK response code.
See Appendix 1.40 for all MOSEK response codes.

Table 5.1: Interpretation of solve_result_num.

ampl: option solver mosek;
ampl: solve;

The resulting output is:

MOSEK finished.

Problem status - PRIMAL_AND_DUAL_FEASIBLE
Solution status - OPTIMAL

Primal objective - 14.8557377

Dual objective 14.8557377

Objective = Total_Cost

5.4 Determining the outcome of an optimization

The AMPL parameter solve_result_num is used to indicate the outcome of the optimization process.
It is used as follows

ampl: display solve_result_num

Please refer to table 5.1 for possible values of this parameter.

5.5 Optimizer options
5.5.1 The MOSEK parameter database

The MOSEK optimizer has options and parameters controlling such things as the termination criterion
and which optimizer is used. These parameters can be modified within AMPL as shown in the example
below:

ampl: model diet.mod;
ampl: data diet.dat;

5.6. CONSTRAINT AND VARIABLE NAMES 23

ampl: option solver mosek;

ampl: option mosek_options

ampl? ’msk_ipar_optimizer = msk_optimizer_primal_simplex \
ampl? msk_ipar_sim_max_iterations = 100000’;

ampl: solve;

In the example above a string called mosek_options is created which contains the parameter settings.
Each parameter setting has the format

parameter name = value

where “parameter name” can be any valid MOSEK parameter name. See Appendix H for a description
of all valid MOSEK parameters.
An alternative way of specifying the options is

ampl: option mosek_options
ampl? ’msk_ipar_optimizer = msk_optimizer_primal_simplex’
ampl? ’ msk_ipar_sim_max_iterations = 100000’ ;

New options can also be appended to an existing option string as shown below

ampl: option mosek_options $mosek_options
ampl? ’ msk_ipar_sim_print_freq = O msk_ipar_sim_max_iterations = 1000’;

The expression $mosek_options expands to the current value of the option. Line two in the example
appends an additional value msk_ipar_sim max_iterations to the option string.

5.5.2 Options
5.5.2.1 outlev

MOSEK also recognizes the outlev option which controls the amount of printed output. 0 means no
printed output and a higher value means more printed output. An example of setting outlev is as
follows:

ampl: option mosek_options ’outlev=2’;

5.5.2.2 wantsol

MOSEK recognize the option wantsol. We refer the reader to the AMPL manual [13] for details about
this option.

5.6 Constraint and variable names

AMPL assigns meaningfull names to all the constraints and variables. Since MOSEK uses item names
in error and log messages, it may be useful to pass the AMPL names to MOSEK. Using the command
ampl: option mosek_auxfiles rc;

before the

solve;

command makes MOSEK obtain the constraint and variable names automatically.

24 CHAPTER 5. MOSEK AND AMPL

5.7 Which solution is returned to AMPL

The MOSEK optimizer can produce three types of solutions: basic, integer, and interior point solutions.
For nonlinear problems only an interior solution is available. For linear optimization problems opti-
mized by the interior-point optimizer with basis identification turned on both a basic and an interior
point solution are calculated. The simplex algorithm produces only a basic solution. Whenever both
an interior and a basic solution are available, the basic solution is returned. For problems containing
integer variables, the integer solution is returned to AMPL.

5.8 Hot-start

Frequently, a sequence of optimization problems is solved where each problem differs only slightly from
the previous problem. In that case it may be advantageous to use the previous optimal solution to
hot-start the optimizer. Such a facility is available in MOSEK only when the simplex optimizer is
used.

The hot-start facility exploits the AMPL variable suffix sstatus to communicate the optimal basis
back to AMPL, and AMPL uses this facility to communicate an initial basis to MOSEK. The following
example demonstrates this feature.

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek_options

ampl? ’msk_ipar_optimizer = msk_optimizer_primal_simplex outlev=2’;
ampl: solve;

ampl: display Buy.sstatus;

ampl: solve;

The resulting output is:

Accepted: msk_ipar_optimizer MSK_OPTIMIZER_PRIMAL_SIMPLEX

Accepted: outlev =2

Computer - Platform : Linux/64-X86

Computer - CPU type : Intel-P4

MOSEK - task name :

MOSEK - objective sense : min

MOSEK - problem type : LO (linear optimization problem)

MOSEK - constraints 7 variables : 9
MOSEK - integer variables : 0

Optimizer started.

Simplex optimizer started.

Presolve started.

Linear dependency checker started.

Linear dependency checker terminated.

Presolve - Stk. size (kb) : O

Eliminator - tries : 0 time : 0.00

Eliminator - elim’s
Lin. dep. - tries 1 time : 0.00

5.8. HOT-START

Lin. dep. - number
Presolve terminated. Time: 0.00
Primal simplex optimizer started.

Primal simplex optimizer setup started.
Primal simplex optimizer setup terminated.

Optimizer - solved problem : the primal

Optimizer - constraints 7 variables
Optimizer - hotstart : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ
0 0.00 1.40e+03 NA 1.2586666667e+01 NA

3 0.00 0.00e+00 NA 1.4855737705e+01 NA

Primal simplex optimizer terminated.

Simplex optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.01
Return code - 0 [MSK_RES_OK]
MOSEK finished.

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective : 14.8557377

Objective = Total_Cost
Buy.sstatus [*] :=
’Quarter Pounder w/ Cheese’ Dbas
’McLean Deluxe w/ Cheese’ low
’Big Mac’ 1low
Filet-0-Fish 1low
’McGrilled Chicken’ low
’Fries, small’ bas
’Sausage McMuffin’ low
’1% Lowfat Milk’ bas
’Orange Juice’ 1low
Accepted: msk_ipar_optimizer
Accepted: outlev
Basic solution
Problem status : UNKNOWN
Solution status : UNKNOWN
Primal - objective: 1.4855737705e+01

Dual - objective: 0.0000000000e+00
Computer - Platform

Computer - CPU type

MOSEK - task name

MOSEK - objective sense

MOSEK - problem type

MOSEK - constraints

MOSEK - integer variables

Optimizer started.
Simplex optimizer started.

MSK_OPTIMIZER_PRIMAL_SIMPLEX
2

eq. infeas.: 3.97e+03 max bound infeas.:

eq. infeas.: 7.14e-01 max bound infeas.:
: Linux/64-X86
: Intel-P4
: min
: LO (linear optimization problem)
7 variables

: 0

2.00e+03
0.00e+00

25

TIME
0.00
0.00

TOTTIME
0.01
0.01

26 CHAPTER 5. MOSEK AND AMPL

Presolve started.
Presolve - Stk. size (kb) : O

Eliminator - tries : 0 time : 0.00
Eliminator - elim’s : 0

Lin. dep. - tries : 0 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Primal simplex optimizer started.

Primal simplex optimizer setup started.

Primal simplex optimizer setup terminated.

Optimizer - solved problem : the primal

Optimizer - constraints N variables 9

Optimizer - hotstart : yes

Optimizer - Num. basic 7 Basis rank 7

Optimizer - Valid bas. fac. : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME
0 0.00 0.00e+00 NA 1.4855737705e+01 NA 0.00
0 0.00 0.00e+00 NA 1.4855737705e+01 NA 0.00

Primal simplex optimizer terminated.
Simplex optimizer terminated. Time: 0.00.
Optimizer terminated. Time: 0.01

Return code - 0 [MSK_RES_0K]

MOSEK finished.

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective 1 14.8557377

Objective = Total_Cost

Please note that the second solve takes fewer iterations since the previous optimal basis is reused.

5.9 Conic constraints

AMPL does not support conic constraints. It is of course possible to specify the conic quadratic
constraint
z > |zl

in AMPL but it will be treated as a general nonlinear constraint. MOSEK cannot analyze the nonlinear
constraints and discover that such a constraint is actually quadratic cone constraint. Therefore, an
explicit method for specifying a conic constraints are needed.

The AMPL example

suffix cone integer; # Mosek specific suffix
option presolve O; # AMPL presolve should be turned off when the problem
has conic constraints

var x;
var y;

TOTTIME
0.01
0.01

5.9. CONIC CONSTRAINTS 27

var z;

minimize obj: y;
subject to con: x + z = y;

Represents the conic constraint y >= sqrt(x~2+z~2)
let y.cone := -1;
let x.cone := 1;
let z.cone :

I
=

option solver mosek;
option mosek_options ’outlev=2’;
solve;

solves the example
minimize Y
subject to T+ z = vy, (5.1)

y > Va2 + 22,

The idea of the MOSEK specific extension is to use a variable suffix named cone to specify the index
of the cone that variable is member of. If a variable is not a member of a cone, then cone suffix of the
variable should not be specified. Alternatively the cone suffix can be set to 0. The cone suffix should
be negative if the variable is on the left side of

x>z

For each cone there should be at least one variable having a negative cone suffix and at most two
variable can have negative cone suffix. If two variables have negative cone suffix, then a rotated
quadratic cone is specified. Hence,

let y.cone := -1;
let x.cone := -1;
let z.cone := 1;

is the same as the rotated quadratic cone constraint
22y > 2% and z,y > 0.
Finally, some observations about the MOSEK specific conic extension to AMPL are:
e A cone can contain as many variables as desired.
e A problem can contain any mixture of quadratic and rotated quadratic cones.

e The problem can contain any number cones.

Currently, dual variables associated with constraints is not available in AMPL.

Is is important that presolve is turned off when a problem has conic constraints because AMPL
does not take such constraints into account. Hence, leaving the presolve on may lead to incorrect
results.

28 CHAPTER 5. MOSEK AND AMPL

5.10 Sensitivity analysis

MOSEK can calculate sensitivity information for the objective and constraints. To enable sensitivity
information set the option:

sensitivity = 1

Results are returned in variable/constraint suffixes as follows:
e .down Smallest value of objective coefficient /right hand side before the optimal basis changes.
e .up Largest value of objective coefficient /right hand side before the optimal basis changes.
e .current Current value of objective coefficient /right hand side.

For ranged constraints sensitivity information is returned only for the lower bound.
The example below returns sensitivity information on the diet model.

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek_options ’sensitivity=1’;

ampl: solve;

#display sensitivity information and current solution.
ampl: display _var.down,_var.current,_var.up,_var;
#display sensitivity information and optimal dual values.
ampl: display _con.down,_con.current,_con.up,_con;

The resulting output is:

Return code - 0 [MSK_RES_OK]
MOSEK finished.

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective : 14.8557377

suffix up OUT;

suffix down OUT;
suffix current OUT;
Objective = Total_Cost

: _var.down _var.current _var.up _var 1=
1 1.37385 1.84 1.86075 4.385625

2 1.8677 2.19 Infinity 0

3 1.82085 1.84 Infinity 0

4 1.35466 1.44 Infinity 0

5 1.57633 2.29 Infinity 0

5.11. USING THE COMMAND LINE VERSION OF THE AMPL INTERFACE

6 0.094 0.77
7 1.22759 1.29
8 0.57559 0.6
9 0.657279 0.72

0.794851
Infinity

0.910769
Infinity

6.14754
0
3.42213
0

b
ampl: display _con.down,_con.current,_con.up,_con;

: _con.down _con.current _con.up
1 -Infinity 2000 3965.37
2 297.6 350 375

3 -Infinity 55 172.029
4 63.05631 100 195.388
5 -Infinity 100 132.213
6 -Infinity 100 234.221
7 17.6923 100 142.821

_con 1=
0
0.0277049
0
0.0267541
0
0

0.0248361

29

5.11 Using the command line version of the AMPL interface

AMPL can generate a data file containing all the optimization problem and all relevant information
which can then be read and solved by the MOSEK command line tool.
When the problem has been loaded into AMPL, the commands

ampl: option auxfiles rc;
ampl: write bprob;

will make AMPL write the appropriate data files, i.e.

prob.nl
prob.col
prob.row

Then the problem can be solved using the command line version of MOSEK as follows

mosek prob.nl outlev=10 -

a

The -a command line option indicates that MOSEK is invoked in AMPL mode. When MOSEK is
invoked in AMPL mode the normal MOSEK command line options should appear after the —a option
except for the file name which should be the first argument. As the above example demonstrates
MOSEK accepts command line options as specified by the AMPL “convention”. Which command line
arguments MOSEK accepts in AMPL mode can be viewed by executing

mosek —-= -a

For linear, quadratic and quadratic constrained problems a text file representation of the problem
can be obtained using one of the commands

mosek prob.nl -a -x —-out prob.mps
mosek prob.nl -a -x -out prob.opf
mosek prob.nl -a -x -out prob.lp

30

CHAPTER 5. MOSEK AND AMPL

Chapter 6

MOSEK and GAMS

It is possible to call MOSEK from the GAMS modeling language . In order to do so a special
GAMS/MOSEK link must be obtained from the GAMS Corporation.

31

http://www.gams.com

32

CHAPTER 6. MOSEK AND GAMS

Chapter 7

MOSEK and MATLAB

The MOSEK optimization toolbox for MATLAB is an easy to use interface to MOSEK that makes it

possible to use MOSEK from within MATLAB.
The optimization toolbox is included in the MOSEK optimization tools distribution. See the
separate documentation for the MATLAB toolbox for details.

33

34

CHAPTER 7. MOSEK AND MATLAB

Chapter 8

Interfaces to MOSEK

8.1 The optimizer API

The MOSEK optimizer API is an efficient interface to the optimizers implemented in MOSEK. E.g the
interface makes it possible to call the linear optimizer from a C++ or Java program. The optimizer
API is available for the languages

o C/C++/Delphi.

o Java.

e NET (Visual Basic, C#, Managed C++, etc).

e Python.
Further details about the optimizer APIs are available at
mosek\6\help\index.html

or online at
http://www.mosek.com/documentation,/

35

http://www.mosek.com/documentation/

36

CHAPTER 8. INTERFACES TO MOSEK

Chapter 9

Modelling

In this chapter we will discuss the following issues:

e The formal definitions of the problem types that MOSEK can solve.

The solution information produced by MOSEK.

The information produced by MOSEK if the problem is infeasible.

A set of examples showing different ways of formulating commonly occurring problems so that
they can be solved by MOSEK.

e Recommendations for formulating optimization problems.

9.1 Linear optimization

A linear optimization problem can be written as

minimize e+ of
subject to ¢ < Az < uc, (9.1)
r < T < u*

where
e m is the number of constraints.
e 1 is the number of decision variables.
e = € R" is a vector of decision variables.
e ¢ € R” is the linear part of the objective function.
e A € R™*™ is the constraint matrix.

e [° € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.

37

38 CHAPTER 9. MODELLING

e [* € R™ is the lower limit on the activity for the variables.
e u® € R" is the upper limit on the activity for the variables.

A primal solution (z) is (primal) feasible if it satisfies all constraints in (9.1). If (9.1) has at least
one primal feasible solution, then (9.1) is said to be (primal) feasible.
In case (9.1) does not have a feasible solution, the problem is said to be (primal) infeasible.

9.1.1 Duality for linear optimization

Corresponding to the primal problem (9.1), there is a dual problem

maximize (19)Ts¢ — (u)TsS
() sp — () sy 4 e
subject to ATy + 57 — 5% = ¢ (9.2)
—y + 57 — s = 0,

& (& xr xr
81y 8us S Su 2> 0.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable

is 0. E.g.
I =-00 = (s7);=0and] (s7); =0.

This is equivalent to removing variable (s7); from the dual problem.
A solution

(Y 875 80, 575 5%)

to the dual problem is feasible if it satisfies all the constraints in (9.2). If (9.2) has at least one feasible
solution, then (9.2) is (dual) feasible, otherwise the problem is (dual) infeasible.
We will denote a solution

(@,y, 57, s 51)
so that z is a solution to the primal problem (9.1), and
(Y 87 5% 51 50)
is a solution to the corresponding dual problem (9.2). A solution which is both primal and dual feasible

is denoted a primal-dual feasible solution.

9.1.1.1 A primal-dual feasible solution
Let
(=%, 9", ()" (s2)", (s7)7, (s0)")

be a primal-dual feasible solution, and let

9.1. LINEAR OPTIMIZATION 39
For a primal-dual feasible solution we define the optimality gap as the difference between the primal
and the dual objective value,

o+ el — (19T s¢ — (u)T's

((s)7 (@)™ = 1) + (s9)7 (uf — (2

5+ ()78 = (w)Tst + o)
P CHHCREARNCAHURER)
0

I
™3

s
Il
—

9k
>
where the first relation can be obtained by multiplying the dual constraints (9.2) by « and x° respec-
tively, and the second relation comes from the fact that each term in each sum is nonnegative. It
follows that the primal objective will always be greater than or equal to the dual objective.

We then define the duality gap as the difference between the primal objective value and the dual
objective value, i.e.

T + ol — ((lc)Ts; _ (UC)TSZ + (lx)TS?: _ (ut)Tsz + Cf)

Please note that the duality gap will always be nonnegative.

9.1.1.2 An optimal solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal and dual solutions so that the duality gap is zero, or, equivalently, that the comple-
mentarity conditions

()i =15) = 0, i=1,...,m,
(s):(“f_(x)*) = 0, i=1,...,m,
(Sll);(w] l;) = 0, j =1,...,n,
(sp)j(uj —z7) = 0, j=1,...,n

are satisfied.
If (9.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

9.1.1.3 Primal infeasible problems

If the problem (9.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal

infeasibility: The dual solution reported is a certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)Ts®

subject to ATy + s7 — ¢ = 0,

-y + 8] — s = 0,

87,585,857, 85 > 0.

(9.3)

so that the objective is strictly positive, i.e. a solution
(" ()7, (s0)", (s7)", (s2)7)

0 (9.3) so that
)T (s7)* = ()T (s5)™ + (1) (s7)" = (u™) T (s3)" > 0.

40 CHAPTER 9. MODELLING

Such a solution implies that (9.3) is unbounded, and that its dual is infeasible.
We note that the dual of (9.3) is a problem which constraints are identical to the constraints of
the original primal problem (9.1): If the dual of (9.3) is infeasible, so is the original primal problem.

9.1.1.4 Dual infeasible problems

If the problem (9.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is a certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the problem

T

minimize c'x
subject to Ax —z¢ = 0,
Zc S ¢ S ,ac7 (94)
ro< x < "
where
= 0 ifl¢ > —oc0 0, ifuf<oo
=17 i ” %% Q=4 i S0
v { —oo otherwise and 1 { oo otherwise
and
- 0 ifl¥ > -0 0, ifu¥<oo
=4 77 7%% and ar={ O W <00,
J { —o00 otherwise ne { oo otherwise

so that the objective value ¢’z is negative. Such a solution implies that (9.4) is unbounded, and that
the dual of (9.4) is infeasible.

We note that the dual of (9.4) is a problem which constraints are identical to the constraints of
the original dual problem (9.2): If the dual of (9.4) is infeasible, so is the original dual problem.

9.1.2 Primal and dual infeasible case

In case that both the primal problem (9.1) and the dual problem (9.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

9.2 Quadratic and quadratically constrained optimization

A convex quadratic optimization problem is an optimization problem of the form

minimize %xTQox +cTr+¢f
n—1
subject to I < %xTQkx + > apsx; < wf, k=0,....m-—1, (9.5)
§j=0
r < x < ' j=0,...,n—1,

where the convexity requirement implies that
e (Q° is a symmetric positive semi-definite matrix.

o If [f = —oo0, then QF is a symmetric positive semi-definite matrix.

9.2. QUADRATIC AND QUADRATICALLY CONSTRAINED OPTIMIZATION 41

o If uf = oo, then QF is a symmetric negative semi-definite matrix.
o If [, > —oco and u’,: < 00, then Q* is a zero matrix.

The convexity requirement is very important and it is strongly recommended that MOSEK is
applied to convex problems only.

9.2.1 A general recommendation

Any convex quadratic optimization problem can be reformulated as a conic optimization problem.
It is our experience that for the majority of practical applications it is better to cast them as conic
problems because

e the resulting problem is convex by construction, and
e the conic optimizer is more efficient than the optimizer for general quadratic problems.

See Section 9.3.3.1 for further details.

9.2.2 Reformulating as a separable quadratic problem
The simplest quadratic optimization problem is

minimize 1/227Qx + T
subject to Az = b, (9.6)
xz > 0.

The problem (9.6) is said to be a separable problem if @ is a diagonal matrix or, in other words, if the
quadratic terms in the objective all have this form

2
Z;

instead of this form
XTjLg-
The separable form has the following advantages:
e It is very easy to check the convexity assumption, and

e the simpler structure in a separable problem usually makes it easier to solve.

It is well-known that a positive semi-definite matrix) can always be factorized, i.e. a matrix F
exists so that
Q=FTF (9.7)

In many practical applications of quadratic optimization F' is known explicitly; e.g. if Q) is a covariance
matrix, F' is the set of observations producing it.
Using (9.7), the problem (9.6) can be reformulated as

minimize 1/2yT Iy + cla

subject to Ax = b,
Fz—y = 0,
x> 0.

(9.8)

42 CHAPTER 9. MODELLING

The problem (9.8) is also a quadratic optimization problem and has more constraints and variables
than (9.6). However, the problem is separable. Normally, if F' has fewer rows than columns, it is
worthwhile to reformulate as a separable problem. Indeed consider the extreme case where F' has one
dense row and hence) will be a dense matrix.

The idea presented above is applicable to quadratic constraints too. Now, consider the constraint

1/22T(FTF)xz <b (9.9)

where F' is a matrix and b is a scalar. (9.9) can be reformulated as

It should be obvious how to generalize this idea to make any convex quadratic problem separable.

Next, consider the constraint
1/2¢T(D+ FTF)z <b

where D is a positive semi-definite matrix, F' is a matrix, and b is a scalar. We assume that D has a
simple structure, e.g. that D is a diagonal or a block diagonal matrix. If this is the case, it may be
worthwhile performing the reformulation

1/2((«" Dx) +y"Iy) < b,
Fe—y = 0.

Now, the question may arise: When should a quadratic problem be reformulated to make it sepa-
rable or near separable? The simplest rule of thumb is that it should be reformulated if the number
of non-zeros used to represent the problem decreases when reformulating the problem.

9.3 Conic optimization

Conic optimization can be seen as a generalization of linear optimization. Indeed a conic optimization
problem is a linear optimization problem plus a constraint of the form

recC

where C is a convex cone. A complete conic problem has the form

minimize e+ of
subject to 1¢ < Ax < uc,
< x < u” <9'10)
x eC.

The cone C can be a Cartesian product of p convex cones, i.e.
C=C x---xCp
in which case = € C can be written as

= (T1,...,%p), 1 €C1,...,xp €C,

9.3. CONIC OPTIMIZATION 43

where each x; € R™. Please note that the n-dimensional Euclidean space R™ is a cone itself, so simple
linear variables are still allowed.
MOSEK supports only a limited number of cones, specifically

C = C1 X+ X Cp
where each C; has one of the following forms

o IR set:

Ct = {17 € Rnt}

e Quadratic cone:

e Rotated quadratic cone:

t
Ci={xecR" :ZmleEZx?, T1,29 >0
=3

Although these cones may seem to provide only limited expressive power they can be used to model
a large range of problems as demonstrated in Section 9.3.3.

9.3.1 Duality for conic optimization
The dual problem corresponding to the conic optimization problem (9.10) is given by

maximize (19)Tsg — (ue)Ts,

+H(I) st — (u") sy + ¢!

subject to ATy + s7 — s% + 52 = ¢
s e ~ 0 (9.11)
u)
8> Su» 51> S = 0,
sk eC*

where the dual cone C* is a product of the cones

where each C} is the dual cone of C;. For the cone types MOSEK can handle, the relation between the
primal and dual cone is given as follows:
o R set: . .
Ct:{xeR"} & (= {SER" : 820}.

e Quadratic cone:

44 CHAPTER 9. MODELLING

e Rotated quadratic cone:

t
n

t
Ci =L xeR" 2233‘15(}2221‘?, z1,22>20p. & Cf =C;.
j=3

Please note that the dual problem of the dual problem is identical to the original primal problem.

9.3.2 Infeasibility

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Sections 9.1.1.3 and 9.1.1.4).

9.3.3 Examples

This section contains several examples of inequalities and problems that can be cast as conic optimiza-
tion problems.

9.3.3.1 Quadratic objective and constraints

From Section 9.2.2 we know that any convex quadratic problem can be stated on the form

minimize 0.5 ||Fz||> + Tz,

9.12
subject to 0.5|Gz|® +aTz < b, (9.12)

where F' and G are matrices and ¢ and a are vectors. For simplicity we assume that there is only
one constraint, but it should be obvious how to generalize the methods to an arbitrary number of
constraints.

Problem (9.12) can be reformulated as

minimize 0.5 ||t||> + ¢Tz,

subject to 0.5 |z]> +aT2z < b, (9.13)
Fox—t = 0, '
Gz —z =0

after the introduction of the new variables t and z. It is easy to convert this problem to a conic
quadratic optimization problem, i.e.

minimize v+ ¢l x,

subject to p+alz = b,
Fx—t 0,
Gr—z = 0,
w - 1 (9.14)
q = 1,
||t||2 < 2vw, wv,w >0,
21> < 2pq, p.g>0.

In this case we can model the last two inequalities using rotated quadratic cones.

9.3. CONIC OPTIMIZATION

45

If we assume that F' is a non-singular matrix — e.g. a diagonal matrix — then

r=F"Y
and hence we can eliminate x from the problem to obtain:

minimize v+ T F~ ¢,
subject to p+aT F1t
GF%t—z =

w

q
]2
[ElS

)

)

)

|
—_ -0 o

)

IAIA

(9.15)

2vw, wv,w >0,
2pq, p,q=0.

In most cases MOSEK performs this reduction automatically during the presolve phase before the

optimization is performed.

9.3.3.2 Minimizing a sum of norms

The next example is the problem of minimizing a sum of norms, i.e. the problem

k
minimize Y ||z

i=1
subject to Az = b,
where
7l
€T =
o

This problem is equivalent to

k
minimize Y z;
i=1

subject to Ax

which in turn is equivalent to

k
minimize >z
i=1
subject to Ax = b,
(zi,xz)eci, 1=1,...

where all C; are of the quadratic type, i.e.

Ci = {(zi,xi) Doz > HzZH}

|z < =, i=1,...

(9.16)

(9.17)

(9.18)

46 CHAPTER 9. MODELLING

The dual problem corresponding to (9.18) is

maximize by
subject to ATy +s = g
t; = 1, i=1,...,k (9-19)
(ti,si)eci, i=1,...,k
where
sl
s =
sk
This problem is equivalent to
maximize by
subject to ATy Jg s = ¢ (9.20)
s, < 1, i=1,....k

Please note that in this case the dual problem can be reduced to an “ordinary” convex quadratically
constrained optimization problem due to the special structure of the primal problem. In some cases
it turns out that it is much better to solve the dual problem (9.19) rather than the primal problem
(9.18).

9.3.3.3 Modelling polynomial terms using conic optimization

Generally an arbitrary polynomial term of the form

faf

cannot be represented with conic quadratic constraints, however in the following we will demonstrate
some special cases where it is possible.
A particular simple polynomial term is the reciprocal, i.e.

- .

Now, a constraint of the form

SE
IN
<

where it is required that z > 0 is equivalent to
1<zyand x>0

which in turn is equivalent to

\/ia

2zy.

z

22

IA

The last formulation is a conic constraint plus a simple linear equality.

9.3. CONIC OPTIMIZATION 47

E.g., consider the problem

minimize T

subject to) <L
j=1"

IA
o

x>0,
where it is assumed that f; > 0 and b > 0. This problem is equivalent to

T

minimize cx
n
subject to > fjz; = b,
=t 9.21
Uj = \/i j:l,...,n, ()
vjz < 2zjz;, j=1,...,n,
z,z >0,

because
2 — . .
vj =2 < 2z;m;

implies that
—Szjand Z—JSZszJ:b
Zj =Y i3

The problem (9.21) is a conic quadratic optimization problem having n 3-dimensional rotated
quadratic cones.
The next example is the constraint
Vo=t

z > 0,

where both t and x are variables. This set is identical to the set

2 < 2zz,
z = 0.5, (9.22)
z,z, > 0.

Occasionally, when modeling the market impact term in portfolio optimization, the polynomial
3 . . oy
term z2 occurs. Therefore, consider the set defined by the inequalities
1.5
T < t,
0 < (9.23)
We will exploit that 2'® = 2%//z . First define the set

.132

s,

2st,

<
> 0.

(9.24)

Now, if we can make sure that
2s <V,

then we have the desired result since this implies that

[

1.5

xrt = <

ol

Bk
IS [

48 CHAPTER 9. MODELLING

Please note that s can be chosen freely and that \/x = 2s is a valid choice.

Let
2 < 2st,
w? < 2or,
r = v
’ 2
s = w, (9.25)
ro= 1
s,t,v,r > 0,
then
2 = w2
< 2or
— v
— 1
J— X
= Z
Moreover,
x? < 2st,
< 2%
leading to the conclusion that
ot <t

(9.25) is a conic reformulation which is equivalent to (9.23). Please note that the z > 0 constraint
does not appear explicitly in (9.24) and (9.25), but implicitly since z = v > 0.

As we shall see next, any polynomial term of the form z9 where g is a positive rational number
can be represented using conic quadratic constraints [2, pp. 12-13], [11].

9.3.3.4 Optimization with rational polynomials

We next demonstrate how to model convex polynomial constraints of the form /9 < ¢ (where p and
q are both positive integers) as a set of rotated quadratic cone constraints.
Following Ben-Tal et al. [L1, p. 105] we use an intermediate result, namely that the set

1 -1 i
{seR, yeR: |s< (22 Y1y ya)/?}

is convex and can be represented as a set of rotated quadratic cone constraints. To see this, we rewrite
the condition (exemplified for [= 3),

1/8
S< (22 g1 wsvawsvsourus) (9.26)
as
$*< (2% Y1 y2ysya-Ys Yo Yt - Us) (9.27)
since all y; > 0. We next introduce [levels of auxiliary variables and (rotated cone) constraints
Yi < 2012, Yia < 2ysyss yis < 29sY, Yia < 2u7ds, (9.28)
o1 < 2ynviz, Yao < 2y139a, (9.29)
and finally
82 S 2y21y22. (930)

By simple substitution we see that (9.30) and (9.27) are equivalent, and since (9.30) involves only a set
of simple rotated conic constraints then the original constraint (9.26) can be represented using only
rotated conic constraints.

9.3. CONIC OPTIMIZATION 49

9.3.3.5 Convex increasing power functions

Using the intermediate result in section 9.3.3.4 we can include convex power functions with positive
rational powers, i.e., constraints of the form

aPl1<t, x>0
where p and ¢ are positive integers and p/q > 1. For example, consider the constraints
B3 <t xz>0.

We rewrite it as
z8 < x3t3, x>0

which in turn is equivalent to
2® < 2%yyp- - =y =1y = =ys = Y5 = =1 =271 ;>0
> Y192 Ys, T =Y =Y2=1Y3, y4_y5_y6_t> Yo = 1, Yyr =) €T,Y; =Y,

i.e., it can be represented as a set of rotated conic and linear constraints using the reformulation above.
For general p and ¢ we choose [as the smallest integer such that p < 2! and we construct the
problem as

QL < 2l2l71 S>> O
r = Yyiyz - - Yau, Z,Yi = U,

with the first 2! —p elements of y set to z, the next g elements set to ¢, and the product of the remaining
elements as 1/22" | ie.,

l l
ngacz*ptq, x>0 <— :cp/‘I§t7 x> 0.

9.3.3.6 Decreasing power functions

We can also include decreasing power functions with positive rational powers
zPli<t, >0

where p and q are positive integers. For example, consider
x /2 <t x>0,

or equivalently
1< x5t27 x>0,

which, in turn, can be rewritten as
$S< 2Py iy eys, s=2%2 y=-=ys=a, y=yr=ys=t, x4 >0.

For general p and g we choose [as the smallest integer such that p + ¢ < 2! and we construct the

problem as
l
s <wyya-oya, v >0,

with s = 2/2 and the first p elements of y set to z, the next ¢ elements set to ¢, and the remaining
elements set to 1, i.e.,

1<aPtd, >0 — PU<t, 1 >0.

50 CHAPTER 9. MODELLING

9.3.3.7 Minimizing general polynomials

Using the formulations in section 9.3.3.5 and section 9.3.3.6 it is straightforward to minimize general
polynomials. For example, we can minimize

J@) = 2* + 72
which is used in statistical matching. We first formulate the problem

minimize u—+v
subject to 2 <
72 <,

which is equivalent to the quadratic conic optimization problem

minimize w4+ v

subject to 2 < 2uw
5% < 2y21 922
Y31 < 2y192
Y30 < 2ysys

w=1
s =23/4
Yy =Y2=
Ys =v
ys =1

in the Variables ((E7U,U,w, $,Y1,Y2,Y3, y471/2171/22)-

9.3.3.8 Further reading

If you want to learn more about what can be modeled as a conic optimization problem we recommend
the references [2, 11, 10].

9.3.4 Potential pitfalls in conic optimization

While a linear optimization problem either has a bounded optimal solution or is infeasible, the conic
case is not as simple as that.

9.3.4.1 Non-attainment in the primal problem

Consider the example

minimize z
subject to 2yz > 2,
9.31
T = \/i, ()
y.z = 0,

which corresponds to the problem

minimize %

subject to y > 0.
Clearly, the optimal objective value is zero but it is never attained because implicitly we assume that

the optimal y is finite.

(9.32)

9.3. CONIC OPTIMIZATION 51

9.3.4.2 Non-attainment in the dual problem

Next, consider the example

minimize T4
subject to x3+z4 = 1,
T1 = 0,
2 - (9.33)
21y > a3,
€1,T2 Z 07
which has the optimal solution
27=0,25=1 25=0and 2} =1
implying that the optimal primal objective value is 1.
Now, the dual problem corresponding to (9.33) is
maximize Y3 + Y3
subject to ya2+s1 = 0,
Y3 +82 = 07
y1+s3 = 0, (934)
Y1 = 17
28189 > 5%,
s1,82 > 0.
Therefore,
y1 =1
and
sy =—1

This implies that
25783 > (s3)7 = 1

and hence s3 > 0. Given this fact we can conclude that

yi+tys = l—s;
< 1
implying that the optimal dual objective value is 1, however, this is never attained. Hence, no primal-
dual bounded optimal solution with zero duality gap exists. Of course it is possible to find a primal-dual
feasible solution such that the duality gap is close to zero, but then s} will be similarly large. This is
likely to make the problem (9.33) hard to solve.

An inspection of the problem (9.33) reveals the constraint x; = 0, which implies that x3 = 0. If
we either add the redundant constraint

:L‘3=O

to the problem (9.33) or eliminate z; and x3 from the problem it becomes easy to solve.

52 CHAPTER 9. MODELLING

9.4 Nonlinear convex optimization

MOSEK is capable of solving smooth (twice differentiable) convex nonlinear optimization problems of
the form

minimize f(x) +clz

subject to glx)+Ax —2¢ = 0,
lc S IC S UC7 (935)
r < T < u®,

where
e m is the number of constraints.
e n is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R™ is a vector of constraints or slack variables.
e ¢ € R” is the linear part objective function.
e A € R™*™ is the constraint matrix.
e [° € R™ is the lower limit on the activity for the constraints.
e u° € R™ is the upper limit on the activity for the constraints.
e [€ R™ is the lower limit on the activity for the variables.

e u” € R” is the upper limit on the activity for the variables.

f:R™ — R is a nonlinear function.
e g:R®™ — R™ is a nonlinear vector function.

This means that the ith constraint has the form

n

15 < gi(w) + Y aijw; < u
j=1

when the z{ variable has been eliminated.

The linear term Az is not included in g(z) since it can be handled much more efficiently as a
separate entity when optimizing.

The nonlinear functions f and g must be smooth in all x € [I*;u®]. Moreover, f(z) must be a
convex function and g;(z) must satisfy

I¢$=-00 = g;(x) isconvex,
uf =00 = g;(x) is concave,
—co<lf<uf <oo = gi(x)=0.

9.5. RECOMMENDATIONS 53

9.4.1 Duality

So far, we have not discussed what happens when MOSEK is used to solve a primal or dual infeasible
problem. In the following section these issues are addressed.

Similar to the linear case, MOSEK reports dual information in the general nonlinear case. Indeed
in this case the Lagrange function is defined by

L(x% x,y,s7,85,s7,8%) = f(z +clx+cf
—y" (Az + g(x) —)
—(s)" (@° —lc) — (s) " (u® —2°)
—(s7) (@ = 1") = (s9)" (u* —).

and the dual problem is given by

M M C [C xr xT
maximize L(z° x,y,s7,85,s7,s0)

] C C C xT xT J—
subject to V(e oy L(2°, 2,y, 57,55, s7,85) = 0,
C C T xr

S1ySus Sy Sy 2 0.

which is equivalent to

maximize f(z) —y"g(z) — 2T (Vf (I)T*Vg(ﬂf)Ty)
+(()"s (v Vsp + (%) sf — (u™)"'s +cf
subject to Vi)t + ATy + Vg(x) Y+ st — st = ¢ (9.36)
-y + 87 — s = 0,
87,585,857, 85 > 0.

9.5 Recommendations

Often an optimization problem can be formulated in several different ways, and the exact formulation
used may have a significant impact on the solution time and the quality of the solution. In some cases
the difference between a “good” and a “bad” formulation means the ability to solve the problem or
not.

Below is a list of several issues that you should be aware of when developing a good formulation.

1. Sparsity is very important. The constraint matrix A is assumed to be a sparse matrix, where
sparse means that it contains many zeros (typically less than 10% non-zeros). Normally, when
A is sparser, less memory is required to store the problem and it can be solved faster.

2. Avoid large bounds as these can introduce all sorts of numerical problems. Assume that a variable

2; has the bounds
0.0 < z; < 1.0el6.

The number 1.0e16 is large and it is very likely that the constraint z; < 1.0el6 is non-binding
at optimum, and therefore that the bound 1.0e16 will not cause problems. Unfortunately, this is
a naive assumption because the bound 1.0el6 may actually affect the presolve, the scaling, the
computation of the dual objective value, etc. In this case the constraint x; > 0 is likely to be
sufficient, i.e. 1.0el6 is just a way of representing infinity.

3. Avoid large penalty terms in the objective, i.e. do not have large terms in the linear part of the
objective function. They will most likely cause numerical problems.

54 CHAPTER 9. MODELLING

4. On a computer all computations are performed in finite precision, which implies that
1=1+4¢

where ¢ is about 1076, This means that the results of all computations are truncated and
therefore causing rounding errors. The upshot is that very small numbers and very large numbers
should be avoided, e.g. it is recommended that all elements in A either are zero or belong to the
interval [107%,10°]. The same holds for the bounds and the linear objective.

5. Decreasing the number of variables or constraints does not necessarily make it easier to solve
a problem. In certain cases, i.e. in nonlinear optimization, it may be a good idea to introduce
more constraints and variables if it makes the model separable. Furthermore, a big but sparse
problem may be advantageous compared to a smaller but denser problem.

6. Try to avoid linearly dependent rows among the linear constraints. Network flow problems
and multi-commodity network flow problems, for example, often contain one or more linearly
dependent rows.

7. Finally, it is recommended to consult some of the papers about preprocessing to get some ideas

about efficient formulations. See e.g. [3, 4, 14, 15].

9.5.1 Avoid near infeasible models

Consider the linear optimization problem

minimize
subject to T4y < 10710 4 q,
_6 (9.37)
1.0edx + 2.0edy > 107°,
z,y > 0.
Clearly, the problem is feasible for a = 0. However, for a« = —1.0e — 10 the problem is infeasible.

This implies that an insignificant change in the right side of the constraints makes the problem status
switch from feasible to infeasible. Such a model should be avoided.

9.6 Examples continued

9.6.1 The absolute value

Assume that we have a constraint for the form
IfTx+gl<b (9.38)

where x € R™ is a vector of variables, and f € R™ and g,b € R are constants.
It is easy to verify that the constraint (9.38) is equivalent to

~b< ffe+g<b (9.39)

which is a set of ordinary linear inequality constraints.

9.6. EXAMPLES CONTINUED 55

Please note that equalities involving an absolute value such as
lz| =1

cannot be formulated as a linear or even a as convex nonlinear optimization problem. It requires
integer constraints.

9.6.2 The Markowitz portfolio model

In this section we will show how to model several versions of the Markowitz portfolio model using conic
optimization.

The Markowitz portfolio model deals with the problem of selecting a portfolio of assets, i.e. stocks,
bonds, etc. The goal is to find a portfolio such that for a given return the risk is minimized. The
assumptions are:

e A portfolio can consist of n traded assets numbered 1,2, ... held over a period of time.
e w is the initial holding of asset j where 3_, w{ > 0.

e r; is the return on asset j and is assumed to be a random variable. has a known mean 7 and
covariance X.

The variable z; denotes the amount of asset j traded in the given period of time and has the following
meaning:

o If x; > 0, then the amount of asset j is increased (by purchasing).
e If 2; < 0, then the amount of asset j is decreased (by selling).
The model deals with two central quantities:

e Expected return:
ElrT(w® + 2)] = 77 (w° + z).

e Variance (Risk):
V[rT(w® + 2)] = (w® + 2)TS(w® +).

By definition ¥ is positive semi-definite and

Std. dev. =

where L is any matrix such that
S=LL"

A low rank of ¥ is advantageous from a computational point of view. A valid L can always be computed
as the Cholesky factorization of X.

56 CHAPTER 9. MODELLING

9.6.2.1 Minimizing variance for a given return

In our first model we want to minimize the variance while selecting a portfolio with a specified expected
target return ¢. Additionally, the portfolio must satisfy the budget (self-financing) constraint asserting
that the total amount of assets sold must equal the total amount of assets purchased. This is expressed

in the model
minimize ~ V[rT (w® + z)]

subject to E[rT(w®+2)] = ¢, (9.40)
eTx = 0,
where e := (1,...,1)T. Using the definitions above this may be formulated as a quadratic optimization
problem:
minimize (w® +)78 (w® + z)
subject to 7T (w +) = ft, (9.41)
elx =

9.6.2.2 Conic quadratic reformulation

An equivalent conic quadratic reformulation is given by:

minimize f
subject to X2(w’+2)—g = 0,
(w® + 2z =t (9.42)
el = 0,
f=llgll-

Here we minimize the standard deviation instead of the variance. Please note that £2 can be replaced
by any matrix L where ¥ = LL”. A low rank L is computationally advantageous.
9.6.2.3 Transaction costs with market impact term

We will now expand our model to include transaction costs as a fraction of the traded volume. [, pp.
445-475] argues that transaction costs can be modeled as follows

bid trade vol
commission + —— — spread + 6 w, (9.43)
ask daily volume

and that it is important to incorporate these into the model.
In the following we deal with the last of these terms denoted the market impact term. If you sell
(buy) a lot of assets the price is likely to go down (up). This can be captured in the market impact

term
0 trade volume 2]
——— = mj\/ |z
daily volume J I
The 6 and “daily volume” have to be estimated in some way, i.e.

0
M= v/daily volume

9.6. EXAMPLES CONTINUED

o7

has to be estimated. The market impact term gives the cost as a fraction of daily traded volume (|z;]).
Therefore, the total cost when trading an amount z; of asset j is given by

This leads us to the model:
minimize
subject to

Now, defining the variable transformation

we obtain
minimize
subject to

As shown in Section 9.3.3.3 the set

can be modeled by

q5,55,Y5,Vj,4;

9.6.2.4 Further reading

For further reading please see |

] in particular, and [

1
|| (mylz;]?2).

f
Z%(wo + ’I) -9 = 07
=T (00
7 (w? +) =
elr+ely = 0, (9-44)
1
|lzj|(mylasl2) <y,
=gl
Y; = myy;
o
ZE(WO + ‘T) -9 = 01
=T (210
7 (w? + x) = t
’ 4
efo+mTy = 0, (9.45)
Jaj /2 < U
=gl
5 < g
X5 < Zjy
—l'% < 25, B
zj2 < 2s;¥;,
2 < .
US04 (9.46)
Zj = ’Uj,
Sj = 116]‘7
g = 3
> 0.
] and [1], which also contain relevant material.

58

CHAPTER 9. MODELLING

Chapter 10

The optimizers for continuous
problems

The most essential part of MOSEK is the optimizers. Each optimizer is designed to solve a particular
class of problems i.e. linear, conic, or general nonlinear problems. The purpose of the present chapter
is to discuss which optimizers are available for the continuous problem classes and how the performance
of an optimizer can be tuned, if needed.

This chapter deals with the optimizers for continuous problems with no integer variables.

10.1 How an optimizer works

When the optimizer is called, it roughly performs the following steps:

Presolve: Preprocessing to reduce the size of the problem.

Dualizer: Choosing whether to solve the primal or the dual form of the problem.
Scaling: Scaling the problem for better numerical stability.

Optimize: Solve the problem using selected method.

The first three preprocessing steps are transparent to the user, but useful to know about for tuning
purposes. In general, the purpose of the preprocessing steps is to make the actual optimization more
efficient and robust.

10.1.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

e remove redundant constraints,
e climinate fixed variables,

e remove linear dependencies,

59

60 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

e substitute out free variables, and
e reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [3, 4].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This
is done by setting the parameter MSK_IPAR_PRESOLVE USE to MSK_PRESOLVE _MODE_OFF.

The two most time-consuming steps of the presolve are

e the eliminator, and
e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

10.1.1.1 Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

AV

)
, T

Zj Lj
Yy 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile.

If the eliminator consumes too much time or memory compared to the reduction in problem size
gained it may be disabled. This can be done with the parameter MSK_TPAR_PRESOLVE _ELIMINATOR_USE
to MSK_OFF.

10.1.1.2 Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equal-
ities. For instance, the three linear equalities

T+ T +23 = 1,
xr1 + 05502 = 05,
0520 +23 = 0.5

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase.

It is best practise to build models without linear dependencies. If the linear dependencies are
removed at the modeling stage, the linear dependency check can safely be disabled by setting the
parameter MSK_TIPAR_PRESOLVE_LINDEP USE to MSK_OFF.

10.1. HOW AN OPTIMIZER WORKS 61

10.1.2 Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is most efficient to solve the primal or dual
problem. The form (primal or dual) solved is displayed in the MOSEK log. Should the internal
heuristics not choose the most efficient form of the problem it may be worthwhile to set the dualizer
manually by setting the parameters:

e MSK_IPAR_INTPNT_SOLVE_FORM: In case of the interior-point optimizer.
e MSK_IPAR_SIM_SOLVE_FORM: In case of the simplex optimizer.

Note that currently only linear problems may be dualized.

10.1.3 Scaling

Problems containing data with large and/or small coefficients, say 1.0e + 9 or 1.0e — 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate calculations. Since computers work in finite precision, extreme
coefficients should be avoided. In general, data around the same “order of magnitude” is preferred,
and we will refer to a problem, satisfying this loose property, as being well-scaled. If the problem is
not well scaled, MOSEK will try to scale (multiply) constraints and variables by suitable constants.
MOSEK solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is
important to be aware that the optimizer terminates when the termination criterion is met on the
scaled problem, therefore significant primal or dual infeasibilities may occur after unscaling for badly
scaled problems. The best solution to this problem is to reformulate it, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and
simplex optimizers can be controlled with the parameters

MSK_IPAR_INTPNT_SCALING and MSK_IPAR_SIM_SCALING

respectively.

10.1.4 Using multiple CPU’s

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can
take advantage of multiple CPU’s.

By default MOSEK uses one thread to solve the problem, but the number of threads (and thereby
CPUs) employed can be changed by setting the parameter MSK_IPAR_INTPNT_NUM_THREADS This should
never exceed the number of CPU’s on the machine.

The speed-up obtained when using multiple CPUs is highly problem and hardware dependent, and
consequently, it is advisable to compare single threaded and multi threaded performance for the given
problem type to determine the optimal settings.

For small problems, using multiple threads will probably not be worthwhile.

62 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

10.2 Linear optimization

10.2.1 Optimizer selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternatives are simplex methods. The optimizer can be selected using the parameter
MSK_IPAR_OPTIMIZER.

10.2.2 The interior-point optimizer

The purpose of this section is to provide information about the algorithm employed in MOSEK interior-
point optimizer.

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization prob-
lems on standard form

minimize T
subject to Az = b, (10.1)
z > 0.

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then convert it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (10.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

Ax —br = 0,
ATy+s—cr = 0,

—cTe4+bTy—r = 0, (10.2)
z,s, 7T,k > 0

)

where y and s correspond to the dual variables in (10.1), and 7 and are two additional scalar variables.
Note that the homogeneous model (10.2) always has solution since

($7 y’ S’ T’ H) = (07 O’ O’ 07 O)
is a solution, although not a very interesting one.
Any solution

(x*vy*78*77*7/€*)

to the homogeneous model (10.2) satisfies
r;s; =0and 7°k" = 0.
Moreover, there is always a solution that has the property
T+ Kk*>0.

First, assume that 7 > 0. It follows that

Tz T+)T T ’ (10.3)

o O O o

*

*

*

*
IVl

10.2. LINEAR OPTIMIZATION 63

*
Yy s"
T*) Tx

This shows that :— is a primal optimal solution and () is a dual optimal solution; this is reported

as the optimal interior-point solution since
SC* * S*
(LE, Y, S) = <a y77 >
TN TR T
is a primal-dual optimal solution.
On other hand, if k* > 0 then

Ax* = 0,
ATy +s* = 0,
_ch* +bTy* — H*7 (104)
¥, s, 7 k* > 0.
This implies that at least one of
— 2" >0 (10.5)
or
bly* >0 (10.6)

is satisfied. If (10.5) is satisfied then x* is a certificate of dual infeasibility, whereas if (10.6) is satisfied
then y* is a certificate of dual infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information
required for a solution to the original problem is obtained. A solution to the homogeneous model can
be computed using a primal-dual interior-point algorithm [9].

10.2.2.1 Interior-point termination criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact
optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination
criterion has to be employed.

In every iteration, k, of the interior-point algorithm a trial solution

(‘/'Uk:7yk) Sk7Tk7Hk)

to homogeneous model is generated where
{,Ck,Sk,Tk,lik > 0.

Whenever the trial solution satisfies the criterion

ok
|z -8l < 1o,
|47 + 25 e < catt+lel), and (10.7)
. :Ek Tsk Tkl'{‘ CTQZk T, k CT:Ek
mln(()(rk; | _ng) < egmax(l, —F),

the interior-point optimizer is terminated and
(=%, y*, ")
-k

is reported as the primal-dual optimal solution. The interpretation of (10.7) is that the optimizer is
terminated if

64 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Tolerance Parameter name

Ep MSK_DPAR_INTPNT_TOL_PFEAS
€d MSK_DPAR_INTPNT_TOL_DFEAS
Eg MSK_DPAR_INTPNT_TOL_REL_GAP
&; MSK_DPAR_INTPNT_TOL_INFEAS

Table 10.1: Parameters employed in termination criterion.

. f—: is approximately primal feasible,

° (ﬁ—i, i—’;) is approximately dual feasible, and

e the duality gap is almost zero.

On the other hand, if the trial solution satisfies

D S L T
g;ict x> max([o] 1) | Az H (10.8)

then the problem is declared dual infeasible and z* is reported as a certificate of dual infeasibility.
The motivation for this stopping criterion is as follows: First assume that HAaij = 0; then z¥ is an
exact certificate of dual infeasibility. Next assume that this is not the case, i.e.

|Az*|| > 0,

and define
max(L, |jb])a*

=&
" llAE [le]

It is easy to verify that
|AZ|| = g; and — Tz > 1,

which shows Z is an approximate certificate dual infeasibility where ¢; controls the quality of the
approximation. A smaller value means a better approximation.
Finally, if
EibTyk >

11l T ko ok
(L. 1) |ATy* + 5| (10.9)
then y* is reported as a certificate of primal infeasibility.
It is possible to adjust the tolerances €, €4, €4 and €; using parameters; see table 10.1 for details.
The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (10.7) reveals that quality of the
solution is dependent on ||b]| and ||c||; the smaller the norms are, the better the solution accuracy.
The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [9]. This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in
most cases all the tolerances, €,, €4 and €4, has to be relaxed together to achieve an effect.

10.2. LINEAR OPTIMIZATION 65

The basis identification discussed in section 10.2.2.2 requires an optimal solution to work well;
hence basis identification should turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually is not
worthwhile.

10.2.2.2 Basis identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a
unique primal and dual optimal solution. Therefore, the interior-point optimizer has an optional
post-processing step that computes an optimal basic solution starting from the optimal interior-point
solution. More information about the basis identification procedure may be found in [6].

Please note that a basic solution is often more accurate than an interior-point solution.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

e MSK_IPAR_INTPNT_BASIS,
e MSK_IPAR BI_IGNORE_MAX_ITER, and
e MSK_TPAR BI_IGNORE_NUM_ERROR

controls when basis identification is performed.

10.2.2.3 The interior-point log

Below is a typical log output from the interior-point optimizer presented:

Optimizer - threads : 1

Optimizer - solved problem : the dual

Optimizer - constraints : 2 variables : 6
Factor - setup time : 0.04 order time : 0.00
Factor - GP order used : no GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - offending columns : 0 flops : 1.70e+001
ITE PFEAS DFEAS KAP/TAU POBJ DOBJ MU TIME

0 2.0e+002 2.9e+001 2.0e+002 -0.000000000e+000 -1.204741644e+003 2.0e+002 0.44

1 2.2e+001 3.1e+000 7.3e+002 -5.885951891e+003 -5.856764353e+003 2.2e+001 0.57

2 3.8e+000 5.4e-001 9.7e+001 -7.405187479e+003 -7.413054916e+003 3.8e+000 0.58

3 4.0e-002 5.7e-003 2.6e-001 -7.664507945e+003 -7.665313396e+003 4.0e-002 0.58

4 4.2e-006 6.0e-007 2.7e-005 -7.667999629e+003 -7.667999714e+003 4.2e-006 0.59

5 4.2e-010 6.0e-011 2.7e-009 -7.667999994e+003 -7.667999994e+003 4.2e-010 0.59

The first line displays the number of threads used by the optimizer and second line tells that the
optimizer choose to solve the dual problem rather the primal problem. The next line displays the
problem dimensions as seen by the optimizer, and the “Factor...” lines show various statistics. This
is followed by the iteration log.

Using the same notation as in section 10.2.2 the columns of the iteration log has the following
meaning;:

e ITE: Iteration index.

66 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

e PFEAS: HALEk — kaH. The numbers in this column should converge monotonically towards to
Z€ro.

e DFEAS: HATy’C + sk — CTkH. The numbers in this column should converge monotonically toward
to zero.

e KAP/TAU: k¥ /7F. If the numbers in this column converge toward zero then the problem has an
optimal solution. Otherwise if the numbers converge towards infinity, the problem is primal
or/and dual infeasible.

e POBJ: cT'z¥ /7%, An estimate for the primal objective value.
e DOBJ: bTy* /7%, An estimate for the dual objective value.

MU (xk)TSk-‘erhik

— . The numbers in this column should always converge monotonically to zero.

e TIME: Time spend since the optimization started.

10.2.3 The simplex based optimizer

An alternative to the interior-point optimizer is the simplex optimizer.

The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal
solution to reduce the solution time. Depending on the problem it may be faster or slower to use an
initial guess; see section 10.2.4 for a discussion.

MOSEK provides both a primal and a dual variant of the simplex optimizer — we will return to
this later.

10.2.3.1 Simplex termination criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see (9.1) and (9.2) for a definition
of the primal and dual problem. Due the fact that to computations are performed in finite pre-
cision MOSEK allows violation of primal and dual feasibility within certain tolerances. The user
can control the allowed primal and dual infeasibility with the parameters MSK_DPAR _BASIS_TOL_X and
MSK_DPAR _BASIS_TOL_S.

10.2.3.2 Starting from an existing solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a hot-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will hot-start automatically.

Setting the parameter MSK_TPAR_OPTIMIZER to MSK_OPTIMIZER FREE SIMPLEX instructs MOSEK to
select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution.

By default MOSEK uses presolve when performing a hot-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

10.2. LINEAR OPTIMIZATION 67

10.2.3.3 Numerical difficulties in the simplex optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK counts a “numerical unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are implemented to avoid long sequences
where the optimizer tries to recover from an unstable situation.

Set-backs are, for example, repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled;
in such a situation try to reformulate into a better scaled problem. Then, if a lot of set-backs still
occur, trying one or more of the following suggestions may be worthwhile:

e Raise tolerances for allowed primal or dual feasibility: Hence, increase the value of

— MSK_DPAR BASIS_TOL X, and
— MSK_DPAR_BASIS_TOL_S.

e Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX ABS_TOL_PIV parameter.

e Switch optimizer: Try another optimizer.

e Switch off crash: Set both MSK_IPAR_SIM PRIMAL_CRASH and MSK_IPAR_SIM DUAL_CRASH to O.
e Experiment with other pricing strategies: Try different values for the parameters

— MSK_TIPAR_SIM PRIMAL_SELECTION and
— MSK_IPAR_SIM_DUAL_SELECTION.

e If you are using hot-starts, in rare cases switching off this feature may improve stability. This is
controlled by the MSK_IPAR_SIM HOTSTART parameter.

e Increase maximum set-backs allowed controlled by MSK_IPAR_SIM MAX NUM_SETBACKS.

e If the problem repeatedly becomes infeasible try switching off the special degeneracy handling.
See the parameter MSK_IPAR_SIM DEGEN for details.

10.2.4 The interior-point or the simplex optimizer?

Given a linear optimization problem, which optimizer is the best: The primal simplex, the dual simplex
or the interior-point optimizer?

It is impossible to provide a general answer to this question, however, the interior-point optimizer
behaves more predictably — it tends to use between 20 and 100 iterations, almost independently of
problem size — but cannot perform hot-start, while simplex can take advantage of an initial solution,
but is less predictable for cold-start. The interior-point optimizer is used by default.

68 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

10.2.5 The primal or the dual simplex variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, makes it faster on average than the primal
simplex optimizer. Still, it depends much on the problem structure and size.

Setting the MSK_TIPAR_OPTIMIZER parameter to MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK to
choose which simplex optimizer to use automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, you should
try all the optimizers.

10.3 Linear network optimization

10.3.1 Network flow problems

MOSEK includes a network simplex solver which, on avarage, solves network problems 10 to 100 times
faster than the standard simplex optimizers.
To use the network simplex optimizer, do the following:

e Input the network flow problem as an ordinary linear optimization problem.
e Set the parameters

— MSK_TIPAR_SIM NETWORK DETECT to 0, and
— MSK_IPAR_OPTIMIZER to MSK_OPTIMIZER FREE_SIMPLEX.

MOSEK will automatically detect the network structure and apply the specialized simplex optimizer.

10.3.2 Embedded network problems

Often problems contains both large parts with network structure and some non-network constraints
or variables — such problems are said to have embedded network structure.

If the procedure described in section 10.3.1 is applied, MOSEK will attemt to exploit this structure
to speed up the optimization.

This is done heuristically by detecting the largest network embedded in the problem, solving this
subproblem using the network simplex optimizer, and using the solution to hot-start a normal simplex
optimizer.

The MSK_IPAR_SIM NETWORK_DETECT parameter defines how large a percentage of the problem should
be a network before the specialized solver is applied. In general, it is recommended to use the network
optimizer only on problems containing a substantial embedded network.

If MOSEK only finds limited network structure in a problem, consider trying to switch off presolve
MSK_IPAR_PRESOLVE_USE and scaling MSK_IPAR_SIM_SCALING, since in rare cases it might disturb the
network heuristic.

10.4. CONIC OPTIMIZATION 69

Parameter name Purpose

MSK_DPAR_INTPNT_CO_TOL_PFEAS Controls primal feasibility
MSK_DPAR_INTPNT_CO_TOL_DFEAS Controls dual feasibility
MSK_DPAR_INTPNT_CO_TOL_REL_GAP Controls relative gap

MSK_DPAR_INTPNT_TOL_INFEAS Controls when the problem is declared infeasible
MSK_DPAR_INTPNT_CO_TOL MU RED Controls when the complementarity is reduced enough

Table 10.2: Parameters employed in termination criterion.

10.4 Conic optimization

10.4.1 The interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed
description of the algorithm, please see [5].

10.4.1.1 Interior-point termination criteria

The parameters controlling when the conic interior-point optimizer terminates are shown in Table 10.2.

10.5 Nonlinear convex optimization

10.5.1 The interior-point optimizer

For quadratic, quadratically constrained, and general convex optimization problems an interior-point
type optimizer is available. The interior-point optimizer is an implementation of the homogeneous and
self-dual algorithm. For a detailed description of the algorithm, please see [7, 8].

10.5.1.1 The convexity requirement

Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK test this
requirement before optimizing. Specifying a non-convex problem results in an error message.
The following parameters are available to control the convexity check:

e MSK_IPAR_CHECK_CONVEXITY: Turn convexity check on/off.
e MSK_DPAR_CHECK_CONVEXITY_REL_TOL: Tolerance for convexity check.

e MSK_TPAR LOG_CHECK_CONVEXITY: Turn on more log information for debugging.

10.5.1.2 The differentiabilty requirement

The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of
course implies care should be taken when solving problems involving non-differentiable functions.
For instance, the function

fla) =a?

70 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Parameter name Purpose

MSK_DPAR_INTPNT_NL_TOL_PFEAS Controls primal feasibility
MSK_DPAR_INTPNT_NL_TOL_DFEAS Controls dual feasibility

MSK _DPAR_INTPNT_NL_TOL_REL_GAP Controls relative gap

MSK_DPAR_INTPNT_TOL_INFEAS Controls when the problem is declared infeasible
MSK_DPAR_INTPNT_NL_TOL MU RED Controls when the complementarity is reduced enough

Table 10.3: Parameters employed in termination criteria.

is differentiable everywhere whereas the function

fl@)=Vz

is only diffrentiable for z > 0. In order to make sure that MOSEK evaulates the functions at points
where they are differentiable, the function domains must be defined by setting appropriate variable
bounds.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly
within the bounds. Hence, imposing the bound

x>0

in the case of 1/ is sufficient to guarantee that the function will only be evaluated in points where it
is differentiable.
However, if a function is differentiable on closed a range, specifying the variable bounds is not

sufficient. Consider the function
1 1
flx)=—+ . (10.10)

In this case the bounds
0<zx<1

will not guarantee that MOSEK only evalues the function for x between 0 and 1. To force MOSEK to
strictly satisfy both bounds on ranged variables set the parameter MSK_IPAR_INTPNT_STARTING_POINT
to MSK_STARTING_POINT_SATISFY_BOUNDS.

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe
ranged bounds strictly. For instance, (10.10) can be reformulated as follows

fx

S~—"
I

o O O
INIA I
KRR =Rl

10.5.1.3 Interior-point termination criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in
Table 10.3.

10.6. SOLVING PROBLEMS IN PARALLEL 71

10.6 Solving problems in parallel

If a computer has multiple CPUs, or has a CPU with multiple cores, it is possible for MOSEK to take
advantage of this to speed up solution times.

10.6.1 Thread safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time — accessing two separate tasks from two separate threads at the same time is safe.
Sharing an environment between threads is safe.

10.6.2 The parallelized interior-point optimizer

The interior-point optimizer is capable of using multiple CPUs or cores. This implies that whenever
the MOSEK interior-point optimizer solves an optimization problem, it will try to divide the work so
that each CPU gets a share of the work. The user decides how many CPUs MOSEK should exploit.

It is not always possible to divide the work equally, and often parts of the computations and the
coordination of the work is processed sequentially, even if several CPUs are present. Therefore, the
speed-up obtained when using multiple CPUs is highly problem dependent. However, as a rule of
thumb, if the problem solves very quickly, i.e. in less than 60 seconds, it is not advantageous to use
the parallel option.

The MSK_IPAR_INTPNT_NUM_THREADS parameter sets the number of threads (and therefore the num-
ber of CPUs) that the interior point optimizer will use.

10.6.3 The concurrent optimizer

An alternative to the parallel interior-point optimizer is the concurrent optimizer. The idea of the
concurrent optimizer is to run multiple optimizers on the same problem concurrently, for instance,
it allows you to apply the interior-point and the dual simplex optimizers to a linear optimization
problem concurrently. The concurrent optimizer terminates when the first of the applied optimizers
has terminated successfully, and it reports the solution of the fastest optimizer. In that way a new
optimizer has been created which essentially performs as the fastest of the interior-point and the
dual simplex optimizers.Hence, the concurrent optimizer is the best one to use if there are multiple
optimizers available in MOSEK for the problem and you cannot say beforehand which one will be
faster.

Note in particular that any solution present in the task will also be used for hot-starting the simplex
algorithms. One possible scenario would therefore be running a hot-start dual simplex in parallel with
interior point, taking advantage of both the stability of the interior-point method and the ability of
the simplex method to use an initial solution.

By setting the

MSK_IPAR_OPTIMIZER
parameter to
MSK_OPTIMIZER_CONCURRENT

the concurrent optimizer chosen.
The number of optimizers used in parallel is determined by the

72 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Optimizer Associated Default

parameter priority
MSK_OPTIMIZER_INTPNT MSK_TPAR_CONCURRENT_PRIORITY_INTPNT 4
MSK_OPTIMIZER_FREE_SIMPLEX MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX 3
MSK_OPTIMIZER PRIMAL SIMPLEX MSK_IPAR_CONCURRENT_PRIORITY PRIMAL_SIMPLEX 2
MSK_OPTIMIZER DUAL_SIMPLEX MSK_TPAR_CONCURRENT_PRIORITY DUAL_SIMPLEX 1

Table 10.4: Default priorities for optimizer selection in concurrent optimization.

MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS.

parameter. Moreover, the optimizers are selected according to a preassigned priority with optimizers
having the highest priority being selected first. The default priority for each optimizer is shown in
Table 10.6.3. For example, setting the MSK_TPAR_CONCURRENT_NUM_OPTIMIZERS parameter to 2 tells the
concurrent optimizer to the apply the two optimizers with highest priorities: In the default case that
means the interior-point optimizer and one of the simplex optimizers.

10.6.3.1 Concurrent optimization from the command line

The command line

mosek afiro.mps -d MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_CONCURRENT \
-d MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS 2

produces the following (edited) output:

Number of concurrent optimizers : 2

Optimizer selected for thread number O : interior-point (threads = 1)
Optimizer selected for thread number 1 : free simplex

Total number of threads required : 2

Thread number 1 (free simplex) terminated first.

Concurrent optimizer terminated. CPU Time: 0.03. Real Time: 0.00.

As indicated in the log information, the interior-point and the free simplex optimizers are employed
concurrently. However, only the output from the optimizer having the highest priority is printed to
the screen. In the example this is the interior-point optimizer.

The line

Total number of threads required : 2

10.7. UNDERSTANDING SOLUTION QUALITY 73

indicates the number of threads used. If the concurrent optimizer should be effective, this should be
lower than the number of CPUs.
In the above example the simplex optimizer finishes first as indicated in the log information.

10.7 Understanding solution quality

MOSEK will, in general, not produce an ezact optimal solution; for efficiency reasons computations are
performed in finite precision. This means that it is important to evaluate the quality of the reported
solution. To evaluate the solution quality inspect the following properties:

e The solution status reported by MOSEK.

e Primal feasibility: How much the solution violates the original constraints of the problem.
e Dual feasibility: How much the dual solution violates the constraints of the dual problem.
e Duality gap: The difference between the primal and dual objective values.

Ideally, the primal and dual solutions should only violate the constraints of their respective problem
slightly and the primal and dual objective values should be close. This should be evaluated in the
context of the problem: How good is the data precision in the problem, and how exact a solution is
required.

10.7.1 The solution summary
The solution summary is a small display generated by MOSEK that makes it easy to check the quality
of the solution.

10.7.1.1 The optimal case

The solution summary has the format

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal - objective: 5.5018458883e+03 eq. infeas.: 1.20e-12 max bound infeas.: 2.31le-14
Dual - objective: 5.5018458883e+03 eq. infeas.: 1.15e-14 max bound infeas.: 7.11e-15

i.e. it shows status information, objective values and quality measures for the primal and dual solutions.
Assumeing that we are solving a linear optimization problem and referring to the problems (9.1)
and (9.2), the interpretation of the solution summary is as follows:

e Problem status: The status of the problem.

e Solution status: The status of the solution.

Primal objective: The primal objective value.

Primal eq. infeas: ||[Az® — a¢||_.

Primal max bound infeas.: max(l¢ — z¢; z¢ — u®; I* — ;2% — u*;0).

74 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

e Dual objective: The dual objective value.

e Dual eq. infeas: ||fy + 57— 55, ATy + s7 — 5% — cHOC.

e Dual max bound infeas.: max(—s{; —sS; —s¥; —s7;0).

In the solution summary above the solution is classified as OPTIMAL, meaning that the solution
should be a good approximation to the true optimal solution. This seems very reasonable since the

primal and dual solutions only violate their respective constraints slightly. Moreover, the duality gap
is small, i.e. the primal and dual objective values are almost identical.

10.7.1.2 The primal infeasible case
For an infeasible problem the solution summary might look like this:

Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER

Primal - objective: 0.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00
Dual - objective: 1.0000000000e+02 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00

It is known that if the problem is primal infeasible then an infeasibility certificate exists, which is
a solution to the problem (9.3) having a positive objective value. Note that the primal solution plays
no role and only the dual solution is used to specify the certificate.

Therefore, in the primal infeasible case the solution summery should report how good the dual
solution is to the problem (9.3). The interpretation of the solution summary is as follows:

e Problem status: The status of the problem.

e Solution status: The status of the solution.

e Primal objective: Should be ignored.

e Primal eq. infeas: Should be ignored.

e Primal max bound infeas.: Should be ignored.

e Dual objective: (19)7s¢ — (u®)TsS + (1%)TsF — (u®)T'sZ.
e Dual eq. infeas: ||—y + 57— 55 ATy + s7 — 5% — OHOO.

C.
u?

e Dual max bound infeas.: max(—s{; —sS; —s7; —s7).
Please note that
e any information about the primal solution should be ignored.

e the dual objective value should be strictly positive if primal problem is minimization problem.
Otherwise it should be strictly negative.

e the bigger the ratio

(1) 55 — (u)s5 + (0%) "7 — (u) s

max(||—y + ¥ — s; ATy + s7 — s% — O||OO ,max(—sf; —s&; —s7; —s2))

is, the better the certificate is. The reason is that a certificate is a ray, and hence only the
direction is important. Therefore, in principle, the certificate should be normalized before using
it.

10.7. UNDERSTANDING SOLUTION QUALITY

Please see Section 12.2 for more information about certificates of infeasibility.

75

76

CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Chapter 11

The optimizer for mixed integer
problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integers. The integer optimizer available in MOSEK can solve integer optimization problems
involving

e linear,
e quadratic and
e conic

constraints. However, a problem is not allowed to have both conic constraints and quadratic objective
or constraints.

Readers unfamiliar with integer optimization are strongly recommended to consult some relevant
literature, e.g. the book [23] by Wolsey is a good introduction to integer optimization.

11.1 Some notation

In general, an integer optimization problem has the form

* T

z* = minimize c'x
subject to ¢ < Ax < uc,
o< . < (11.1)
S Z, Vj S j,

where J is an index set specifying which variables are integer-constrained. Frequently we talk about
the continuous relaxation of an integer optimization problem defined as

z = minimize Tz
subject to I° < Az < uf, (11.2)
o< oz < uf

7

78 CHAPTER 11. THE OPTIMIZER FOR MIXED INTEGER PROBLEMS

i.e. we ignore the constraint
;€ Z,VjeJ.

Moreover, let & be any feasible solution to (11.1) and define

z:=c'%.
It should be obvious that

2<z"<Z

holds. This is an important observation since if we assume that it is not possible to solve the mixed-
integer optimization problem within a reasonable time frame, but that a feasible solution can be found,
then the natural question is: How far is the obtained solution from the optimal solution? The answer
is that no feasible solution can have an objective value smaller than z, which implies that the obtained
solution is no further away from the optimum than z — 2.

11.2 An important fact about integer optimization problems

It is important to understand that in a worst-case scenario, the time required to solve integer optimiza-
tion problems grows exponentially with the size of the problem. For instance, assume that a problem
contains n binary variables, then the time required to solve the problem in the worst case may be
proportional to 2™. It is a simple exercise to verify that 2™ is huge even for moderate values of n.

In practice this implies that the focus should be on computing a near optimal solution quickly
rather than at locating an optimal solution.

11.3 How the integer optimizer works
The process of solving an integer optimization problem can be split in three phases:

Presolve: In this phase the optimizer tries to reduce the size of the problem using preprocessing
techniques. Moreover, it strengthens the continuous relaxation, if possible.

Heuristic: Using heuristics the optimizer tries to guess a good feasible solution.
Optimization: The optimal solution is located using a variant of the branch-and-cut method.
In some cases the integer optimizer may locate an optimal solution in the preprocessing stage or

conclude that the problem is infeasible. Therefore, the heuristic and optimization stages may never be
performed.

11.3.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve stage can
be turned off using the MSK_IPAR_MIO_PRESOLVE_USE parameter.

11.4. TERMINATION CRITERION 79

11.3.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using different heuristics:
e First a very simple rounding heuristic is employed.
e Next, if deemed worthwhile, the feasibility pump heuristic is used.

e Finally, if the two previous stages did not produce a good initial solution, more sophisticated
heuristics are used.

The following parameters can be used to control the effort made by the integer optimizer to find
an initial feasible solution.

e MSK_IPAR MIO HEURISTIC_LEVEL: Controls how sophisticated and computationally expensive a
heuristic to employ.

e MSK DPAR_MIO HEURISTIC_TIME: The minimum amount of time to spend in the heuristic search.

e MSK_TIPAR MIO_FEASPUMP_LEVEL: Controls how aggressively the feasibility pump heuristic is used.

11.3.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.

11.4 Termination criterion

In general, it is impossible to find an exact feasible and optimal solution to an integer optimization
problem in a reasonable amount of time, though in many practical cases it may be possible. There-
fore, the integer optimizer employs a relaxed feasibility and optimality criterion to determine when a
satisfactory solution is located.
A candidate solution, i.e. a solution to (11.2), is said to be an integer feasible solution if the
criterion
min(|z;| — [@;], [2;] — |z;|) < max(dy, d2|z;]) Vi€ T

is satisfied. Hence, such a solution is defined as a feasible solution to (11.1).
Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

Z — z < max(d3, 64 max(1,|z]))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. Please note that z is a valid lower bound determined by the integer optimizer
during the solution process, i.e.

z < z".

The lower bound z normally increases during the solution process.

The § tolerances can are specified using parameters — see Table 11.1. If an optimal solution cannot
be located within a reasonable time, it may be advantageous to employ a relaxed termination criterion
after some time. Whenever the integer optimizer locates an integer feasible solution and has spent at

80 CHAPTER 11. THE OPTIMIZER FOR MIXED INTEGER PROBLEMS

Tolerance Parameter name

01 MSK_DPAR_MIO_TOL_ABS_RELAX_INT
02 MSK_DPAR_MIO_TOL_REL_RELAX_INT
03 MSK_DPAR_MIO_TOL_ABS_GAP

04 MSK_DPAR_MIO_TOL_REL_GAP

05 MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
0 MSK_DPAR_MIO_NEAR_TOL_REL_GAP

Table 11.1: Integer optimizer tolerances.

Parameter name Delayed Explanation

MSK_IPAR_MIO_MAX_NUM_BRANCHES Yes Maximum number of branches allowed.

MSK_IPAR MIO_MAX _NUM _RELAXS Yes Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX _NUM_SOLUTIONS Yes Maximum number of feasible integer solutions allowed.

Table 11.2: Parameters affecting the termination of the integer optimizer.

least the number of seconds defined by the MSK_DPAR _MIO DISABLE_TERM_TIME parameter on solving
the problem, it will check whether the criterion

Z — z < max(ds, 0 max(1, [Z]))

is satisfied. If it is satisfied, the optimizer will report that the candidate solution is near optimal and
then terminate. All § tolerances can be adjusted using suitable parameters — see Table 11.1. In Table
11.2 some other parameters affecting the integer optimizer termination criterion are shown. Please
note that if the effect of a parameter is delayed, the associated termination criterion is applied only
after some time, specified by the MSK_DPAR_MIO DISABLE_TERM_TIME parameter.

11.5 How to speed up the solution process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time
are:

e Relax the termination criterion: In case the run time is not acceptable, the first thing to do is
to relax the termination criterion — see Section 11.4 for details.

e Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

e Improve the formulation: A mixed-integer optimization problem may be impossible to solve
in one form and quite easy in another form. However, it is beyond the scope of this manual
to discuss good formulations for mixed-integer problems. For discussions on this topic see for
example [23].

11.6. UNDERSTANDING SOLUTION QUALITY 81

11.6 Understanding solution quality

To determine the quality of the solution one should check the following:
e The solution status key returned by MOSEK.

e The optimality gap: A messure for how much the located solution can deviate from the optimal
solution to the problem.

e Feasibility. How much the solution violates the constraints of the problem.

The optimality gap is a measure for how close the solution is to the optimal solution. The optimality
gap is given by

€ = |(objective value of feasible solution) — (objective bound)].

The objective value of the solution is guarentted to be within e of the optimal solution.

The optimality gap can be retrived through the solution item MSK_DINF_MI0O_0BJ_ABS_GAP. Often it
is more meaningful to look at the optimality gap normalized with the magnitude of the solution. The
relative optimality gap is available in MSK_DINF_MI0_0BJ_REL_GAP.

11.6.1 Solutionsummary
After a call to the optimizer the solution summary might look like this:

Problem status : PRIMAL_FEASIBLE

Solution status : INTEGER_OPTIMAL

Primal - objective: 1.2015000000e+06 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00
cone infeas.: 0.00e+00 integer infeas.: 0.00e+00

The second line contains the solution status key. This shows how MOSEK classified the solution.
In this case it is INTEGER_.OPTIMAL, meaning that the solution is considered to be optimal within the
selected tolerances.

The third line contains information relating to the solution. The first number is the primal objective
function. The second and third number is the maximum infeasibility in the equality constraints and
bounds respectfully. The fourth and fifth number is the maximum infeasibility in the conic and integral
contraints. All the numbers relating to the feasibility of the solution should be small for the solution
to be valid.

82

CHAPTER 11.

THE OPTIMIZER FOR MIXED INTEGER PROBLEMS

Chapter 12

The analyzers

12.1 The problem analyzer

The problem analyzer prints a detailed survey of the model’s

e linear constraints and objective

quadratic constraints
e conic constraints

e variables

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing
special structures within the model that may be used to tune the optimizer’s performance or to identify
the causes of numerical difficulties.

The problem analyzer is run from the command line using the -anapro argument and produces
something similar to the following (this is the problemanalyzer’s survey of the aflow30a problem from
the MIPLIB 2003 collection, see Appendix J for more examples):

Analyzing the problem

Constraints Bounds Variables
upper bd: 421 ranged : all cont: 421
fixed : 58 bin : 421

Objective, min cx

range: min |c|: 0.00000 min |c|>0: 11.0000 max |c|: 500.000
distrib: lcl vars
0 421
[11, 100) 150
[100, 500] 271

83

84

Constraint matrix A has
479 rows (constraints)
842 columns (variables)

2091 (0.518449%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min A_i: 2 (0.23753})

distrib: A_i rows
2 421

[8, 15] 20

[16, 31] 30

[32, 34] 8

Column nonzeros, Alj
range: min Alj: 2 (0.417537%)

distrib: Alj cols
2 435
3 407

A nonzeros, A(ij)
range: min |A(ij)|: 1.00000

distrib: A(Lj) coeffs
[1, 10) 1670
[10, 100] 421

max A_i: 34 (4.038%)

rows%
87.89
4.18
6.26
1.67

max Alj:
colsY
51.66
48.34

accl
87.89
92.07
98.33
100.00

3 (0.626305%)
acch
51.66
100.00

max |A(ij)|: 100.000

CHAPTER 12. THE ANALYZERS

Constraint bounds, 1lb <= Ax <= ub

distrib: bl
0
[1, 10]

Variable bounds, 1lb <= x <= ub

distrib: bl
0

[1, 10)

[10, 100]

1bs

58

1bs
842

ubs
421
58

ubs

421
421

The survey is divided into six different sections, each described below. To keep the presentation
short with focus on key elements the analyzer generally attempts to display information on issues
relevant for the current model only: E.g., if the model does not have any conic constraints (this is the
case in the example above) or any integer variables, those parts of the analysis will not appear.

12.1.1 General characteristics

The first part of the survey consists of a brief summary of the model’s linear and quadratic constraints
(indexed by ¢) and variables (indexed by j). The summary is divided into three subsections:

Constraints

n—1

upper bd: The number of upper bounded constraints, Z ai;r; < ug

Jj=0

12.1. THE PROBLEM ANALYZER 85
n—1
lower bd: The number of lower bounded constraints, I§ < Z i T
=0

n—1
ranged : The number of ranged constraints, [< Z ai;x; < ug
j=0

n—1
fixed : The number of fixed constraints, [{ = Z i Tj = Uj
=0
free : The number of free constraints
Bounds

upper bd: The number of upper bounded variables, z; < uj

lower bd: The number of lower bounded variables, if < z;

ranged : The number of ranged variables, {7 < x; < uf
fixed : The number of fixed variables, If = x; = uj
free : The number of free variables

Variables

cont: The number of continuous variables, z; € R
bin : The number of binary variables, z; € {0,1}

int : The number of general integer variables, x; € Z

Only constraints, bounds and domains actually in the model will be reported on, cf. appendix J; if
all entities in a section turn out to be of the same kind, the number will be replaced by all for brevity.

12.1.2 Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the opti-
mization sense and the coefficients’ absolute value range and distribution. The number of 0 (zero)
coefficients is singled out (if any such variables are in the problem).

The range is displayed using three terms:

min |c|: The minimum absolute value among all coeffecients
min |c|>0: The minimum absolute value among the nonzero coefficients
max |cl|: The maximum absolute value among the coefficients
If some of these extrema turn out to be equal, the display is shortened accordingly:
e If min |c| is greater than zero, the min |c|>0 term is obsolete and will not be displayed

e If only one or two different coefficients occur this will be displayed using all and an explicit
listing of the coefficients

86 CHAPTER 12. THE ANALYZERS

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude
(with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each
line of the table is headed by an interval (half-open intervals including their lower bounds), and is
followed by the number of variables with their objective coefficient in this interval. Intervals with no
elements are skipped.

12.1.3 Linear constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint
matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coeflicients in
total, three sections provide further details on how the nonzero coefficients are distributed by row-wise
count (A_i), by column-wise count (Al|j), and by absolute value (1A(ij)|). Each section is headed
by a brief display of the distribution’s range (min and max), and for the row/column-wise counts the
corresponding densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros
per row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2).
For each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns
reported in this part of the survey relate to the linear terms only. If empty rows and/or columns are
found in the linear constraint matrix, the problem is analyzed further in order to determine if the
corresponding constraints have any quadratic terms or the corresponding variables are used in conic
or quadratic constraints; cf. the last two examples of appendix J.

The distribution of the absolute values, |A(ij) |, is displayed just as for the objective coefficients
described above.

12.1.4 Constraint and variable bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper
bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise,
displayed by orders of magnitude (with a ratio of 10).

12.1.5 Quadratic constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the
quadratic constraints, i.e. the nonzero row counts for the column vectors Qx. The table is similar to
the tables for the linear constraints’ nonzero row and column counts described in the survey’s third
part.

Note: Quadratic constraints may also have a linear part, but that will be included in the linear
constraints survey; this means that if a problem has one or more pure quadratic constraints, part three
of the survey will report an equal number of linear constraint rows with 0 (zero) nonzeros, cf. the last
example in appendix J. Likewise, variables that appear in quadratic terms only will be reported as
empty columns (0 nonzeros) in the linear constraint report.

12.2. ANALYZING INFEASIBLE PROBLEMS 87

12.1.6 Conic constraints

The last part of the survey summarizes the model’s conic constraints. For each of the two types of
cones, quadratic and rotated quadratic, the total number of cones are reported, and the distribution
of the cones’ dimensions are displayed using intervals. Cone dimensions of 2, 3, and 4 are singled out.

12.2 Analyzing infeasible problems

When developing and implementing a new optimization model, the first attempts will often be either
infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have
been left out.

In this chapter we will

e go over an example demonstrating how to locate infeasible constraints using the MOSEK infea-
sibility report tool,

e discuss in more general terms which properties that may cause infeasibilities, and

e present the more formal theory of infeasible and unbounded problems.

12.2.1 Example: Primal infeasibility

A problem is said to be primal infeasible if no solution exists that satisfy all the constraints of the
problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of trans-
portation between a number of production plants and stores: Each plant produces a fixed number of
goods, and each store has a fixed demand that must be met. Supply, demand and cost of transportation
per unit are given in figure 12.1.

The problem represented in figure 12.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500 (12.1)

exceeds the total supply
2200 = 200 + 1000 + 1000 (12.2)

If we denote the number of transported goods from plant ¢ to store j by x;;, the problem can be
formulated as the LP:

minimize T11 + 2[[;12 + 51}23 + 2{E24 + x31 + 21’33 + I3q
subject to T11 + 19 < 200,
T2z + Ty < 1000,
r31 + w33 + w34 < 1000,
T11 + 31 = 1100,
T12 = 200,
T3+ x33 = 500,
Tog + z34 = 9500,
(12.3)

Solving the problem (12.3) using MOSEK will result in a solution, a solution status and a problem
status. Among the log output from the execution of MOSEK on the above problem are the lines:

88 CHAPTER 12. THE ANALYZERS

Supply Demand
1100
200
200
1000
500
1000

500

Figure 12.1: Supply, demand and cost of transportation.

Basic solution
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER

The first line indicates that the problem status is primal infeasible. The second line says that a
certificate of the infeasibility was found. The certificate is returned in place of the solution to the
problem.

12.2.2 Locating the cause of primal infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and
therefore the question arises: “What is the cause of the infeasible status?” When trying to answer this
question, it is often advantageous to follow these steps:

e Remove the objective function. This does not change the infeasible status but simplifies the
problem, eliminating any possibility of problems related to the objective function.

e Consider whether your problem has some necessary conditions for feasibility and examine if these
are satisfied, e.g. total supply should be greater than or equal to total demand.

e Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely.
The MOSEK infeasibility report (Section 12.2.4) may assist you in finding the constraints causing the
infeasibility.

Possible ways of relaxing your problem include:

12.2. ANALYZING INFEASIBLE PROBLEMS 89

e Increasing (decreasing) upper (lower) bounds on variables and constraints.
e Removing suspected constraints from the problem.
Returning to the transportation example, we discover that removing the fifth constraint
x12 = 200 (12.4)

makes the problem feasible.

12.2.3 Locating the cause of dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded, mening
that feasbile solutions exists such that the objective tends towards infinity. An example of a dual
infeasible and primal unbounded problem is:

minimize T
subject to 1 < 5. (12.5)
To resolve a dual infeasibility the primal problem must be made more restricted by
e Adding upper or lower bounds on variables or constraints.
e Removing variables.
e Changing the objective.
12.2.3.1 A cautious note
The problem
minimize 0
< 3 <
subject to 0< zq, . (12.6)
xjng-‘rla .]:17"'7’”717
Ty, < —1

is clearly infeasible. Moreover, if any one of the constraints are dropped, then the problem becomes
feasible.

This illustrates the worst case scenario that all, or at least a significant portion, of the constraints
are involved in the infeasibility. Hence, it may not always be easy or possible to pinpoint a few
constraints which are causing the infeasibility.

12.2.4 The infeasibility report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be
turned on by setting the MSK_IPAR_INFEAS REPORT_AUTO to MSK_ON. This causes MOSEK to print a
report on variables and constraints involved in the infeasibility.

The MSK_IPAR_INFEAS REPORT_LEVEL parameter controls the amount of information presented in
the infeasibility report. The default value is 1.

90 CHAPTER 12. THE ANALYZERS

12.2.4.1 Example: Primal infeasibility

We will reuse the example (12.3) located in infeas.1lp:

\
\ An example of an infeasible linear problem.
\
minimize
obj: + 1 x11 + 2 x12 + 1 x13
+ 4 x21 + 2 x22 + 5 x23
+ 4 x31 + 1 x32 + 2 x33
st
s0: + x11 + x12 <= 200
sl: + x23 + x24 <= 1000
s2: + x31 +x33 + x34 <= 1000
dl: + x11 + x31 = 1100
d2: + x12 = 200
d3: + x23 + x33 = 500
d4: + x24 + x34 = 500
bounds
end

Using the command line
mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp
MOSEK produces the following infeasibility report
MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are

Index

8
10

Name
x33
x34

Lower bound
0.000000e+000
0.000000e+000

involved in the infeasibility.

Upper bound
NONE
NONE

Dual lower
1.000000e+000
1.000000e+000

Dual upper
0.000000e+000
0.000000e+000

The infeasibility report is divided into two sections where the first section shows which constraints that
are important for the infeasibility. In this case the important constraints are the ones named s0, s2, d1,

12.2. ANALYZING INFEASIBLE PROBLEMS 91

and d2. The values in the columns “Dual lower” and “Dual upper” are also useful, since a non-zero
dual lower value for a constraint implies that the lower bound on the constraint is important for the
infeasibility. Similarly, a non-zero dual upper value implies that the upper bound on the constraint is
important for the infeasibility.

It is also possible to obtain the infeasible subproblem. The command line

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp
produces the files rinfeas.bas.inf.1lp. In this case the content of the file rinfeas.bas.inf.1lp is

minimize

Obj: + CFIXVAR
st

s0:

s2:

di:

d2:
bounds

x11 free

x12 free

x13 free

x21 free

x22 free

x23 free

x31 free

x32 free

x24 free

CFIXVAR = 0e+000
end

x11 + x12 <= 200

x31 + x33 + x34 <= 1e+003
x11 + x31 = 1.1e+003

x12 200

+ 4+ + +

which is an optimization problem. This problem is identical to (12.3), except that the objective and
some of the constraints and bounds have been removed. Executing the command

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON rinfeas.bas.inf.lp

demonstrates that the reduced problem is primal infeasible. Since the reduced problem is usually
smaller than original problem, it should be easier to locate the cause of the infeasibility in this rather
than in the original (12.3).

12.2.4.2 Example: Dual infeasibility

The example problem

maximize - 200 yl1 - 1000 y2 - 1000 y3
- 1100 y4 - 200 y5 - 500 y6
- 500 y7
subject to
x11l: yi+y4 < 1
x12: yl+4yb < 2

92 CHAPTER 12. THE ANALYZERS

x23: y2+y6
x24: y2+y7
x31: y3+y4
x33: y3+y6
x44: y3+y7
bounds
yl1 <0
y2 <0
y3 <0
y4 free
y5 free
y6 free
y7 free
end

AN N AN N A
N RN O

is dual infeasible. This can be verified by proving that
yi=-1, y2=-1, y3=0, y4=1, y5=1

is a certificate of dual infeasibility. In this example the following infeasibility report is produced
(slightly edited):

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 x11 -1.000000e+00 NONE 1.000000e+00
4 x31 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound

3 y4 -1.000000e+00 -1.100000e+03 NONE NONE

Interior-point solution

Problem status : DUAL_INFEASIBLE

Solution status : DUAL_INFEASIBLE_CER

Primal - objective: 1.1000000000e+03 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00
Dual - objective: 0.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00

Let x* denote the reported primal solution. MOSEK states
e that the problem is dual infeasible,
e that the reported solution is a certificate of dual infeasibility, and
e that the infeasibility measure for x* is approximately zero.
Since it was an maximization problem, this implies that
cz* > 0. (12.7)

For a minimization problem this inequality would have been reversed — see (12.19).

From the infeasibility report we see that the variable y4, and the constraints x11 and x33 are
involved in the infeasibility since these appear with non-zero values in the “Activity” column

One possible strategy to “fix” the infeasibility is to modify the problem so that the certificate of
infeasibility becomes invalid. In this case we may do one the the following things:

12.2. ANALYZING INFEASIBLE PROBLEMS 93

e Put a lower bound in y3. This will directly invalidate the certificate of dual infeasibility.

e Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality (12.7) and thus the certificate.

e Put lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes dual feasible — the infeasibility may simply “move”, resulting in a new infeasibility.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in
the model that produced the problem.

12.2.5 Theory concerning infeasible problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to
produce an infeasibility report. In general, MOSEK solves the problem

minimize o+ cf
subject to ¢ < Ax < uf, (12.8)
r < T < u®
where the corresponding dual problem is
maximize (197 s¢ — (ue)T's
() sp = (u) sy + o
subject to ATy + 57 — s = ¢ (12.9)
—y + 57 — s, = 0,

C C T xr
87,855,857, 85 > 0.

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed
at zero (and thus will have no influence on the dual problem). For example

Ij =—00 = (s7); =0 (12.10)

12.2.6 The certificate of primal infeasibility
A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize (1)Ts§ — (u)TsS
)T sp — (")
subject to ATy + s7 — % = 0, (12.11)
—y + sj — s = 0,
sy, 85,87,s5 > 0.

Tk

with a positive objective value. That is, (s{*, sS*, s7*, st*) is a certificate of primal infeasibility if

(19T s — (u) s 4 (17)Ts7* — (u™)Ts%* >0 (12.12)
and
ATy + sp* — 5% = 0,
—y + 57" — s5F = 0, (12.13)

si*, 8o sy, syt > 0.

94 CHAPTER 12. THE ANALYZERS

The well-known Farkas Lemma tells us that (12.8) is infeasible if and only if a certificate of primal
infeasibility exists.
Let (s§*,sS*, s7*, s%*) be a certificate of primal infeasibility then

(si); >0 ((s5): > 0) (12.14)

implies that the lower (upper) bound on the ith constraint is important for the infeasibility. Further-
more,
(s7); >0 ((s37)i >0) (12.15)

implies that the lower (upper) bound on the jth variable is important for the infeasibility.

12.2.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize - c'x
subject to g" <
r <

e, (12.16)

INIA
<
8

X

with negative objective value, where we use the definitions

- |0, ¢ > —o0, e} 0, wuf <o,
ki '_{ — 0, otherwise, '_{ oo, otherwise, (12.17)

and

w . |0, I > —oo0, w0, uj<oo,
L { —00, otherwise, and 1 { 0o, otherwise. (12.18)

Stated differently, a certificate of dual infeasibility is any x* such that

~ e < 0,
l© < Azt < af, (12.19)
r < T < a*

The well-known Farkas Lemma tells us that (12.9) is infeasible if and only if a certificate of dual
infeasibility exists.
Note that if x* is a certificate of dual infeasibility then for any j such that

at # 0, (12.20)

variable j is involved in the dual infeasibility.

Chapter 13
Feasibility repair

Section 12.2.2 discusses how MOSEK treats infeasible problems. In particular, it is discussed which
information MOSEK returns when a problem is infeasible and how this information can be used to
pinpoint the elements causing the infeasibility.

In this section we will discuss a method for repairing a primal infeasible problem by relaxing the
constraints in a controlled way. For the sake of simplicity we discuss the method in the context
of linear optimization. MOSEK can also repair infeasibilities in quadratic and conic optimization
problems possibly having integer constrained variables. Please note that infeasibilities in nonlinear
optimization problems can’t be repaired using the method described below.

13.1 The main idea

Consider the linear optimization problem with m constraints and n variables

minimize e+l
subject to ¢ < Az < uc, (13.1)
= < x < "
which we assume is infeasible. Moreover, we assume that
(19 < (uf)s, Vi (13.2)
and
(1%); < (u*);, Vi (13.3)

because otherwise the problem (13.1) is trivially infeasible.

One way of making the problem feasible is to reduce the lower bounds and increase the upper
bounds. If the change is sufficiently large the problem becomes feasible.

One obvious question is: What is the smallest change to the bounds that will make the problem
feasible?

We associate a weight with each bound:

o wi € R™ (associated with [¢),

95

96 CHAPTER 13. FEASIBILITY REPAIR

o wi € R™ (associated with u°),
e wi € R” (associated with [7),
e w¥ € R™ (associated with u®),

Now, the problem

minimize P
subject to 1¢ < Az +vf — g <
< x4+ vf — vl < (13.4)
(wp) "o + (wi) T, + (i) Tof + (wi)Tog —p <0,

C C T xT
vy, v, vf, vy 2> 0

minimizes the weighted sum of changes to the bounds that makes the problem feasible. The variables
(v7)i, (v5)s, (v7); and (vg); are elasticity variables because they allow a constraint to be violated and
hence add some elasticity to the problem. For instance, the elasticity variable (vf); shows how much

the lower bound (1°); should be relaxed to make the problem feasible. Since p is minimized and
(wi) "o + (wi) vy + (i) Tof + (wi) oy — p <0, (13.5)

a large (wf); tends to imply that the elasticity variable (vf); will be small in an optimal solution.

The reader may want to verify that the problem (13.4) is always feasible given the assumptions
(13.2) and (13.3).

Please note that if a weight is negative then the resulting problem (13.4) is unbounded.

The weights wf, wS, w}, and w{ can be regarded as a costs (penalties) for violating the associated
constraints. Thus a higher weight implies that higher priority is given to the satisfaction of the
associated constraint.

The main idea can now be presented as follows. If you have an infeasible problem, then form
the problem (13.4) and optimize it. Next inspect the optimal solution (vf)*, (v5)*, (v7)*, and (v])*
to problem (13.4). This solution provides a suggested relaxation of the bounds that will make the
problem feasible.

Assume that p* is an optimal objective value to (13.4). An extension of the idea presented above
is to solve the problem

minimize Tz
subject to ¢ < Az 4+ vf — v, < uf
< T+ —vf < u (13.6)
(w) vf + (w§) g + (wi) of + (wi)Tvi —p < 0, '
p = 7,

c c xT x
Uy Uy U5 Uy Z 0

which minimizes the true objective while making sure that total weighted violations of the bounds is
minimal, i.e. equals to p*.

13.2 Feasibility repair in MOSEK

MOSEK includes functionality that help you construct the problem (13.4) simply by passing a set of
weights to MOSEK. This can be used for linear, quadratic, and conic optimization problems, possibly
having integer constrained variables.

13.2. FEASIBILITY REPAIR IN MOSEK 97

13.2.1 Usage of negative weights

As the problem (13.4) is presented it does not make sense to use negative weights since that makes
the problem unbounded. Therefore, if the value of a weight is negative MOSEK fixes the associated
elasticity variable to zero, e.g. if

(wp)i <0

then MOSEK imposes the bound

This implies that the lower bound on the ith constraint will not be violated. (Clearly, this could
also imply that the problem is infeasible so negative weight should be used with care). Associating a
negative weights with a constraint tells MOSEK that the constraint should not be relaxed.

13.2.2 Automatical naming

MOSEK can automatically create a new problem of the form (13.4) starting from an existing problem
by adding the elasticity variables and the extra constraints. Specificly, the variables vf, v, vf’, v, and
p are appended to existing variable vector x in their natural order. Moreover, the constraint (13.5) is
appended to the constraints.

The new variables and constraints are automatically given names as follows:

e The names of the variables (vf); and (vS); are constructed from the name of the ith constraint.
For instance, if the 9th original constraint is named c9, then by default (vf)g and (vS)g are given
the names LO*c9 and UP*c9 respectively. If necessary, the character “*” can be replaced by a
different string by changing the
MSK_SPAR_FEASREPATR _NAME_SEPARATOR
parameter.

e The additional constraints

" <z+uvo —vl<u®

are given names as follows. There is exactly one constraint per variable in the original problem,
and thus the ith of these constraints is named after the ¢th variable in the original problem.
For instance, if the first original variable is named “x0”, then the first of the above constraints
is named “MSK-x1”. If necessary, the prefix “MSK-” can be replaced by a different string by
changing the

MSK_SPAR_FEASREPAIR_NAME_PREFIX

parameter.

e The variable p is by default given the name WSUMVIOLVAR, and the constraint (13.5) is given the
name WSUMVIOLCON.

The substring “WSUMVIOL” can be replaced by a different string by changing the
MSK_SPAR_FEASREPAIR NAME _WSUMVIOL
parameter.

98 CHAPTER 13. FEASIBILITY REPAIR

13.2.3 An example

Consider the example linear optimization

minimize —10z; —9x9,
subject to 7/10z; + lzs < 630,
1/2x4 + 5/6x2 < 600,
1z + 2/3xzy < 708, (13.7)
1/10x, + 1/4zo < 135,
Iy,) Z 0.
9 > 650

This is an infeasible problem. Now suppose we wish to use MOSEK to suggest a modification to the
bounds that makes the problem feasible.
The command

mosek -d MSK_IPAR_FEASREPAIR_OPTIMIZE
MSK_FEASREPAIR_OPTIMIZE_PENALTY -d
MSK_IPAR_OPF_WRITE_SOLUTIONS MSK_ON feasrepair.lp
-infrepo minv.opf

writes the problem (13.4) and it’s solution to an OPF formatted file. In this case the file minv.opf.
The parameter

MSK_IPAR_FEASREPAIR_OPTIMIZE

controls whether the function returns the problem (13.4) or the problem (13.6). In the case
MSK_IPAR_FEASREPAIR_OPTIMIZE

is equal to

MSK_FEASREPAIR_OPTIMIZE_NONE

then (13.4) is returned, but the problem is not solved. For MSK_FEASREPAIR OPTIMIZE PENALTY the
problem (13.4) is returned and solved. Finally for MSK_FEASREPAIR OPTIMIZE COMBINED (13.6) is
returned and solved.

Chapter 14

Sensitivity analysis

14.1 Introduction

Given an optimization problem it is often useful to obtain information about how the optimal objective
value change when the problem parameters are perturbed. For instance assume that a bound represents
a capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence
it worthwhile to know what the value of additional capacity is. This is precisely the type of questions
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called
sensitivity analysis.

14.2 Restrictions

Currently, sensitivity analysis is only available for continuous linear optimization problems. Moreover,
MOSEK can only deal with perturbations in bounds or objective coefficients.

14.3 References

The book [12] discusses the classical sensitivity analysis in Chapter 10 whereas the book [19, Chapter
19] presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short
paper [21] to avoid some of the pitfalls associated with sensitivity analysis.

14.4 Sensitivity analysis for linear problems

14.4.1 The optimal objective value function

Assume that we are given the problem

Z(lca UC7 l.”c’ ury C) = minimize CTZ‘
subject to ¢ < Ax < (14.1)
T <z<u®

99

100 CHAPTER 14. SENSITIVITY ANALYSIS

and we want to know how the optimal objective value changes as [is perturbed. In order to answer
this question then define the perturbed problem for [as follows

fie(B) = minimize Tz
subject to ¢+ Be; < Ax < uf, (14.2)
7 <x<u®,
where e; is the ith column of the identity matrix. The function
Jie (B) (14.3)

shows the optimal objective value as a function of 8. Note that a change in 3 corresponds to a
perturbation in I§ and hence (14.3) shows the optimal objective value as a function of [¢.

It is possible to prove that the function (14.3) is a piecewise linear and convex function i.e. the
function may look like the illustration in Figure 14.1.

() ()

Figure 14.1: The optimal value function fic(3). Left: 8 = 0 is in the interior of linearity interval.
Right: =0 is a breakpoint.

Clearly, if the function fe (8) does not change much when S is changed, then we can conclude that
the optimal objective value is insensitive to changes in If. Therefore, we are interested in how fie (8)
changes for small changes in 3. Now define

fi:(0) (14.4)

to be the so called shadow price related to [{. The shadow price specifies how the objective value
changes for small changes in § around zero. Moreover, we are interested in the so called linearity
interval

B € [B1, Ba] (14.5)

for which

fie(B) = fi(0). (14.6)

To summarize the sensitivity analysis provides a shadow price and the linearity interval in which
the shadow price is constant.

The reader may have noticed that we are sloppy in the definition of the shadow price. The reason
is that the shadow price is not defined in the right example in Figure 14.1 because the function f;e (8)
is not differentiable for 3 = 0. However, in that case we can define a left and a right shadow price and
a left and a right linearity interval.

14.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 101

In the above discussion we only discussed changes in I{. We define the other optimal objective
value functions as follows

fue(B) = 2(%u®+ Be;, 1%, u”¢), i=1,...,m,

fiz(B) = 2(%us,1" + Bej,utc), j=1,....m, (14.7)
fu;(ﬂ) = z(I°,u" 1", u” + Bej,c), j=1,...,n, '
fe,; (B) z(1%us 1%, u®, c+ Pe;), j=1,...,n.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters u; etc.

14.4.1.1 Equality constraints

In MOSEK a constraint can be specified as either an equality constraints or a ranged constraints.
Suppose constraint i is an equality constraint. We then define the optimal value function for constraint
i by

Jee (B) = 2(I° + Bei, u® + Bei, 1", u”, c) (14.8)

Thus for a equality constraint the upper and lower bound (which are equal) are perturbed simultane-
ously. From the point of view of MOSEK sensitivity analysis a ranged constrain with [§ = u{ therefore
differs from an equality constraint.

14.4.2 The basis type sensitivity analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [12,
Chapter 10], is based on an optimal basic solution or equivalently on an optimal basis. This method
may produce misleading results [19, Chapter 19] but is computationally cheap. Therefore, and for
historical reasons this method is available in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution
which provides a partition of variables into basic and non-basic variables then the basis type sensitivity
analysis computes the linearity interval [51, 32| such that the basis remains optimal for the perturbed
problem. A shadow price associated with the linearity interval is also computed. However, it is well-
known that an optimal basic solution may not be unique and therefore the result depends on the
optimal basic solution employed in the sensitivity analysis. This implies that the computed interval is
only a subset of the largest interval for which the shadow price is constant. Furthermore, the optimal
objective value function might have a breakpoint for 5 = 0. In this case the basis type sensitivity
method will only provide a subset of either the left or the right linearity interval.

In summary the basis type sensitivity analysis is computationally cheap but does not provide
complete information. Hence, the results of the basis type sensitivity analysis should be used with
care.

14.4.3 The optimal partition type sensitivity analysis

Another method for computing the complete linearity interval is called the optimal partition type
sensitivity analysis. The main drawback to the optimal partition type sensitivity analysis is it is
computationally expensive. This type of sensitivity analysis is currently provided as an experimental
feature in MOSEK.

102 CHAPTER 14. SENSITIVITY ANALYSIS

Given optimal primal and dual solutions to (14.1) i.e. z* and ((sf)*, (s5)*, (s7)*, (s%)*) then the
optimal objective value is given by
2% = cTa*, (14.9)

The left and right shadow prices o1 and oy for [{ is given by the pair of optimization problems

01 = minimize BZTS?
subject to AT (s — s5) + 5] — st = 6 (14.10)
(L) (55) = (ue)T(s5) + (L) (s7) = (ua)T(s5) = =7, '
S5 80,8155y = 0
and
0y = maximize elTle
subject to AT (sf = s5) + 57 — s, = & (14.11)
(1) (s7) = (ue)(s) + ()" (s7) = (ua) " (s) = 2%, '

C C C xT
sy, 80,587,802 0.

The above two optimization problems makes it easy to interpret-ate the shadow price. Indeed assume
that ((sf)*, (s$)*, (s7)*, (s%)*) is an arbitrary optimal solution then it must hold

(s7); € [o1,02]. (14.12)

Next the linearity interval [31, f2] for I§ is computed by solving the two optimization problems

(/1 = minimize I6]
subject to ¢+ fBe; < Ax <
To—0f = 2 (14.13)
* <z<u®,
and
B2 = maximize I6)
subject to ¢4 fBe; < Ax < s,
To— oy = 2 (14.14)
" <x<au®.

The linearity intervals and shadow prices for uf, [, and uj can be computed in a similar way to
how it is computed for [{.
The left and right shadow price for ¢; denoted o1 and o2 respectively is given by the pair optimiza-

tion problems
T

01 = minimize €5 x
: c < < ¢
subject to 1€+ fBe; < /lef = U (14.15)
cx = z,
F<z< u”
and
02 = maximize e?x
B c < < ¢
subject to 1° + fe; Z%Z s Z (14.16)

F<zr< u

8

14.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 103

Once again the above two optimization problems makes it easy to interpret-ate the shadow prices.
Indeed assume that z* is an arbitrary primal optimal solution then it must hold

a:;‘ € o1, 02]. (14.17)

The linearity interval [y, B2] for a ¢; is computed as follows

$/1 = minimize p
subject to AT (sf —) + 57 — s = c+fej, (14.18)
(1)7(59) = (we) T (%) + ()T () — ()T (s5) ~ B < =, |
7,85, 87,88 >0
and
(B2 = maximize
subject to AT (s¢ — s2) + s — 52 = ol (1409)
(L) () = (ue) " (s5) + (1) T (57) = (uz)"(s7) =028 < 27, '
87,855,870, 85 > 0.

14.4.4 An example

As an example we will use the following transportation problem. Consider the problem of minimizing
the transportation cost between a number of production plants and stores. Each plant supplies a
number of goods and each store has a given demand that must be met. Supply, demand and cost of
transportation per unit are shown in Figure 14.2.

If we denote the number of transported goods from location 7 to location j by x;;, the problem can
be formulated as the linear optimization problem

minimize
111 + 2x12 + D293 + 2294 + lxzy + 2233 4+ lagy (14.20)
subject to
T+ T2 < 400,
Taz + Toa < 1200,
r31 + w3z + wze < 1000,
Tr11 + I31 = 800,
. ~ o0 (14.21)
ZToz + %33 = 500,
Tog + x34 = 500,
Z11, T12, T23, T2y, Z31, Z33, r34 2> 0.

The basis type and the optimal partition type sensitivity results for the transportation problem is
shown in Table 14.1 and 14.2 respectively.

Looking at the results from the optimal partition type sensitivity analysis we see that for the
constraint number 1 we have o1 # o9 and 31 # (2. Therefore, we have a left linearity interval of
[—300,0] and a right interval of [0,500]. The corresponding left and right shadow price is 3 and 1
respectively. This implies that if the upper bound on constraint 1 increases by

B €[0,8] = [0,500] (14.22)

104 CHAPTER 14. SENSITIVITY ANALYSIS

Supply

400

1200

1000

Figure 14.2: Supply, demand and cost of transportation.

14.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS

105

Optimal partition type

COH. ﬂl ﬁg g1 ()

1 —300.00 500.00 3.00 1.00
2 —700.00 +o00 —0.00 —-0.00
3 —500.00 500.00 3.00 1.00
4 —500.00 500.00 2.00 4.00
5 —100.00 300.00 3.00 5.00
6 —500.00 700.00 3.00 5.00
7 —500.00 700.00 2.00 2.00
Var. B1 B2 o1 09

T11 —00 300.00 0.00 0.00
T12 —00 100.00 0.00 0.00
To3 —00 500.00 0.00 2.00
Toy —00 500.00 0.00 0.00
T31 —00 500.00 0.00 0.00
T33 —00 500.00 0.00 0.00
T34 —00 500.00 0.00 2.00

Basis type
Con. b1 Bo 01 g2
1 —300.00 0.00 3.00 3.00
2 —700.00 400 0.00 0.00
3 —500.00 0.00 3.00 3.00
4 —0.00 500.00 4.00 4.00
5 —0.00 300.00 5.00 5.00
6 —0.00 700.00 5.00 5.00
7 —500.00 700.00 2.00 2.00
Var. B1 B2 o1 02
T11 —00 300.00 0.00 0.00
T1o —00 100.00 0.00 0.00
T3 —00 0.00 0.00 0.00
Tog —00 500.00 0.00 0.00
T31 —00 500.00 0.00 0.00
33 —00 500.00 0.00 0.00
T34 —0.000000 500.00 2.00 2.00
Table 14.1:

Ranges and shadow prices related to bounds on constraints and variables. Left: Results

for basis type sensitivity analysis. Right: Results for the optimal partition type sensitivity analysis.

Basis type

Var. 51 ﬂg o1 g2
c1 —oo 3.00 300.00 300.00
) —00 oo 100.00 100.00
cs3 —2.00 oo 0.00 0.00
Cy4 —oo 2.00 500.00 500.00
Ccs —3.00 oo 500.00 500.00
Cce —oo 2.00 500.00 500.00
cr —2.00 oo 0.00 0.00

Optimal partition type

Var. B1 B2 01 02
c1 —00 3.00 300.00 300.00
Co —00 00 100.00 100.00
c3 —2.00 00 0.00 0.00
Cq —00 2.00 500.00 500.00
cs —3.00 00 500.00 500.00
Cg —00 2.00 500.00 500.00
cr —2.00 00 0.00 0.00

Table 14.2: Ranges and shadow prices related to the objective coefficients. Left: Results for basis type
sensitivity analysis. Right: Results for the optimal partition type sensitivity analysis.

106 CHAPTER 14. SENSITIVITY ANALYSIS

then the optimal objective value will decrease by the value

o2 =10. (14.23)
Correspondingly, if the upper bound on constraint 1 is decreased by

8 € [0, 300] (14.24)
then the optimal objective value will increased by the value

o1 =30. (14.25)

14.5 Sensitivity analysis with the command line tool

A sensitivity analysis can be performed with the MOSEK command line tool using the command
mosek myproblem.mps -sen sensitivity.ssp

where sensitivity.ssp is a file in the format described in the next section. The ssp file describes
which parts of the problem the sensitivity analysis should be performed on.

By default results are written to a file named myproblem.sen. If necessary, this filename can be
changed by setting the
MSK_SPAR_SENSITIVITY RES_FILE _NAME
parameter By default a basis type sensitivity analysis is performed. However, the type of sensitivity
analysis (basis or optimal partition) can be changed by setting the parameter
MSK_IPAR_SENSITIVITY_TYPE
appropriately. Following values are accepted for this parameter:

e MSK SENSITIVITY TYPE BASIS
e MSK_SENSITIVITY TYPE OPTIMAL PARTITION
It is also possible to use the command line
mosek myproblem.mps -d MSK_IPAR_SENSITIVITY_ALL MSK_ON

in which case a sensitivity analysis on all the parameters is performed.

14.5.1 Sensitivity analysis specification file

MOSEK employs an MPS like file format to specify on which model parameters the sensitivity anal-
ysis should be performed. As the optimal partition type sensitivity analysis can be computationally
expensive it is important to limit the sensitivity analysis.

The format of the sensitivity specification file is shown in figure 14.3, where capitalized names are
keywords, and names in brackets are names of the constraints and variables to be included in the
analysis.

The sensitivity specification file has three sections, i.e.

e BOUNDS CONSTRAINTS: Specifies on which bounds on constraints the sensitivity analysis should
be performed.

14.5. SENSITIVITY ANALYSIS WITH THE COMMAND LINE TOOL 107

* A comment
BOUNDS CONSTRAINTS
UILILU [cnamei]

U|L|LU [cname2]-[cname3]
BOUNDS VARIABLES

UILILU [vname1]

UIL|LU [vname2]-[vname3]
OBJECTIVE VARIABLES
[vname1]
[vname2] - [vname3]

Figure 14.3: The sensitivity analysis file format.

e BOUNDS VARIABLES: Specifies on which bounds on variables the sensitivity analysis should be
performed.

e OBJECTIVE VARIABLES: Specifies on which objective coefficients the sensitivity analysis should
be performed.

A line in the body of a section must begin with a whitespace. In the BOUNDS sections one of the keys
L, U, and LU must appear next. These keys specify whether the sensitivity analysis is performed on
the lower bound, on the upper bound, or on both the lower and the upper bound respectively. Next,
a single constraint (variable) or range of constraints (variables) is specified.

Recall from Section 14.4.1.1 that equality constraints are handled in a special way. Sensitivity
analysis of an equality constraint can be specified with either L, U, or LU, all indicating the same,
namely that upper and lower bounds (which are equal) are perturbed simultaneously.

As an example consider

BOUNDS CONSTRAINTS
L "consl"
U "cons2"
LU "cons3"-"cons6"

which requests that sensitivity analysis is performed on the lower bound of the constraint named
consl, on the upper bound of the constraint named cons2, and on both lower and upper bound on
the constraints named cons3 to cons6.

It is allowed to use indexes instead of names, for instance

BOUNDS CONSTRAINTS

L "consil"
Uu 2
LU 3 -6

The character “*” indicates that the line contains a comment and is ignored.

14.5.2 Example: Sensitivity analysis from command line

As an example consider the sensitivity.ssp file shown in Figure 14.4.
The command

108

* Comment 1

BOUNDS CONSTRAINTS

U "ci" * Analyze upper bound for constraint named cil
U2 * Analyze upper bound for the second constraint
U 3-5 * Analyze upper bound for constraint number 3 to number 5

BOUNDS VARIABLES

CHAPTER 14. SENSITIVITY ANALYSIS

L 2-4 * This section specifies which bounds on variables should be analyzed

L "x11"
OBJECTIVE VARIABLES

"x11" * This section specifies which objective coefficients should be analyzed
2

Figure 14.4: Example of the sensitivity file format.

mosek transport.lp -sen sensitivity.ssp

produces the transport.sen file shown below.

BOUNDS CONSTRAINTS

INDEX NAME BOUND LEFTRANGE

0 cl up -6.574875e-18
2 c3 up -6.574875e-18
3 c4 FIX -5.000000e+02
4 cb FIX -1.000000e+02
5 c6 FIX -5.000000e+02
BOUNDS VARIABLES

INDEX NAME BOUND LEFTRANGE

2 x23 Lo -6.574875e-18
3 x24 Lo —inf

4 x31 L0 —inf

0 x11 L0 -inf

OBJECTIVE VARIABLES

INDEX NAME LEFTRANGE
0 x11 —-inf
2 x23 -2.000000e+00

RIGHTRANGE

5.000000e+02
5.000000e+02
6.574875e-18
6.574875e-18
6.574875e-18

RIGHTRANGE

5.000000e+02
5.000000e+02
5.000000e+02
3.000000e+02

RIGHTRANGE
1.000000e+00
+inf

LEFTPRICE

1.000000e+00
1.000000e+00
2.000000e+00
3.000000e+00
3.000000e+00

LEFTPRICE

2.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00

LEFTPRICE
3.000000e+02
0.000000e+00

-d MSK_IPAR_SENSITIVITY_TYPE MSK_SENSITIVITY_TYPE_BASIS

RIGHTPRICE

1.000000e+00
1.000000e+00
2.000000e+00
3.000000e+00
3.000000e+00

RIGHTPRICE

2.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00

RIGHTPRICE
3.000000e+02
0.000000e+00

14.5.3 Controlling log output
Setting the parameter
MSK_IPAR_LOG_SENSITIVITY

to 1 or 0 (default) controls whether or not the results from sensitivity calculations are printed to the
message stream.
The parameter

MSK_IPAR_LOG_SENSITIVITY_OPT

controls the amount of debug information on internal calculations from the sensitivity analysis.

Appendix A

MOSEK command line tool
reference

A.1 Introduction

The MOSEK command line tool is used to solve optimization problems from the operating system
command line. It is invoked as follows

mosek [options] [filename]

where both [options] and [filename] are optional arguments. [filename] is a file describing the
optimization problems and is either a MPS file or AMPL nl file. [options] consists of command line
arguments that modifies the behavior of MOSEK.

A.2 Command line arguments

The following list shows the possible command-line arguments for MOSEK:

-a MOSEK runs in AMPL mode.

-AMPL The input file is an AMPL nl file.

-basi name Input basis solution file name.

-baso name Output basis solution file name.

-brni name name is the filename of a variable branch order file to be read.

-brno name name is the filename of a variable branch order file to be written.

-d name val Assigns the value val to the parameter named name.

-dbgmem name Name of memory debug file. Write memory debug information to file name.

-f Complete license information is printed.

109

110

-h

-inti

-into

-itri

-itro

-info

APPENDIX A. MOSEK COMMAND LINE TOOL REFERENCE

Prints out help information for MOSEK.
name Input integer solution file name.
name Output integer solution file name.
name Input interior point solution file name.
name Output interior point solution file name.

name Infeasible subproblem output file name.

-infrepo name Feasibility reparation output file

-pari

-paro

name Input parameter file name. Equivalent to -p.

name Output parameter file name.

-L name name of the license file.

-1 name name of the license file.

—max

-min

-n

Forces MOSEK to maximize the objective.
Forces MOSEK to minimize the objective.

Ignore errors in subsequent paramter settings.

-p name New parameter settings are read from a file named name.

-q name Name of a optional log file.

-r

-rout

If the option is present, the program returns -1 if an error ocurred otherwise 0.

name If the option is present, the program writes the return code to file 'name’.

-sen file Perform sensitivity analysis based on file.

-silent As little information as possible is send to the terminal.

-V

W

The MOSEK version number is printed and no optimization is performed.
If this options is included, then MOSEK will wait for a license.
Lists the parameter database.

Same as the -h option.

A.3. THE PARAMETER FILE 111

A.3 The parameter file

Occasionally system or algorithmic parameters in MOSEK should be changed be the user. One way
of the changing parameters is to use a so-called parameter file which is a plain text file. It can for
example can have the format

BEGIN MOSEK

% This is a comment.

% The subsequent line tells MOSEK that an optimal

% basis should be computed by the interior-point optimizer.

MSK_IPAR_INTPNT_BASIS MSK_BI_ALWAYS
MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-9
END MOSEK

Note that the file begins with an BEGIN MOSEK and is terminated with an END MOSEK, this is required.
Moreover, everything that appears after an % is considered to be a comment and is ignored. Similarly,
empty lines are ignored. The important lines are those which begins with a valid MOSEK parameter
name such as MSK_IPAR_INTPNT_BASIS. Immediately after parameter name follows the new value for
the parameter. All the MOSEK parameter names are listed in Appendix H.

A.3.1 Using the parameter file

The parameter file can be given any name, but let us assume it has the name mosek.par. If MOSEK
should use the parameter settings in that file, then -p mosek.par should be on the command line
when MOSEK is invoked. An example of such a command line is

mosek -p mosek.par afiro.mps

112 APPENDIX A. MOSEK COMMAND LINE TOOL REFERENCE

Appendix B

The MPS file format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format the book by Nazareth [18] is a good reference.

B.1 The MPS file format

The version of the MPS format supported by MOSEK allows specification of an optimization problem
on the form
© < Az+q(x)
< T
z €C,
T 7 integer,

INIA
<
8

’ (B.1)

where
e = € R" is the vector of decision variables.
e A € R™*™ is the constraint matrix.
e [€ R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.

[* € R™ is the lower limit on the activity for the variables.

u” € R™ is the upper limit on the activity for the variables.

q : R™ — R is a vector of quadratic functions. Hence,
gi(z) =1/2:7Q'x

where it is assumed that _ _
Q' =(Q")". (B.2)

Please note the explicit 1/2 in the quadratic term and that @Q° is required to be symmetric.

C is a convex cone.

113

114 APPENDIX B. THE MPS FILE FORMAT

e 7 C{1,2,...,n} is an index set of the integer-constrained variables.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
0OBJSENSE

[objsense]
0OBJNAME

[objname]
ROWS
? [cnamel]
COLUMNS

[vnamel] [cnamel] [valuel] [vname3] [value2]
RHS

[name] [cname1] [valuel] [cname2] [value2]
RANGES

[name] [cname1] [valuel] [cname2] [value2]
QSECTION [cname1]

[vnamel] [vname2] [valuel] [vname3] [value2]
BOUNDS
7?7 [name] [vname1] [valuel]
CSECTION [kname1] [value1l] [ktypel

[vname1]
ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+] -] XXXXXXX.XXXXXX [[e|E] [+] -] XXX]
where
X = [0l1121314]516171819].

Sections: The MPS file consists of several sections where the names in capitals indicate the beginning
of a new section. For example, COLUMNS denotes the beginning of the columns section.

Comments: Lines starting with an “*” are comment lines and are ignored by MOSEK.
Keys: The question marks represent keys to be specified later.
Extensions: The sections QSECTION and CSECTION are MOSEK specific extensions of the MPS format.

The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Section B.5 for details.

B.1. THE MPS FILE FORMAT 115

B.1.1 An example

A concrete example of a MPS file is presented below:

NAME EXAMPLE

OBJSENSE
MIN

ROWS

N obj

L c1

L c2

L c3

L c4

COLUMNS
x1 obj -10.0 cl 0.7
x1 c2 0.5 c3 1.0
x1 cd 0.1
x2 obj -9.0 cl 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25

RHS
rhs cl 630.0 c2 600.0
rhs c3 708.0 c4d 135.0

ENDATA

Subsequently each individual section in the MPS format is discussed.

B.1.2 NAME

In this section a name ([name]) is assigned to the problem.

B.1.3 0BJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The 0BJSENSE
section contains one line at most which can be one of the following

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

B.1.4 0BJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. The OBJNAME section contains one line at most which has the form

objname

objname should be a valid row name.

116 APPENDIX B. THE MPS FILE FORMAT

B.1.5 ROWS
A record in the ROWS section has the form

? [cnamel]

where the requirements for the fields are as follows:

Field Starting Maximum Re- Description
position width quired

? 2 1 Yes Constraint key

[cnamel] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned an unique name denoted by [cnamel]. Please note
that [cnamel] starts in position 5 and the field can be at most 8 characters wide. An initial key (?)
must be present to specify the type of the constraint. The key can have the values E, G, L, or N whith
ther following interpretation:

Constraint ¢ u$
type

E finite g
G finite 00
L —oo finite
N —00 00

In the MPS format an objective vector is not specified explicitly, but one of the constraints having the
key N will be used as the objective vector c¢. In general, if multiple N type constraints are specified,
then the first will be used as the objective vector c.

B.1.6 COLUMNS
In this section the elements of A are specified using one or more records having the form

[vnamel] [cnamel] [valuel] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[vname1] 5 8 Yes Variable name

[cname1] 15 8 Yes Constraint name

[valuel] 25 12 Yes Numerical value

[cname2] 40 8 No Constraint name

[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements a;; of A using the principle that [vname1] and [cname1]
determines j and ¢ respectively. Please note that [cnamel] must be a constraint name specified in
the ROWS section. Finally, [valuel] denotes the numerical value of a;;. Another optional element
is specified by [cname2], and [value2] for the variable specified by [vnamel]. Some important
comments are:

B.1. THE MPS FILE FORMAT 117

e All elements belonging to one variable must be grouped together.
e Zero elements of A should not be specified.

e At least one element for each variable should be specified.

B.1.7 RHS (optional)

A record in this section has the format

[namel [cnamel] [valuel] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[name] 5 8 Yes Name of the RHS vector

[cname1] 15 8 Yes Constraint name

[valuel] 25 12 Yes Numerical value

[cname2] 40 8 No Constraint name

[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cnamel] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the ith constraint and v; denotes the value
specified by [valuel], then the interpretation of vy is:

Constraint [§ uf

type

E v U1
G (%1

L (1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same way.
Please note that it is not necessary to specify zero elements, because elements are assumed to be zero.

B.1.8 RANGES (optional)

A record in this section has the form
[name] [cnamel] [valuel] [cname2] [valueZ2]

where the requirements for each fields are as follows:

118 APPENDIX B. THE MPS FILE FORMAT

Field Starting Maximum Re- Description
position width quired

[name] 5 8 Yes Name of the RANGE vector

[cname1] 15 8 Yes Constraint name

[valuel] 25 12 Yes Numerical value

[cname?2] 40 8 No Constraint name

[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in [° and u®. A record has the following interpretation: [name] is the name of the RANGE vector anhd
[cnamel] is a valid constraint name. Assume that [cnamel] is assigned to the ith constraint and let
v1 be the value specified by [valuel], then a record has the interpretation:

Constraint Sign of v, l$ uy
type

E - ui + vy

E + llc + (%
G -or + 18+ |vs|
L -or + uf — |uy|

N

B.1.9 QSECTION (optional)

Within the QSECTION the label [cnamel] must be a constraint name previously specified in the ROWS
section. The label [cnamel] denotes the constraint to which the quadratic term belongs. A record in
the QSECTION has the form

[vhamel] [vname2] [valuel] [vhame3] [value2]

where the requirements for each field are:

Field Starting Maximum Re- Description
position width quired

[vname1] 5 8 Yes Variable name

[vname2] 15 8 Yes Variable name

[valuel] 25 12 Yes Numerical value

[vname3] 40 8 No Variable name

[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the Q¢ matrix where [cnamei]
specifies the 7. Hence, if the names [vnamel] and [vname2] have been assigned to the kth and jth
variable, then Q?Cj is assigned the value given by [valuel] An optional second element is specified in
the same way by the fields [vnamel], [vname3], and [value2].

The example

minimize —y + 0.5(22% — 22123 + 0.223 + 223)
subject to T1 + To + a3 > 1,
x>0

has the following MPS file representation

B.1. THE MPS FILE FORMAT 119

NAME qoexp

ROWS

N obj

G ci1

COLUMNS
x1 cl 1
x2 obj -1
x2 cl 1
x3 cl 1

RHS
rhs cl 1

QSECTION obj
x1 x1 2
x1 x3 -1
x2 x2 0.2
x3 x3 2

ENDATA

Regarding the QSECTIONs please note that:

e Only one QSECTION is allowed for each constraint.

The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of Q.

B.1.10 BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors {* and u® are specified. The default
bounds vectors are [* = 0 and u® = oco. Moreover, it is possible to specify several sets of bound
vectors. A record in this section has the form

7?7 [name] [vhnamel] [valuel]

where the requirements for each field are:

Field Starting Maximum Re- Description
position width quired

77 2 2 Yes Bound key

[name] 5 8 Yes Name of the BOUNDS vector

[vname1] 15 8 Yes Variable name

[valueil] 25 12 No Variable name

Hence, a record in the BOUNDS section has the following interpretation: [name] is the name of the
bound vector and [vnamel] is the name of the variable which bounds are modified by the record. 77
and [valuel] are used to modify the bound vectors according to the following table:

120 APPENDIX B. THE MPS FILE FORMAT

77 l7 uj Made integer

(added to J)
FR —00 00 No
FX vy U1 No
Lo v1 unchanged No
MI —oo unchanged No
PL unchanged 00 No
UP unchanged U1 No
BV 0 1 Yes
LI [v1] 00 Yes
UI unchanged |v1] Yes

vy is the value specified by [valuel].

B.1.11 CSECTION (Optional)
The purpose of the CSECTION is to specify the constraint
xeC.

in (B.1).
It is assumed that C satisfies the following requirements. Let

s eRY, t=1,...,k

be vectors comprised of parts of the decision variables x so that each decision variable is a member of
exactly one vector z¢, for example

T
X $6
t = | ay and 2% = 5
T3
Z7
T2

Next define
C:= {mER": zt e ¢, tzl,...,k}

where C; must have one of the following forms

e R set: .
Ct = {IL’ S Rn}

e Quadratic cone:

C,={zeR" iz > (B.3)

e Rotated quadratic cone:
nt
t
Ci=<xeR" :2x1x222x?, r1,29 >0 . (B.4)
j=3

B.1. THE MPS FILE FORMAT 121

In general, only quadratic and rotated quadratic cones are specified in the MPS file whereas membership
of the R set is not. If a variable is not a member of any other cone then it is assumed to be a member
of an R cone.

Next, let us study an example. Assume that the quadratic cone

Ty > /22 + 2} (B.5)

x5y > 12 + ;vg, x3,x7 > 0, (B.6)

and the rotated quadratic cone

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 0.0 QUAD

x4

x5

x8
CSECTION koneb 0.0 RQUAD

X7

x3

x1

x0

This first CSECTION specifies the cone (B.5) which is given the name konea. This is a quadratic cone
which is specified by the keyword QUAD in the CSECTION header. The 0.0 value in the CSECTION header
is not used by the QUAD cone.

The second CSECTION specifies the rotated quadratic cone (B.6). Please note the keyword RQUAD in
the CSECTION which is used to specify that the cone is a rotated quadratic cone instead of a quadratic
cone. The 0.0 value in the CSECTION header is not used by the RQUAD cone.

In general, a CSECTION header has the format

CSECTION [kname1] [value1l] [ktype]

where the requirement for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[kname1] 5 8 Yes Name of the cone

[valuel] 15 12 No Cone parameter

[ktypel 25 Yes Type of the cone.

The possible cone type keys are:

Cone type key Members Interpretation.
QUAD >1 Quadratic cone i.e. (B.3).
RQUAD >2 Rotated quadratic cone i.e. (B.4).

Please note that a quadratic cone must have at least one member whereas a rotated quadratic cone
must have at least two members. A record in the CSECTION has the format

122 APPENDIX B. THE MPS FILE FORMAT

[vname1]

where the requirements for each field are

Field Starting Maximum Re- Description
position width quired
[vname1] 2 8 Yes A valid variable name

The most important restriction with respect to the CSECTION is that a variable must occur in only
one CSECTION.

B.1.12 ENDATA
This keyword denotes the end of the MPS file.

B.2 Integer variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of J. However, an alternative method is available.

This method is available only for backward compability and we recommend that it is not used.
This method requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 cl 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1

* Start of integer-constrained variables.
MARKOOO ’MARKER’ > INTORG’
x2 obj -9.0 cl 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARKOO1 ’MARKER’ >INTEND’

* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer
variables. Furthermore be aware of the following

e IMPORTANT: All variables between the markers are assigned a default lower bound of 0 and
a default upper bound of 1. This may not be what is intended. If it is not intended, the
correct bounds should be defined in the BOUNDS section of the MPS formatted file.

e MOSEK ignores field 1, i.e. MARKO0O1 and MARKOO1, however, other optimization systems require
them.

e Field 2, i.e. MARKER’, must be specified including the single quotes. This implies that no row
can be assigned the name *MARKER’.

B.3. GENERAL LIMITATIONS 123

e Field 3 is ignored and should be left blank.
e Field 4, i.e. INTORG’ and ’INTEND’, must be specified.

e It is possible to specify several such integer marker sections within the COLUMNS section.

B.3 General limitations

e An MPS file should be an ASCII file.

B.4 Interpretation of the MPS format

Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

e If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries
are added together.

e If a matrix element in a QSECTION section is specified multiple times, then the multiple entries
are added together.

B.5 The free MPS format

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, it also presents two main limitations:

e By default a line in the MPS file must not contain more than 1024 characters. However, by mod-
ifying the parameter MSK_IPAR READ MPS WIDTH an arbitrary large line width will be accepted.

e A name must not contain any blanks.

To use the free MPS format instead of the default MPS format the MOSEK parameter MSK_TIPAR_READ _MPS_FORMAT
should be changed.

124 APPENDIX B. THE MPS FILE FORMAT

Appendix C

The LP file format

MOSEK supports the LP file format with some extensions i.e. MOSEK can read and write LP
formatted files.

C.1 A warning

The LP format is not a well-defined standard and hence different optimization packages may interpre-
tate a specific LP formatted file differently.

C.2 The LP file format

The LP file format can specify problems on the form

minimize/maximize 'z + Lgo(x)
subject to l© < Ar+4gzq(x) < uf,
r < T < U,
g integer,
where
e z € R™ is the vector of decision variables.
e c € R” is the linear term in the objective.
e ¢°:€ R" — R is the quadratic term in the objective where
¢°(z) =27 Q%
and it is assumed that
Q°=(Q)" (C.1)

o A c R™*X™ is the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.

125

126 APPENDIX C. THE LP FILE FORMAT

e u¢ € R™ is the upper limit on the activity for the constraints.

e [€ R" is the lower limit on the activity for the variables.

u® € R™ is the upper limit on the activity for the variables.

q : R™ — R is a vector of quadratic functions. Hence,
qi(x) = T Qlx

where it is assumed that

Q' = ()" (C.2)

J C€{1,2,...,n} is an index set of the integer constrained variables.

C.2.1 The sections

An LP formatted file contains a number of sections specifying the objective, constraints, variable
bounds, and variable types. The section keywords may be any mix of upper and lower case letters.
C.2.1.1 The objective

The first section beginning with one of the keywords

max

maximum

maximize

min

minimum

minimize

defines the objective sense and the objective function, i.e.
T 1 T ~o
cx+ 53: Q°x.

The objective may be given a name by writing
myname :

before the expressions. If no name is given, then the objective is named obj.
The objective function contains linear and quadratic terms. The linear terms are written as in the
example

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]) and are either squared or
multiplied as in the examples

x1 ~ 2

and

C.2. THE LP FILE FORMAT 127

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is:

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1 = 2+ 2.1 x1 * x21]/2

Please note that the quadratic expressions are multiplied with %, so that the above expression means

1
minimize 4z, + x9 — 0.1 - 23 + §(m% +21-21-29)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1
+ 2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and as
in the linear part , if the same variables multiplied or squared occur several times their coefficients are
added.

C.2.1.2 The constraints
The second section beginning with one of the keywords

subj to
subject to
s.t.

st

defines the linear constraint matrix (A4) and the quadratic matrices (Q?).
A constraint contains a name (optional), expressions adhering to the same rules as in the objective
and a bound:

subject to
conl: x1 + x2 + [x3 ~ 2]/2<=5.1

The bound type (here <=) may be any of <, <=, =, > >= (< and <= mean the same), and the bound
may be any number.

In the standard LP format it is not possible to define more than one bound, but MOSEK supports
defining ranged constraints by using double-colon (¢¢::’?) instead of a single-colon (“:”) after the
constraint name, i.e.

—5<x1+22<5H (03)

may be written as
con:: -5 <x_1+x 2<5

By default MOSEK writes ranged constraints this way.

If the files must adhere to the LP standard, ranged constraints must either be split into upper
bounded and lower bounded constraints or be written as en equality with a slack variable. For example
the expression (C.3) may be written as

I1+I278l1:0, 75S511§5.

128 APPENDIX C. THE LP FILE FORMAT

C.2.1.3 Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +o0o. A variable may be declared free with the key-
word free, which means that the lower bound is —oo and the upper bound is 40c0. Furthermore it may
be assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or oo (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <=5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

C.2.1.4 Variable types

The final two sections are optional and must begin with one of the keywords
bin

binaries

binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

general
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

C.2.1.5 Terminating section

Finally, an LP formatted file must be terminated with the keyword

end

C.2. THE LP FILE FORMAT 129

C.2.1.6 An example
A simple example of an LP file with two variables, four constraints and one integer variable is:

minimize
-10 x1 -9 x2
subject to
0.7 x1 + x2 <= 630
0.5 x1 + 0.833 x2 <= 600
x1 + 0.667 x2 <= 708
0.1 x1 + 0.025 x2 <= 135
bounds
10 <= x1
x1 <= +inf
20 <= x2 <= 500
general
x1
end

C.2.2 LP format peculiarities

C.2.2.1 Comments

Anything on a line after a “\” is ignored and is treated as a comment.

C.2.2.2 Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

P#$%R& O/, .57 {31

The first character in a name must not be a number, a period or the letter e’ or 'E’. Keywords must
not be used as names.
It is strongly recommended not to use double quotes (") in names.

C.2.2.3 Variable bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

C.2.2.4 MOSEK specific extensions to the LP format

Some optimization software packages employ a more strict definition of the LP format that the one
used by MOSEK. The limitations imposed by the strict LP format are the following;:

e Quadratic terms in the constraints are not allowed.
e Names can be only 16 characters long.

e Lines must not exceed 255 characters in length.

130 APPENDIX C. THE LP FILE FORMAT

If an LP formatted file created by MOSEK should satisfies the strict definition, then the parameter
MSK_IPAR_WRITE_LP_STRICT_FORMAT

should be set; note, however, that some problems cannot be written correctly as a strict LP formatted
file. For instance, all names are truncated to 16 characters and hence they may loose their uniqueness
and change the problem.
To get around some of the inconveniences converting from other problem formats, MOSEK allows
lines to contain 1024 characters and names may have any length (shorter than the 1024 characters).
Internally in MOSEK names may contain any (printable) character, many of which cannot be used
in LP names. Setting the parameters

MSK_IPAR_READ_LP_QUOTED_NAMES
and
MSK_IPAR_WRITE_LP_QUOTED_NAMES

allows MOSEK to use quoted names. The first parameter tells MOSEK to remove quotes from quoted
names e.g, "x1", when reading LP formatted files. The second parameter tells MOSEK to put quotes
around any semi-illegal name (names beginning with a number or a period) and fully illegal name
(containing illegal characters). As double quote is a legal character in the LP format, quoting semi-
illegal names makes them legal in the pure LP format as long as they are still shorter than 16 characters.
Fully illegal names are still illegal in a pure LP file.

C.2.3 The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of
the LP format. To make MOSEK’s definition of the LP format more compatible whith the definitions
of other vendors use the paramter setting

MSK_IPAR_WRITE_LP_STRICT_FORMAT MSK_ON

This setting may lead to truncation of some names and hence to an invalid LP file. The simple solution
to this problem is to use the paramter setting

MSK_IPAR_WRITE_GENERIC_NAMES MSK_ON

which will cause all names to be renamed systematically in the output file.

C.2.4 Formatting of an LP file

A few parameters control the visual formatting of LP files written by MOSEK in order to make it
easier to read the files. These parameters are

MSK_IPAR_WRITE_LP_LINE_WIDTH
MSK_IPAR_WRITE_LP_TERMS_PER_LINE

The first parameter sets the maximum number of characters on a single line. The default value is 80
corresponding roughly to the width of a standard text document.

The second parameter sets the maximum number of terms per line; a term means a sign, a coeffi-
cient, and a name (for example “+ 42 elephants”). The default value is 0, meaning that there is no
maximum.

C.2. THE LP FILE FORMAT 131

C.2.4.1 Speeding up file reading

If the input file should be read as fast as possible using the least amount of memory, then it is important
to tell MOSEK how many non-zeros, variables and constraints the problem contains. These values can
be set using the parameters

MSK_IPAR_READ_CON
MSK_IPAR_READ_VAR
MSK_IPAR_READ_ANZ
MSK_IPAR_READ_QNZ

C.2.4.2 TUnnamed constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains
unnamed constraints or objective these are given their generic names when the file is read (however
unnamed constraints in MOSEK are written without names).

132 APPENDIX C. THE LP FILE FORMAT

Appendix D

The OPF format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying opti-
mization problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial
solutions, comments and extra information relevant for solving the problem. It is designed to be easily
read and modified by hand and to be forward compatible with possible future extensions.

D.1 Intended use

The OPF file format is meant to replace several other files:

e The LP file format. Any problem that can be written as an LP file can be written as an OPF file
to; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

e Parameter files. It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

e Solution files. It is possible to store a full or a partial solution in an OPF file and later reload it.

D.2 The file format

The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.
[objective min ’myobj’]
x+3y+x2+3y2+z+1

[/objective]

133

134

APPENDIX D. THE OPF FORMAT

[constraints]
[con ’con01’] 4 <= x +y [/con]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/1b]

[cone quad] x,y,z [/conel
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tagl]. An opening tag
may accept a list of unnamed and named arguments, for examples

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument in quotes [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag ’value’] single-quoted value [/tag]
[tag arg=’value’] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]

[tag arg="value"] double-quoted value [/tag]

D.2.1 Sections

The recognized tags are

e [comment] A comment section. This can contain almost any text: Between single quotes (?) or

double quotes (") any text may appear. Outside quotes the markup characters ([and 1) must
be prefixed by backslashes. Both single and double quotes may appear alone or inside a pair of
quotes if it is prefixed by a backslash.

[objective] The objective function: This accepts one or two parameters, where the first one
(in the above example ‘min’) is either min or max (regardless of case) and defines the objective
sense, and the second one (above ‘myobj’), if present, is the objective name. The section may
contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints] This does not directly contain any data, but may contain the subsection ‘con’
defining a linear constraint.

[con] defines a single constraint; if an argument is present ([con NAME]) this is used as the name
of the constraint, otherwise it is given a null-name. The section contains a constraint definition
written as linear and quadratic expressions with a lower bound, an upper bound, with both or
with an equality. Examples:

D.2. THE FILE FORMAT 135

[constraints]
[con ’conl’] 0 <= x + ¥y [/con]
[con ’con2’] 0 >=x + ¥ [/con]
[con ’con3’] 0 <= x + y <= 10 [/con]
[con ’con4’] x +y =10 [/con]

[/constraints]

Constraint names are unique. If a constraint is apecified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

e [bounds] This does not directly contain any data, but may contain the subsections ‘b’ (linear
bounds on variables) and ‘cone’ (quadratic cone).

(3

— [b]. Bound definition on one or several variables separated by comma (‘,’). An upper or
lower bound on a variable replaces any earlier defined bound on that variable. If only one
bound (upper or lower) is given only this bound is replaced. This means that upper and
lower bounds can be specified separately. So the OPF bound definition:

[b] =x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound
—10 < z,y < 10. (D.1)

— [cone]. Currently, the supported cones are the quadratic cone and the rotated quadratic
cone A conic constraint is defined as a set of variables which belongs to a single unique

cone.
A quadratic cone of n variables z1,...,z, defines a constraint of the form
n
i=2
A rotated quadratic cone of n variables x1,...,x, defines a constraint of the form

n
T1T2 > g xf
i=3

A [bounds]-section example:

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf

[©] x,y free [/b] # free variables

Let (x,y,z,w) belong to the cone K

[cone quad] x,y,z,w [/conel # quadratic cone

[cone rquad] x,y,z,w [/cone]l # rotated quadratic cone
[/bounds]

136

APPENDIX D. THE OPF FORMAT

By default all variables are free.

[variables] This defines an ordering of variables as they should appear in the problem. This
is simply a space-separated list of variable names.

[integer] This contains a space-separated list of variables and defines the constraint that the
listed variables must be integer values.

[hints] This may contain only non-essential data; for example estimates of the number of
variables, constraints and non-zeros. Placed before all other sections containing data this may
reduce the time spent reading the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In
this section a hint in a subsection is defined as follows:

[hint ITEM] value [/hint]

where ITEM may be replaced by numvar (number of variables), numcon (number of linear/quadratic
constraints), numanz (number if linear non-zeros in constraints) and numgnz (number of quadratic
non-zeros in constraints).

[solutions] This section can contain a number of full or partial solutions to a problem, each
inside a [solution]-section. The syntax is

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

— ‘interior’, a non-basic solution,
— ‘basic’, a basic solution,

— ‘integer’, an integer solution,
and STATUS is one of the strings

— ‘UNKNOWN’,

— ‘OPTIMAL’,

— ‘INTEGER_OPTIMAL’,

— ‘PRIM_FEAS’,

— ‘DUAL_FEAS’,

— ‘PRIM_AND_DUAL_FEAS’,
— ‘NEAR_OPTIMAL’,

— ‘NEAR_PRIM_FEAS’,

— ‘NEAR_DUAL_FEAS’,

— ‘NEAR_PRIM_AND_DUAL_FEAS’,
— ‘PRIM_INFEAS_CER’,

— ‘DUAL_INFEAS_CER’,

D.2. THE FILE FORMAT 137

— ‘NEAR_PRIM_INFEAS _CER’,

— ‘NEAR_DUAL_INFEAS_CER’,

— ‘NEAR_INTEGER_OPTIMAL’.
Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution values for a single variable or constraint, each value written as

KEYWORD=value

where KEYWORD defines a solution item and value defines its value. Allowed keywords are as
follows:

— sk. The status of the item, where the value is one of the following strings:
LOW, the item is on its lower bound.
UPR, the item is on its upper bound.
FIX, it is a fixed item.
BAS, the item is in the basis.
SUPBAS, the item is super basic.
UNK, the status is unknown.
* INF, the item is outside its bounds (infeasible).
— 1v1 Defines the level of the item.

— sl Defines the level of the variable associated with its lower bound.

* K X X K ¥

— su Defines the level of the variable associated with its upper bound.
— sn Defines the level of the variable associated with its cone.

— v Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk and 1vl, and optionally s1, su and sn.
A [con] section should always contain sk and 1vl, and optionally s1, su and y.

An example of a solution section

[solution basic status=UNKNOWN]
[var x0] sk=LOW 1v1l=5.0 [/var]
[var x1] sk=UPR 1v1=10.0 [/var]
[var x2] sk=SUPBAS 1vl1=2.0 sl=1.5 su=0.0 [/var]

[/con]

[con c0] sk=LOW 1v1=3.
0 [/con]

[con c0] sk=UPR 1lvl=
[/solution]

e [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID — for MOSEK the ID is simply mosek — and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

138 APPENDIX D. THE OPF FORMAT

Comments using the ‘#” may appear anywhere in the file. Between the ‘#’ and the following line-break
any text may be written, including markup characters.

D.2.2 Numbers

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or =) and may contain an integer part, decimal
part and an exponent. The decimal point is always ‘.’ (a dot). Some examples are

1

1.0
.0

1.

1e10

le+10

le-10

Some invalid examples are

el0 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+1-17(L0-9]1+[.1[0-9]*| [.]1[0-9]+) ([eE] [+|-17[0-9]+)7

D.2.3 Names

Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unqouted_name
another_name{123}

’single qouted name’
"double gouted name"

"name with \"qoute\" in it"
"name with []s in it"

D.3 Parameters section

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

D.4. WRITING OPF FILES FROM MOSEK 139

where PARAMETER _NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR. ...,
MSK DPAR_... or MSK_SPAR_. .., and the value is replaced by the value of that parameter; both integer
values and named values may be used. Some simple examples are:

[vendor mosek]

[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

D.4 Writing OPF files from MOSEK

To write an OPF file set the parameter MSK_TPAR WRITE DATA FORMAT to MSK_DATA _FORMAT QP as this
ensures that OPF format is used. Then modify the following parameters to define what the file should
contain:

e MSK_IPAR OPF WRITE HEADER, include a small header with comments.
e MSK_IPAR _OPF_WRITE_HINTS, include hints about the size of the problem.
e MSK_IPAR_OPF _WRITE_PROBLEVN, include the problem itself — objective, constraints and bounds.

e MSK_IPAR OPF _WRITE_SOLUTIONS, include solutions if they are defined. If this is off, no solutions
are included.

e MSK_IPAR_OPF _WRITE_SOL_BAS, include basic solution, if defined.
e MSK_IPAR OPF WRITE_SOL_ITG, include integer solution, if defined.
e MSK_IPAR OPF WRITE_SOL_ITR, include interior solution, if defined.

e MSK_IPAR OPF WRITE PARAMETERS, include all parameter settings.

D.5 Examples

This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

D.5.1 Linear example lol.opf

Consider the example:

minimize —10z; —9x,,
subject to 7/10x1 + lzs < 630,
1/2¢7 + 5/6x2 < 600, (D.2)
1.’131 + 2/3$2 S 708, ’
1/10z; + 1/4z, < 135,
T, T2 > 0.

140 APPENDIX D. THE OPF FORMAT

In the OPF format the example is displayed as shown below:

[comment]
Example lol.mps converted to OPF.
[/ comment]

[hints]
Give a hint about the size of the different elements in the problem.
These need only be estimates, but in this case they are exact.
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 8 [/hint]
[/hints]

[variables]
All variables that will appear in the problem
x1 x2

[/variables]

[objective minimize ’obj’]
- 10 x1 - 9 x2
[/objectivel

[constraints]

[con ’c1’] 0.7 x1 + x2 <= 630 [/con]
[con ’c2’] 0.5 x1 + 0.8333333333 x2 <= 600 [/con]
[con ’c37] x1 + 0.66666667 x2 <= 708 [/con]
[con ’c4’] 0.1 x1 + 0.25 x2 <= 135 [/con]

[/constraints]

[bounds]
By default all variables are free. The following line will
change this to all variables being nonnegative.
[bl] 0 <= * [/b]

[/bounds]

D.5.2 Quadratic example qol.opf

An example of a quadratic optimization problem is

minimize 22 +0.123 + 23 — x123 — T2
subject to 1 < T1 + T9 + x3, (D.3)
x> 0.

This can be formulated in opf as shown below.

[comment]
Example qol.mps converted to OPF.
[/ comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[/hints]

D.5. EXAMPLES 141

[variables]
x1 x2 x3
[/variables]

[objective minimize ’obj’]
The quadratic terms are often multiplied by 1/2,
but this is not required.

- x2 + 0.5 (2x1 "~ 2 -2%x3 % x1 + 0.2 x2 "~ 2+ 2 x3 "~ 2)
[/objective]

[constraints]
[con ’c1’] 1 <= x1 + x2 + x3 [/con]
[/constraints]

[bounds]
[b] 0 <= x [/b]
[/bounds]

D.5.3 Conic quadratic example cqol.opf

Consider the example:
minimize 1zy + 229

subject to 2x3+4zy = b5,
2 < 2z1m;3,
x3 < 2oy, (D.4)
Is = 1,
Te = 1,
x>0

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of
the cone-section is the names of variables that belong to the cone.

[comment]
Example cqol.mps converted to OPF.
[/ comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 2 [/hint]
[/hints]

[variables]
x1 x2 x3 x4 x5 x6
[/variables]

[objective minimize ’obj’]
x1 + 2 x2
[/objectivel

[constraints]
[con ’c1’] 2 x3 + 4 x4 = 5 [/con]
[/constraints]

142 APPENDIX D.

[bounds]
We let all variables default to the positive orthant
[bl 0 <= * [/b]
... and change those that differ from the default.
[b] x5,x6 = 1 [/b]

We define two rotated quadratic cones

kl1: 2 x1 * x3 >= x572
[cone rquad ’k1’] x1, x3, x5 [/comnel

k2: 2 x2 *x x4 >= x6°2
[cone rquad ’k2°’] x2, x4, x6 [/cone]
[/bounds]

THE OPF FORMAT

D.5.4 Mixed integer example milol.opf

Consider the mixed integer problem:

maximize g + 0.64x,

subject to 50xg + 31z < 250,
31’0 - 21’1 2 —4,
To,x1 >0 and integer

This can be implemented in OPF with:

[comment]
Written by MOSEK version 5.0.0.7
Date 20-11-06
Time 14:42:24

[/ comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]
[/hints]

[variables disallow_new_variables]
x1 x2
[/variables]

[objective maximize ’obj’]
x1 + 6.4e-1 x2
[/objectivel

[constraints]
[con ’c1’] 5e+1l x1 + 3.le+1 x2 <= 2.5e+2 [/con]
[con ’c2’] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b]l] 0 <= * [/b]
[/bounds]

[integer]

D.5. EXAMPLES 143

x1 x2
[/integer]

144 APPENDIX D. THE OPF FORMAT

Appendix E

The XML (OSiL) format

MOSEK can write data in the standard 0SiL. xml format. For a definition of the 0SiL format please see
http://www.optimizationservices.org/. Only linear constraints (possibly with integer variables)
are supported. By default output files with the extension .xml are written in the 0SiL format.

The parameter MSK_IPAR WRITE XML _MODE controls if the linear coefficients in the A matrix are
written in row or column order.

145

http://www.optimizationservices.org/

146 APPENDIX E. THE XML (OSIL) FORMAT

Appendix F

The solution file format

MOSEK provides one or two solution files depending on the problem type and the optimizer used.
If a problem is optimized using the interior-point optimizer and no basis identification is required,
then a file named probname.sol is provided. probname is the name of the problem and .sol is
the file extension. If the problem is optimized using the simplex optimizer or basis identification is
performed, then a file named probname.bas is created presenting the optimal basis solution. Finally,
if the problem contains integer constrained variables then a file named probname.int is created. It
contains the integer solution.

F.1 The basic and interior solution files

In general both the interior-point and the basis solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>

SOLUTION STATUS : <status of the solution>

OBJECTIVE NAME : <name of the objective function>

PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>

DUAL OBJECTIVE : <dual objective value corresponding to the solution>

CONSTRAINTS

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER

? <name> 77 <a value> <a value> <a value> <a value> <a value>

VARIABLES

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER CONIC DUAL
? <name> 77 <a value> <a value> <a value> <a value> <a value> <a value>

In the example the fields ? and <> will be filled with problem and solution specific information. As
can be observed a solution report consists of three sections, i.e.

HEADER In this section, first the name of the problem is listed and afterwards the problem and solution
statuses are shown. In this case the information shows that the problem is primal and dual
feasible and the solution is optimal. Next the primal and dual objective values are displayed.

CONSTRAINTS Subsequently in the constraint section the following information is listed for each con-
straint:
INDEX A sequential index assigned to the constraint by MOSEK.
NAME The name of the constraint assigned by the user.

AT The status of the constraint. In Table F.1 the possible values of the status keys and their
interpretation are shown.

147

148 APPENDIX F. THE SOLUTION FILE FORMAT

Status key Interpretation

UN Unknown status

BS Is basic

SB Is superbasic

LL Is at the lower limit (bound)

UL Is at the upper limit (bound)

EQ Lower limit is identical to upper limit
*k Is infeasible i.e. the lower limit is

greater than the upper limit.

Table F.1: Status keys.

ACTIVITY Given the ith constraint on the form
n

[<Y ae; <, (F.1)
j=1

then activity denote the quantity Z;’:l a;jx, where x* is the value for the z solution.
LOWER LIMIT Is the quantity I$ (see (F.1)).
UPPER LIMIT Is the quantity u$ (see (F.1)).
DUAL LOWER Is the dual multiplier corresponding to the lower limit on the constraint.
DUAL UPPER Is the dual multiplier corresponding to the upper limit on the constraint.
VARIABLES The last section of the solution report lists information for the variables. This information
has a similar interpretation as for the constraints. However, the column with the header [CONIC

DUAL] is only included for problems having one or more conic constraints. This column shows
the dual variables corresponding to the conic constraints.

F.2 The integer solution file

The integer solution is equivalent to the basic and interior solution files except that no dual information
is included.

Appendix G

The ORD file format

An ORD formatted file specifies in which order the mixed integer optimizer branches on variables. The
format of an ORD file is shown in Figure G.1. In the figure names in capitals are keywords of the ORD
format, whereas names in brackets are custom names or values. The 77 is an optional key specifying
the preferred branching direction. The possible keys are DN and UP which indicate that down or up
is the preferred branching direction respectively. The branching direction key is optional and is left
blank the mixed integer optimizer will decide whether to branch up or down.

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]

7?7 [vnamel] [valuel]
ENDATA

Figure G.1: The standard ORD format.

G.1 An example

A concrete example of a ORD file is presented below:

NAME EXAMPLE
DN x1 2
UP x2 1
x3 10
ENDATA

This implies that the priorities 2, 1, and 10 are assigned to variable x1, x2, and x3 respectively. The
higher the priority value assigned to a variable the earlier the mixed integer optimizer will branch on
that variable. The key DN implies that the mixed integer optimizer first will branch down on variable
whereas the key UP implies that the mixed integer optimizer will first branch up on a variable.

149

150 APPENDIX G. THE ORD FILE FORMAT

If no branch direction is specified for a variable then the mixed integer optimizer will automatically
choose the branching direction for that variable. Similarly, if no priority is assigned to a variable then
it is automatically assigned the priority of 0.

Appendix H

Parameters reference

Subsequently all parameters that are in MOSEK parameter database is presented. For each parameter
their name, purpose, type, default value etc. are presented.

H.1 Parameter groups

Parameters grouped by meaning and functionality.

H.1.1 Logging parameters.

MK TP AR LG . o e ettt ettt et e e e e e et e e e e e e e e e
Controls the amount of log information.

MSK_IPAR LOG BT .. e

Controls the amount of output printed by the basis identification procedure. A higher level

implies that more information is logged.

MSK_TPAR LOG BT FREQ . ..t ettt ittt ittt ettt e e e et e e e e e e e ettt eaaeees
Controls the logging frequency.

MSK_TIPAR LOG_CONCURRENTottt e e e e e e e e e e e e et
Controls amount of output printed by the concurrent optimizer.

MSK_IPAR_LOG_CUT _SECOND _OPT . ..ttt ettt e et e e ettt iiaee
Controls the reduction in the log levels for the second and any subsequent optimizations.

MSK_IPAR_LOG_FACTOR. . .ottt e e e e e e e et e
If turned on, then the factor log lines are added to the log.

MSK_IPAR LOG EFEASREP AT R ...t e e e et ettt et e e e eaens
Controls the amount of output printed when performing feasibility repair.

MSK _TPAR LG F L E . ..ttt ettt ettt e e e e e e e e et e et e e ettt eens
If turned on, then some log info is printed when a file is written or read.

151

152 APPENDIX H. PARAMETERS REFERENCE

® MSK _TPAR LOG HEADttt et et e e e e e e e e e e et et ettt et e 230
If turned on, then a header line is added to the log.

® MSK TPAR LOG INFEAS AN A ..t e e et e e et e et ettt et et e 230
Controls log level for the infeasibility analyzer.

@ MK TP AR LOG TN PN T . . .ttt ettt e e e e e e ettt ettt ettt et e e et et 231
Controls the amount of log information from the interior-point optimizers.

@ MSK TPAR LOG MIO ..ttt ettt e ettt e et e e e e e et e et ettt ettt 231
Controls the amount of log information from the mixed-integer optimizers.

o MSK _TPAR LOG MIO FREQ. ...ttt ettt ittt e e et e e e e e e e e et e ettt eiae 231
The mixed-integer solver logging frequency.

@ MSK_IPAR LOG NONCONVE K ..ottt ittt ettt e it et et et et et e et ettt 231
Controls amount of output printed by the nonconvex optimizer.

o MSK_TPAR LOG_OPTIMIZERttt ittt ettt e e et e e e et e e et et 232
Controls the amount of general optimizer information that is logged.

o MSK_ TPAR LOG_ORDER. ...ttt ittt et e et e e e e et et ettt e e 232
If turned on, then factor lines are added to the log.

@ MSK TPAR LOG PARAM . ..ttt e e e e e e et et e ettt 232
Controls the amount of information printed out about parameter changes.

o MSK TPAR LOG PRESOLVE . ..ttt et et e et e et eens 232
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

o MSK_IPAR _ LOG RESPONSE . ..ttt e e e e et et et ens 233
Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

@ MSK TP AR LOG SEN ST T IV T Y . ettt ettt e e e e e ettt ettt et e et et et e et iaanes 233
Control logging in sensitivity analyzer.

o MSK TPAR LOG SENSTITIVITY 0P T ..ttt e e e et e et ettt ettt e e 233
Control logging in sensitivity analyzer.

@ MO K TP AR LOG ST .ttt ettt et e e et e e e ettt e e e e e e 233
Controls the amount of log information from the simplex optimizers.

® MSK TPAR LOG_SIM FREQ.ttt ettt ettt e et e e e e e e e ettt et iiaan 234
Controls simplex logging frequency.

o MSK_TPAR LOG_SIM_NETWORK_FREQ e 234
Controls the network simplex logging frequency.

o MSK TPAR LOG _STORAGEttt ettt e e et e e e et e e e e ettt 235
Controls the memory related log information.

H.1.

PARAMETER GROUPS 153

H.1.2 Basis identification parameters.

MSK_TPAR BT CLEAN_OPTIMIZERttt ittt ettt et e e e e e e eee e 215
Controls which simplex optimizer is used in the clean-up phase.

MSK_IPAR BI _IGNORE _MAX _ITER. ...ttt e e e et et e 215
Turns on basis identification in case the interior-point optimizer is terminated due to maximum
number of iterations.

MSK_TIPAR BI_IGNORE_NUM_ERRORttt et e et et et 215
Turns on basis identification in case the interior-point optimizer is terminated due to a numerical
problem.

MSK_TIPAR BT MAX TTERATION S . .ttt ettt e e e e e e e e e e e e e 216
Maximum number of iterations after basis identification.

MK TP AR TN PN T BA ST S .ottt e e e et e e e e et e 221
Controls whether basis identification is performed.

MSK TP AR LOG BT ..ttt et e e e e e et e e e e e e e 228
Controls the amount of output printed by the basis identification procedure. A higher level
implies that more information is logged.

MSK_IPAR LOG BI_FREQ.ttt e e e e i e et 228
Controls the logging frequency.
MSK DPAR _SIM LU TOL REL PV ..ttt e e ettt et et et ees 199

Relative pivot tolerance employed when computing the LU factorization of the basis matrix.

H.1.3 The Interior-point method parameters.

Parameters defining the behavior of the interior-point method for linear, conic and convex problems.

MSK_TPAR BT _IGNORE MAX Tl R . .ttt ettt ettt et ettt et et e et ettt 215
Turns on basis identification in case the interior-point optimizer is terminated due to maximum
number of iterations.

MSK_TIPAR BI _IGNORE_NUM_ERRORttt ittt et e et e et et et ettt e 215
Turns on basis identification in case the interior-point optimizer is terminated due to a numerical
problem.

MSK_DPAR_CHECK_CONVEXITY REL_TOLttt ettt 183
Convexity check tolerance.

MK TP AR TN T PN T BA ST S .ottt ettt ettt et e et e e e ettt ettt 221
Controls whether basis identification is performed.

MSK_DPAR_INTPNT _CO_TOL _DEEAS ..ottt e e e e et e 186
Dual feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT_CO_TOL_INFEAS e e 187
Infeasibility tolerance for the conic solver.

154

APPENDIX H. PARAMETERS REFERENCE

MSK_DPAR_INTPNT_CO_TOL MU _RED.ttt ittt et et ettt e ettt 187
Optimality tolerance for the conic solver.

MSK_DPAR_INTPNT_CO_TOL_NEAR RELttt ettt et e et 187
Optimality tolerance for the conic solver.

MSK DPAR _INTPNT _CO_TOL PEEAS .ttt e et e e e e ettt et e et 188
Primal feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT_CO_TOL_REL_GAP . ..ttt e e e e et ettt ees 188
Relative gap termination tolerance used by the conic interior-point optimizer.

MSK TP AR _INT PN T DIFE ST P . ettt ettt et e e e et ettt ettt ettt et ettt e 222
Controls whether different step sizes are allowed in the primal and dual space.

MSK_TIPAR INTPNT MAX ITERATION S . ..ttt ettt e e e e e ettt 222
Controls the maximum number of iterations allowed in the interior-point optimizer.

MSK_TIPAR_INTPNT MAX NUM_COR . ..ttt ettt ettt ettt e ettt ettt 223
Maximum number of correction steps.

MSK_TIPAR_INTPNT _MAX NUM_REFINEMENT STEPSttt ittt e 223
Maximum number of steps to be used by the iterative search direction refinement.

MSK_DPAR_INTPNT NL_MERIT BAL ...ttt e e e e i e 188
Controls if the complementarity and infeasibility is converging to zero at about equal rates.

MSK _DPAR_INTPNT NL _TOL DEEAS ..ttt ettt e e e e e ettt it eeiae e 188
Dual feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT_NL_TOL_MU_RED.t i 189
Relative complementarity gap tolerance.

MSK_DPAR_INTPNT NL_TOL_NEAR RELttt et e ettt 189
Nonlinear solver optimality tolerance parameter.

MSK_DPAR_INTPNT NL_TOL _ PEEAS .. i e e e e e e e 189
Primal feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT NL_TOL REL_GAP . ..ttt e e e e et e e et ee 189
Relative gap termination tolerance for nonlinear problems.

MSK_DPAR_INTPNT_NL_TOL_REL_STEPttt e et e et 190
Relative step size to the boundary for general nonlinear optimization problems.

MSK_IPAR_INTPNT_OFF _COL_TRH. i e et 223
Controls the aggressiveness of the offending column detection.

MSK_TIPAR_INTPNT_ORDER_METHODttt et e et e et 224
Controls the ordering strategy.

MSK_IPAR_INTPNT REGULARIZATION USEttt ettt ettt ettt 224
Controls whether regularization is allowed.

H.1.

PARAMETER GROUPS 155

MSK_TPAR _TINTPNT SCALTING . . .ttt ettt e et et e e e e ettt et ettt et ia s 224
Controls how the problem is scaled before the interior-point optimizer is used.

MSK_TIPAR_INTPNT _SOLVE FORM. ..ottt ittt et e e e e et et e 225
Controls whether the primal or the dual problem is solved.

MSK_TPAR INTPNT STARTING POINTttt e et e et e 225
Starting point used by the interior-point optimizer.

MSK DPAR TN T PN T TOL DEE S . .ttt et e et e e e e ettt e et eneens 190
Dual feasibility tolerance used for linear and quadratic optimization problems.

MSK_DPAR_INTPNT TOL DS AFE. . .ttt ettt e e et e e et 190
Controls the interior-point dual starting point.

MSK DPAR _INT PN T TOL TN A S . .ttt e et e e e e e e et i et 190
Nonlinear solver infeasibility tolerance parameter.

MSK_DPAR_INTPNT_TOL_MU_RED.ttt e e e e et e 191
Relative complementarity gap tolerance.

MSK_ DPAR _INTPNT TOL PATH . ..ttt e e e e e e et i e 191
interior-point centering aggressiveness.

MSK DPAR _INT PN T TOL PR A S . . ottt e e e e ettt i e 191
Primal feasibility tolerance used for linear and quadratic optimization problems.

MSK DPAR _INT PN T TOL PSS AR . . .ttt et et e e et ettt 191
Controls the interior-point primal starting point.

MSK_DPAR_INTPNT _TOL _REL_GAP . ..ttt e e e e ettt 192
Relative gap termination tolerance.

MSK_DPAR_INTPNT _TOL REL_STEPttt ittt ettt e e et et it iaee 192
Relative step size to the boundary for linear and quadratic optimization problems.

MSK DPAR _INT PN T TOL STEP ST ZE .ottt ettt et e et et e ittt 192
If the step size falls below the value of this parameter, then the interior-point optimizer assumes
that it is stalled. It it does not not make any progress.

MSK_IPAR_LOG_CONCURRENTottt e e e e et e 229
Controls amount of output printed by the concurrent optimizer.

LS I o N 0 1 = PP 231
Controls the amount of log information from the interior-point optimizers.

MSK_IPAR _LOG PRESOLVE . . .ottt ettt et et e et e et e e et ettt 232
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

MSK_DPAR_QCQO_REFORMULATE REL DROP _TOL . .ottt e it ettt et e et e e eees 199
This parameter determines when columns are dropped in incomplete cholesky factorization doing
reformulation of quadratic problems.

156 APPENDIX H. PARAMETERS REFERENCE

o MSK_TPAR_QO_SEPARABLE REFORMULATIONttt ettt ettt ettt ee e iaenen 249
Determine if Quadratic programing problems should be reformulated to separable form.

H.1.4 Simplex optimizer parameters.

Parameters defining the behavior of the simplex optimizer for linear problems.

o MSK DPAR BASTS REL _TOL S ..ttt et et e et e e i e 182
Maximum relative dual bound violation allowed in an optimal basic solution.

o MSK_IPAR BASIS SOLVE USE PLUS ONE e e it et e 214
Controls the sign of the columns in the basis matrix corresponding to slack variables.

@ MK DP AR BAST S TOL S . ittt ittt et e e e e et et e ettt 183
Maximum absolute dual bound violation in an optimal basic solution.

@ MK DP AR BA ST S IOl X . ittt ittt e e e e e e e e e ettt e e e 183
Maximum absolute primal bound violation allowed in an optimal basic solution.

@ MK TP AR LOG ST M .ttt et et et et et e e e e e e e e e e 233
Controls the amount of log information from the simplex optimizers.

® MSK_TPAR LOG_STIM FREQ. ...ttt ettt ettt et e e e e e e ettt 234
Controls simplex logging frequency.

® MSK_TPAR LOG_STIM MINGOR ...\ttt ettt et et et e et et et et e et ettt et 234
Currently not in use.

o MSK_TPAR_SENSITIVITY OPTIMIZERttt ettt et ettt et e 256
Controls which optimizer is used for optimal partition sensitivity analysis.

o MSK_TPAR _STIM BASTS FACTOR USE ...\ttt e et e e e 257
Controls whether a (LU) factorization of the basis is used in a hot-start. Forcing a refactor-
ization sometimes improves the stability of the simplex optimizers, but in most cases there is a
performance penanlty.

® MSK TPAR STM DEGENttt ittt ettt et e e e et e e e e e et e e ettt eaaeens 257
Controls how aggressively degeneration is handled.

e MSK_TPAR_SIM_DUAL_PHASEONE_METHOD.ttt e it e et 258
An exprimental feature.

o MSK_TPAR _SIM EXPLOIT DUPVEC . ..ttt ettt ettt e ettt e e e e ettt 259
Controls if the simplex optimizers are allowed to exploit duplicated columns.

o MSK_ TPAR STIM HOT ST ART ...ttt e e e e e e e 259
Controls the type of hot-start that the simplex optimizer perform.

o MSK_IPAR_SIM_INTEGERttt ettt ettt et ettt e ettt et ettt eiaanns 260
An exprimental feature.

H.1.

PARAMETER GROUPS 157

MSK DPAR _STIM LU TOL REL PIV ..ttt et ettt e et e ettt et 199
Relative pivot tolerance employed when computing the LU factorization of the basis matrix.

MSK_TIPAR _SIM MAX _TITERATIONS ...ttt ettt e et e ettt et eans 260
Maximum number of iterations that can be used by a simplex optimizer.

MSK_TPAR_SIM MAX NUM _SETBACKS ..\ttt ittt e ettt ettt ettt it e i 261
Controls how many set-backs that are allowed within a simplex optimizer.

MSK_IPAR_SIM_NETWORK_DETECT_METHODot i 262
Controls which type of detection method the network extraction should use.

MSK_TPAR _SIM NON_STINGULAR. . . .ttt ittt et et e e e e e e et 262
Controls if the simplex optimizer ensures a non-singular basis, if possible.

MSK_TPAR_STIM PRIMAL PHASEONE METHODttt ittt et e ettt e e 262
An exprimental feature.

MSK_IPAR_SIM_REFORMULATIONttt ittt et et it et 264
Controls if the simplex optimizers are allowed to reformulate the problem.

MK TP AR ST S AV E LU . ottt ittt e et e et et e et e e e et et e e e e 264
Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

MSK _TPAR STM SCALTNG . .ttt ittt ittt ettt e e e e e e e e e ettt e ettt e e 265
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

MSK_TPAR_SIM_SCALING_METHODttt e e et 265
Controls how the problem is scaled before a simplex optimizer is used.

MSK_TIPAR SIM_SOLVE FORM . . .ottt ittt et e et e ettt e e et et ettt 265
Controls whether the primal or the dual problem is solved by the primal-/dual- simplex optimizer.

MSK_TPAR SIM STABILITY PRIORITY ..ttt et e e it et ettt et e e 265
Controls how high priority the numerical stability should be given.

MSK_TIPAR_SIM_SWITCH OPTIMIZERttt ittt ittt et aaeens 266
Controls the simplex behavior.

MSK DPAR _STMPLEX _ABS TOL P IV ..ttt ettt e e et e e e e et 200
Absolute pivot tolerance employed by the simplex optimizers.

H.1.5 Primal simplex optimizer parameters.

Parameters defining the behavior of the primal simplex optimizer for linear problems.

o MSK_TPAR SIM PRIMAL _CRASH. ... e i 262

Controls the simplex crash.

o MSK_TPAR_SIM PRIMAL RESTRICT_SELECTION.ciuuuniiiiii i 263

Controls how aggressively restricted selection is used.

158 APPENDIX H. PARAMETERS REFERENCE

o MSK_IPAR_SIM PRIMAL _SELECTIONttt ittt et e 263
Controls the primal simplex strategy.

H.1.6 Dual simplex optimizer parameters.

Parameters defining the behavior of the dual simplex optimizer for linear problems.

o MSK_ TPAR STM DUAL CRASH ..ottt ittt et e e et e e e e e e 258
Controls whether crashing is performed in the dual simplex optimizer.

e MSK_TPAR_SIM DUAL RESTRICT _SELECTIONttt ettt ettt et 258
Controls how aggressively restricted selection is used.

o MSK_TPAR_STIM DUAL SELECTION . ..ttt ettt ettt et e e ettt e e et 259
Controls the dual simplex strategy.

H.1.7 Network simplex optimizer parameters.

Parameters defining the behavior of the network simplex optimizer for linear problems.

o MSK_TPAR LOG_SIM NETWORK _FREQcutnttti it ettt et et et 234
Controls the network simplex logging frequency.

o MSK_TIPAR STM NETWORK DETECTttt e e ettt et et ettt et 261
Level of aggressiveness of network detection.

o MSK_TPAR STM NETWORK DETECT _HOTSTART . ..ottt e ettt et e eee e 261
Level of aggressiveness of network detection in a simplex hot-start.

e MSK_IPAR_SIM_ REFACTOR_FREQ.ottt e e e e e e 264
Controls the basis refactoring frequency.

H.1.8 Nonlinear convex method parameters.

Parameters defining the behavior of the interior-point method for nonlinear convex problems.

@ MSK TP AR CHECK CONVE X LT Y . .ttt ittt e et et e e et e ettt et et ettt ie e 217
Specify the level of convexity check on quadratic problems

o MSK DPAR_INTPNT NL MERIT BALttt ettt et et ittt eee e eans 188
Controls if the complementarity and infeasibility is converging to zero at about equal rates.

o MSK DPAR _INTPNT NL _TOL DEEAS . ..ttt et e e ittt een 188
Dual feasibility tolerance used when a nonlinear model is solved.

o MSK DPAR_INTPNT NL_TOL MU RED. ...ttt et e ettt e it 189
Relative complementarity gap tolerance.

e MSK DPAR_INTPNT NL_TOL_NEAR REL e i 189
Nonlinear solver optimality tolerance parameter.

H.1.

PARAMETER GROUPS 159

MSK_DPAR _INTPNT _NL _TOL PEEAS ..ttt et e e e et ettt 189
Primal feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT NL_TOL REL_GAP . ..ttt e e et e et ees 189
Relative gap termination tolerance for nonlinear problems.

MSK_DPAR_INTPNT _NL_TOL_REL_STEPttt e e et ettt ettt et 190
Relative step size to the boundary for general nonlinear optimization problems.

MSK DPAR _INTPNT TOL _INEEAS . .ttt et e e e e et e 190
Nonlinear solver infeasibility tolerance parameter.

MSK_IPAR _LOG CHECK CONVE X LT Y ittt ettt e e ettt et et et et et et ettt e 228
Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

H.1.9 The conic interior-point method parameters.

Parameters defining the behavior of the interior-point method for conic problems.

MSK _DPAR _INTPNT _CO_TOL DFE A S .ttt ettt et et et ettt e e ettt 186
Dual feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT CO_TOL _INEFEAS .. e e e et e e 187
Infeasibility tolerance for the conic solver.

MSK_DPAR_INTPNT_CO_TOL MU RED.ttt ittt e et e e et et iaae e 187
Optimality tolerance for the conic solver.

MSK_DPAR_INTPNT_CO_TOL_NEAR_RELttt e e e et 187
Optimality tolerance for the conic solver.

MSK _DPAR _INTPNT CO_TOL PEEAS ..ttt ettt e et e e e e e 188
Primal feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT_CO_TOL_REL_GAP . ..t e e e e e 188
Relative gap termination tolerance used by the conic interior-point optimizer.

H.1.10 The mixed-integer optimization parameters.

MSK TP AR LOG MIO .ttt ettt ettt et et et e e ettt e e et e e e 231
Controls the amount of log information from the mixed-integer optimizers.

MSK_TIPAR_LOG-MIO_FREQ. ...\ttt e e e e et e e 231
The mixed-integer solver logging frequency.

MSK_IPAR MIO BRANCH DIR ... e e e e e 235
Controls whether the mixed-integer optimizer is branching up or down by default.

160

APPENDIX H. PARAMETERS REFERENCE

MSK_TIPAR_MIO_BRANCH_PRIORITIES USEttt e 236
Controls whether branching priorities are used by the mixed-integer optimizer.

MSK_TIPAR_MIO_CONSTRUCT _SOL.ttt e e e e e et et 236
Controls if an initial mixed integer solution should be constructed from the values of the integer
variables.

MSK _TPAR MIO CONT SO . ettt ettt et et et ettt e e et e et e e e e e et et ettt aeennns 236
Controls the meaning of interior-point and basic solutions in mixed integer problems.

MSK_IPAR MIO_CUT_LEVEL _ROOTttt e e it 237
Controls the cut level employed by the mixed-integer optimizer at the root node.

MSK_TPAR MIO _CUT _LEVEL TREE.ttt et e ettt ettt 237
Controls the cut level employed by the mixed-integer optimizer in the tree.

MSK_DPAR MIO DISABLE TERM TIMEttt ettt et it eie e 193
Certain termination criteria is disabled within the mixed-integer optimizer for period time spec-
ified by the parameter.

MSK_TIPAR MIO_FEASPUMP LEVELttt it ettt enns 237
Controls the feasibility pump heuristic which is used to construct a good initial feasible solution.

MSK_TIPAR MIO_HEURISTIC _LEVELttt ittt ittt ettt et et e tie et 238
Controls the heuristic employed by the mixed-integer optimizer to locate an initial integer feasible
solution.

MSK_DPAR_ MIO_HEURISTIC . TIMEttt e et et e e eaas 194
Time limit for the mixed-integer heuristics.

MOK TP AR MIO HOT ST AR ..ttt ettt et e e e e e e e e e e ittt ettt e 238
Controls whether the integer optimizer is hot-started.

MK TP AR MI O KEE P BA S S .ttt ettt et e e ettt ettt ettt et et et e ettt 238
Controls whether the integer presolve keeps bases in memory.

MSK_TPAR MIO MAX NUM BRANCHES . . ittt ittt ettt et et et e et it e i 239
Maximum number of branches allowed during the branch and bound search.

MSK_TIPAR MIO MAX NUM REL A S . .ttt e e e e e e e e e e e e e e 239
Maximum number of relaxations in branch and bound search.

MSK_TPAR MIO MAX NUM SOLUTIONS . ..ttt ettt et e et et e et ettt 240
Controls how many feasible solutions the mixed-integer optimizer investigates.

MSK DPAR MIO MAX TIME . Lottt et e e e et e e e e e e e e e e e e e e e ettt 194
Time limit for the mixed-integer optimizer.

MSK_DPAR MIO MAX TIME APRX OPT ..ttt e et e e e ettt ettt eeaee 194
Time limit for the mixed-integer optimizer.

H.1.

PARAMETER GROUPS 161

MSK DPAR MIO NEAR TOL _ABS GAP . .ttt e e e et e et et ettt et 195
Relaxed absolute optimality tolerance employed by the mixed-integer optimizer.

MSK_DPAR_MIO_NEAR TOL REL_GAP e i 195
The mixed-integer optimizer is terminated when this tolerance is satisfied.

MSK_IPAR_MIO_NODE_OPTIMIZERttt et e 240
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

MSK_TIPAR_MIO_NODE_SELECTION\ttt ettt ettt et e e ie e it 241
Controls the node selection strategy employed by the mixed-integer optimizer.

MSK_TPAR MIO _OPTIMIZER MODE ...ttt ettt ettt ettt e ittt ettt e it 241
An exprimental feature.

MSK_TIPAR MIO PRESOLVE AGGREGATE. it e e e et i 242
Controls whether problem aggregation is performed in the mixed-integer presolve.

MSK_IPAR_MIO_PRESOLVE PROBINGttt e i 242
Controls whether probing is employed by the mixed-integer presolve.

MSK_TPAR MIO PRESOLVE USE. . ..ttt ittt ettt e et e e e e ettt eiae 242
Controls whether presolve is performed by the mixed-integer optimizer.

MSK_DPAR _MIO REL _ADD _CUT _LIMITED ..ttt ittt ettt ettt ettt e e et et et e 195
Controls cut generation for mixed-integer optimizer.

MSK_DPAR MIO REL _GAP CONST . .ttt e e e et et e e e e e e et 195
This value is used to compute the relative gap for the solution to an integer optimization problem.

MSK_TIPAR_MIO_ROOT_OPTIMIZERttt e it e et et e eaes 242
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

MSK_TIPAR MIO_STRONG_BRANCH.ttt e e e e et e 243
The depth from the root in which strong branching is employed.

MSK_DPAR MIO _TOL _ABS GAP . .ttt e e e e e et 196
Absolute optimality tolerance employed by the mixed-integer optimizer.

MSK_DPAR MIO_TOL_ABS RELAX _INT ...ttt e e e et e et e 196
Integer constraint tolerance.

MSK DP AR MI O TOL FE A S . .ttt ittt e e e e e et e et e e et e e e e e 196
Feasibility tolerance for mixed integer solver. Any solution with maximum infeasibility below
this value will be considered feasible.

MSK_DPAR MIO _TOL _REL _GAP . ..ttt e et e et et et et 197
Relative optimality tolerance employed by the mixed-integer optimizer.

MSK_DPAR MIO_TOL REL RELAX TINT ...ttt ettt e e e et et e e 197
Integer constraint tolerance.

MSK DPAR MI O TOL X . e ettt ettt et et e e e e e e e e ettt e e e et e et et et et 197
Absolute solution tolerance used in mixed-integer optimizer.

162

APPENDIX H. PARAMETERS REFERENCE

H.1.11 Presolve parameters.

MSK_TPAR PRESOLVE ELIM FILL ...ttt ettt ettt e e e e et ettt et e iaenen 247
Maximum amount of fill-in in the elimination phase.

MSK_TIPAR_PRESOLVE_ELIMINATOR_MAX NUM_TRIES et c e i 248
Control the maximum number of times the eliminator is tried.

MSK_TPAR PRESOLVE ELIMINATOR USEttt et et et ens 248
Controls whether free or implied free variables are eliminated from the problem.

MSK _IPAR PRESOLVE LEVEL ..ottt et e e et et et et et et e i i 248
Currently not used.

MSK_TIPAR_PRESOLVE_LINDEP _USEttt et e et et et 248
Controls whether the linear constraints are checked for linear dependencies.

MSK_TIPAR_PRESOLVE_LINDEP WORK_LIM.ttt e it e 249
Controls linear dependency check in presolve.

MSK DP AR PRESOLVE TOL AT .ttt ettt e e e et ettt ettt et e ettt ettt eiaann 198
Absolute zero tolerance employed for constraint coefficients in the presolve.

MSK_DPAR PRESOLVE _TOL _LIN DEPttt ittt et et e e e e e et i 198
Controls when a constraint is determined to be linearly dependent.

MSK DPAR PRESOLVE TOL S . ..ttt ittt e e e e e e e e e e e et ettt 198
Absolute zero tolerance employed for slack variables in the presolve.

MSK _DPAR PRESOLVE TOL X . .ttt ittt ettt e e e e e e et et et ie et 199
Absolute zero tolerance employed for variables in the presolve.

MSK_IPAR PRESOLVE _USEttt ittt ettt et e ettt et 249
Controls whether the presolve is applied to a problem before it is optimized.

H.1.12 Termination criterion parameters.

Parameters which define termination and optimality criteria and related information.

MSK_DPAR BAST S REL _TOL S .ttt ittt et et et e et it et 182
Maximum relative dual bound violation allowed in an optimal basic solution.

MK DP AR BA ST S TOL S . ettt ettt e e e e e e e e e e e e e e et ettt et 183
Maximum absolute dual bound violation in an optimal basic solution.

MK D P AR BA S T S TOL X . ittt ittt e e e e e e e e e e et et e e e e 183
Maximum absolute primal bound violation allowed in an optimal basic solution.

MSK_TIPAR BI MAX TTERATION S . .ttt ettt e e e e e e e e e e e e e e e 216
Maximum number of iterations after basis identification.

H.1.

PARAMETER GROUPS 163

MSK_DPAR _INTPNT _CO_TOL _DEFEAS . ..ttt e et et e e e e ettt et et e 186
Dual feasibility tolerance used by the conic interior-point optimizer.

MSK DPAR _INTPNT CO_TOL _INEFEAS ..t e e e et ettt et 187
Infeasibility tolerance for the conic solver.

MSK_DPAR_INTPNT_CO_TOL_MU_RED. . ..ttt ettt e et e ettt e ettt 187
Optimality tolerance for the conic solver.

MSK_DPAR_INTPNT_CO_TOL_NEAR RELttt et et ettt 187
Optimality tolerance for the conic solver.

MSK_DPAR _INTPNT CO_TOL PEE S .ttt et e et e e e e ettt ettt 188
Primal feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT_CO_TOL_REL_GAP . ..ttt e e et et et ees 188
Relative gap termination tolerance used by the conic interior-point optimizer.

MSK_IPAR_INTPNT MAX _ITERATIONSttt e e e et e i 222
Controls the maximum number of iterations allowed in the interior-point optimizer.

MSK _DPAR_INTPNT NL _TOL DEEAS ..ttt ittt et et e e e e e et ettt 188
Dual feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT_NL_TOL_MU_RED.t 189
Relative complementarity gap tolerance.

MSK_DPAR_INTPNT NL_TOL_NEAR RELttt e e et et 189
Nonlinear solver optimality tolerance parameter.

MSK_DPAR_INTPNT_NL_TOL_PFEAS e i 189
Primal feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT NL_TOL REL_GAP . ..ttt et e e e e et e et ee 189
Relative gap termination tolerance for nonlinear problems.

MSK_DPAR_INTPNT TOL DEEAS . ottt e e e e e e e 190
Dual feasibility tolerance used for linear and quadratic optimization problems.

MSK DPAR _INT PN T TOL TN A S . ittt e et e e e e e e et e 190
Nonlinear solver infeasibility tolerance parameter.

MSK_DPAR_INTPNT_TOL_MU_REDttt e e e e e et 191
Relative complementarity gap tolerance.

MSK DPAR _INT PN T TOL PR A S . . ittt ettt e e e e e e e e et 191
Primal feasibility tolerance used for linear and quadratic optimization problems.

MSK_DPAR_INTPNT _TOL_REL_GAP . .. ot e e e e e et 192
Relative gap termination tolerance.

MSK DPAR _LOWER _OBJ _CUT ..ttt ittt et et et et e ettt e ettt ettt et 193
Objective bound.

164 APPENDIX H. PARAMETERS REFERENCE

o MSK DPAR LOWER_OBJ_CUT_FINITE TRH......c.uiuitittt ittt ittt 193
Objective bound.

e MSK DPAR MIO DISABLE TERM TIMEttt et ettt ettt eie e 193
Certain termination criteria is disabled within the mixed-integer optimizer for period time spec-
ified by the parameter.

o MSK_TPAR MIO MAX NUM_ BRANCHESttt e e e e ettt et et 239
Maximum number of branches allowed during the branch and bound search.

o MSK_TPAR MIO MAX NUM_SOLUTIONS ..ttt ettt ettt e e e e e ettt iie e 240
Controls how many feasible solutions the mixed-integer optimizer investigates.

o MSK DPAR MIO MAX TIME. .ottt e e e e e e e e e 194
Time limit for the mixed-integer optimizer.

o MSK DPAR MIO NEAR TOL REL GAPttt et e ettt e ettt e e eeeens 195
The mixed-integer optimizer is terminated when this tolerance is satisfied.

o MSK DPAR MIO REL _GAP CONST ...ttt ettt e et et e et ittt 195
This value is used to compute the relative gap for the solution to an integer optimization problem.

o MSK DPAR MIO TOL REL GAP ..ottt et e e e et et ettt ettt e e e et et i 197
Relative optimality tolerance employed by the mixed-integer optimizer.

o MSK_ DPAR_OPTIMIZER MAX TIME ...ttt e e e et e e e e e e e 198
Solver time limit.

o MSK_IPAR_STIM MAX TITERATIONS ...ttt e e e et et e 260
Maximum number of iterations that can be used by a simplex optimizer.

o MSK DPAR UPPER OBJ _CUT ...ttt ettt et e e e e e e e e et e ettt 200
Objective bound.

e MSK_DPAR_UPPER OBJ_CUT_FINITE TRH...... (0ot iiniiiiiiiiiiiie e 200
Objective bound.

H.1.13 Progress call-back parameters.

o MSK DPAR_CALLBACK _FREQttt e e et e et e e e 183
Controls progress call-back frequency.

@ MSK_IPAR _SOLUTION CALLBACK ..\ttt ettt et et e ettt et e et et ettt 267
Indicates whether solution call-backs will be performed during the optimization.

H.1.14 Non-convex solver parameters.

@ MSK_IPAR LOG NONCONVE K ..ttt ettt e e e et et et et e e et ettt ens 231
Controls amount of output printed by the nonconvex optimizer.

H.1. PARAMETER GROUPS 165

o MSK_TPAR NONCONVEX MAX _ITERATIONS ..ottt ettt et e e et e ettt et 243
Maximum number of iterations that can be used by the nonconvex optimizer.

o MSK DPAR NONCONVEX TOL _FEAS . ..ttt ettt et e e e e e e e ettt 197
Feasibility tolerance used by the nonconvex optimizer.

o MSK DPAR _NONCONVEX _TOL_OPTttt e e et et 197
Optimality tolerance used by the nonconvex optimizer.

H.1.15 Feasibility repair parameters.

o MSK DPAR _ FEASREPATR TOL ...ttt e e e et e et e 186
Tolerance for constraint enforcing upper bound on sum of weighted violations in feasibility repair.

H.1.16 Optimization system parameters.

Parameters defining the overall solver system environment. This includes system and platform related
information and behavior.

o MSK_TPAR_AUTO_UPDATE_SOL_INEFQ ...\ttt ittt e ettt 214
Controls whether the solution information items are automatically updated after an optimization
is performed.

o MSK TPAR CACHE LICENSE . ..ttt ettt et e e et e e e e e ettt 216
Control license caching.

o MSK_ TPAR CACHE STZE Ll ..ttt e e et e et 216
Specifies the size of the level 1 cache of the processor.

@ MSK TP AR CACHE ST ZE L ..ttt ettt ettt ettt e et e ettt et et e ettt 217
Specifies the size of the level 2 cache of the processor.

0 MK TP AR CPU T Y P L. ot et e e e et et et s 219
Specifies the CPU type.

o MSK TPAR _INTPNT NUM_ THREADS . ..ttt e e e et e et ettt ettt e 223
Controls the number of threads employed by the interior-point optimizer. If set to a positive
number MOSEK will use this number of threads. If zero the number of threads used will equal
the number of cores detected on the machine.

e MSK_IPAR_ LICENSE_CACHE _TIME i i e e et 226
Setting this parameter no longer has any effect.

o MSK IPAR LICENSE CHECK TIMEttt ettt ittt et ettt 226
Controls the license manager client behavior.

o MK TPAR LICENSE WAL .ttt e e e et e e et ens 227
Controls if MOSEK should queue for a license if none is available.

o MSK TPAR LOG_STORAGEttt ettt e et e et e e et e et e et 235
Controls the memory related log information.

166

APPENDIX H. PARAMETERS REFERENCE

MSK_IPAR_TIMING _LEVELttt e e et e et e 268
Controls the a amount of timing performed inside MOSEK.

H.1.17 Output information parameters.

MSK_TIPAR_INFEAS REPORT_LEVELttt ettt et et 221
Controls the contents of the infeasibility report.

MSK_TIPAR_LICENSE_SUPPRESS EXPIRE WRNS.ttt i e e 227
Controls license manager client behavior.

MSK _TPAR LOG . ottt ittt et et e e e e e e e e e e e e e e 228
Controls the amount of log information.

MO K TP AR LOG BT .ttt e e e et e e et e e e 228
Controls the amount of output printed by the basis identification procedure. A higher level
implies that more information is logged.

MSK_IPAR LOG BI_FREQ.ttt e e e e it e et 228
Controls the logging frequency.
MSK_IPAR_LOG_CUT _SECOND _OPT . ..ttt ettt e et e et e e et ees 229

Controls the reduction in the log levels for the second and any subsequent optimizations.

MSK_TIPAR LOG_FACTOR. . .\ttt ittt et e e e e e et et e ettt e et 229
If turned on, then the factor log lines are added to the log.

MSK _TPAR LOG FEASREP AT R .ottt e e e e e et et et e e ettt 230
Controls the amount of output printed when performing feasibility repair.

MO K TP AR LOG I E . ottt e e e et et et e e e e e e e e e e 230
If turned on, then some log info is printed when a file is written or read.

MSK_TPAR LOG HEAD . ..ttt ittt et e e e e e e e e et ittt eens 230
If turned on, then a header line is added to the log.

MSK TP AR LOG INFE A S AN A .ttt e e e et et e et e e e 230
Controls log level for the infeasibility analyzer.

MSK_TPAR LOG TN PN T . . ettt ettt e e e e e e e et e e e e e et 231
Controls the amount of log information from the interior-point optimizers.

MSK_TPAR LOG MIO . .ttt ittt et e et e e e e e e e e e e et e et e e et et 231
Controls the amount of log information from the mixed-integer optimizers.

MSK_TPAR LOG MIO FREQ. ..ttt ettt ettt et e e e e e e e et e et et 231
The mixed-integer solver logging frequency.

MSK_TPAR _LOG NONCONVE K . .\ttt e ittt et et ettt ettt e et e et e e et e ettt 231
Controls amount of output printed by the nonconvex optimizer.

H.1.

PARAMETER GROUPS 167

MSK_TIPAR_LOG_OPTIMIZER.ttt e e et it et et 232
Controls the amount of general optimizer information that is logged.

MSK_TPAR _LOG_ORDER . . .ottt ittt ettt ettt et e et e et ettt et et ettt 232
If turned on, then factor lines are added to the log.

MSK_TIPAR LOG PARAM . ottt e e e e e e e e ettt 232
Controls the amount of information printed out about parameter changes.

MSK_IPAR_LOG_RESPONSEttt e e e ettt ittt 233
Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

MSK _TPAR LOG SEN S T T IV LT Y . ettt ittt e e e et e e e et e e e e e ettt eens 233
Control logging in sensitivity analyzer.

MSK_TIPAR LOG _SENSTITIVITY OPT ..ttt ettt et e et e et et 233
Control logging in sensitivity analyzer.

MSK _TPAR LOG ST M . .ttt ittt et e e e e e e e 233
Controls the amount of log information from the simplex optimizers.

MSK_TPAR LOG_STIM FREQ. .« .ttt ettt ettt e et et e et e et e e e e ettt et 234
Controls simplex logging frequency.

MSK_TPAR LOG_STIM MINDOR ...ttt ettt ettt et e et e e e e e e et et it eae e 234
Currently not in use.

MSK_TIPAR LOG_SIM_NETWORK _FREQttt e e e et e e 234
Controls the network simplex logging frequency.

MSK_IPAR_LOG_STORAGE e e i 235
Controls the memory related log information.

MSK_TPAR MAX NUM_WARNINGSttt e et e e e e et e et et 235
Waning level. A higher value results in more warnings.

MSK_TIPAR WARNING LEVEL . ..ttt ettt e e e e e e et et et eaae e 268
Warning level.

H.1.18 Extra information about the optimization problem.

o MSK_IPAR OBJECTIVE SENSE. ... i e e et e et 243

If the objective sense for the task is undefined, then the value of this parameter is used as the
default objective sense.

168

APPENDIX H. PARAMETERS REFERENCE

H.1.19 Overall solver parameters.

MSK_TPAR BT CLEAN_OPTIMIZERttt ittt ettt et e e e e e e eee e 215
Controls which simplex optimizer is used in the clean-up phase.

MSK_TPAR_CONCURRENT _NUM_OPTIMIZERSttt ittt ettt et eeee e eiaeens 218
The maximum number of simultaneous optimizations that will be started by the concurrent
optimizer.

MSK_TPAR_CONCURRENT_PRIORITY DUAL_SIMPLEXt i 218
Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.
MSK_TPAR_CONCURRENT _PRIORITY FREE STIMPLEXttt eeeaee 218
Priority of the free simplex optimizer when selecting solvers for concurrent optimization.
MSK_TPAR_CONCURRENT PRIORITY INTPNTottt ittt eie e 218

Priority of the interior-point algorithm when selecting solvers for concurrent optimization.

MSK_TPAR_CONCURRENT_PRIORITY_PRIMAL SIMPLEX. ettt 218
Priority of the primal simplex algorithm when selecting solvers for concurrent optimization.

MSK_TPAR DATA CHECK . . . ettt ettt et et e e e e e e et e e e et e et ettt e e 219
Enable data checking for debug purposes.

MSK_IPAR FEASREPATR OP T IMIZE . .ttt e e e e e e e ettt et e et 220
Controls which type of feasibility analysis is to be performed.

MSK_TPAR_INFEAS PREFER PRIMALttt ittt et ettt eeeae e 220
Controls which certificate is used if both primal- and dual- certificate of infeasibility is available.

LSy SO o N I O 0 O I 227
Controls if MOSEK should queue for a license if none is available.

MSK_IPAR MIO_CONT _SOL. .\ttt ittt ettt e e e i 236
Controls the meaning of interior-point and basic solutions in mixed integer problems.

MSK_TPAR MIO_LOCAL_BRANCH _NUMBER.ttt e e et ettt et e 239
Controls the size of the local search space when doing local branching.

MSK_IPAR MIO MODEottt e e e e e e e e e e e 240
Turns on/off the mixed-integer mode.

MSK_TIPAR OPTIMIZER ...ttt ettt ettt e e e e et e e e e ettt ens 246
Controls which optimizer is used to optimize the task.

MSK_IPAR PRESOLVE_LEVELottt e e e et e 248
Currently not used.

MSK TP AR PRESOLVE USE . .ottt e e ettt ettt et et et e e et ettt e 249
Controls whether the presolve is applied to a problem before it is optimized.

MK TP AR _SENS I T IV I Y AL L . ottt ettt e et et et e ettt e e ettt ettt 256
Controls sensitivity report behavior.

H.1.

PARAMETER GROUPS 169

MSK_TIPAR_SENSITIVITY OPTIMIZERttt e et e 256
Controls which optimizer is used for optimal partition sensitivity analysis.

MOK TP AR SENS I T IV I Y Ty PE . oottt e e et et ettt ettt et et 257
Controls which type of sensitivity analysis is to be performed.

MSK_TPAR SOLUTION _CALLBACK . . .ttt ettt et e e e et e e e e e e ettt 267
Indicates whether solution call-backs will be performed during the optimization.

H.1.20 Behavior of the optimization task.

Parameters defining the behavior of an optimization task when loading data.

MSK_TPAR _ALLOC _ADD QN Z . . ittt ettt et e e e e e e e ettt et et et ettt 213
Controls how the quadratic matrixes are extended.

MSK_SPAR_FEASREPAIR NAME PREF IX. ...ttt i e e et e 278
Feasibility repair name prefix.

MSK_SPAR_FEASREPAIR NAME _SEPARATOR . ..o ettt ettt ees 278
Feasibility repair name separator.

MSK_SPAR FEASREPATIR NAME WSUMVIOLttt ittt et et e e et 278
Feasibility repair name violation name.

MSK _IPAR READ _ADD AN Z . .ottt et e et e et et e et et e e e et e e e e 249
Controls how the constraint matrix is extended.

MSK_TPAR _READ _ADD _CON . .ttt ittt et et e e et et et e et e ettt ettt e i 250
Additional number of constraints that is made room for in the problem.

MSK_TPAR _READ _ADD _CONE .. .ttt ettt et et e ettt ettt et et ettt 250
Additional number of conic constraints that is made room for in the problem.

MSK_TIPAR READ_ADD_QNZ. . .ottt e e et e e e e e et 250
Controls how the quadratic matrixes are extended.

MSK_TPAR READ _ADD VAR . .ttt ittt e e e e e et e et e e e e e e e 250
Additional number of variables that is made room for in the problem.

MOK TP AR READ AN Z . .\ttt e e e e et e et e e et et e e e e 251
Controls the expected number of constraint non-zeros.

MSK _TPAR READ CON . . ettt ettt e e e e e e e e e e e e e et et et et 251
Controls the expected number of constraints.

MSK_TIPAR READ _CONE. . ..ttt e et e e e e et e et 251
Controls the expected number of conic constraints.

MSK _TPAR READ QN Z . .\ttt ettt ettt e e et e et et e e e e e e et ettt 255
Controls the expected number of quadratic non-zeros.

170

APPENDIX H. PARAMETERS REFERENCE

MSK_IPAR _READ _TASK _IGNORE PARAM . ..ottt e e e e et e e et et et e e 255
Controls what information is used from the task files.

MO K TP AR READ VAR .ttt e e e et e et e e et e e e e e e e 256
Controls the expected number of variables.

MSK_IPAR WRITE TASK INC SOL . ..ttt e e e e e e e e e e e e e e 275
Controls whether the solutions are stored in the task file too.

H.1.21 Data input/output parameters.

Parameters defining the behavior of data readers and writers.

MSK_SPAR _BAS _SOL FILE NAMEttt e e e e e e e e e e e e 277
Name of the bas solution file.

MSK _SP AR DAT A FILE NAME . .\ttt et et e et et et et e et et et et et et e e 277
Data are read and written to this file.

MSK_SPAR DEBUG _FILE NAMEttt e e ittt et ettt et e i 278
MOSEK debug file.

MSK_TPAR _INFEAS REPORT _AUTO ..ottt ettt e e e et e e e e e e e e 220
Turns the feasibility report on or off.

MSK_SP AR _INT _SOL _FILE NAME . . ittt et e et et et ettt et et et ettt et e e 279
Name of the int solution file.

MSK_SPAR _ITR _SOL _FILE NAME . . ittt e e e e et e e e e e e e e e e e i 279
Name of the itr solution file.

MK TP AR LOG F I . ..ttt e et e et et et ettt e e e et 230
If turned on, then some log info is printed when a file is written or read.

MSK_TPAR_LP WRITE_IGNORE_INCOMPATIBLE ITEMSottt eee e 235
Controls the result of writing a problem containing incompatible items to an LP file.

MSK_IPAR_OPF MAX_TERMS_PER_LINE i i e 244
The maximum number of terms (linear and quadratic) per line when an OPF file is written.

MSK_IPAR_OPF _WRITE_HEADER.ttt e e e e e e e e e e e e 244
Write a text header with date and MOSEK version in an OPF file.

MSK_IPAR OPF WRITE _HINTS ...t e e e e et e e 244
Write a hint section with problem dimensions in the beginning of an OPF file.

MSK_TPAR _OPF _WRITE PARAME T RS ..ottt e e et et et e et et et 244
Write a parameter section in an OPF file.

MSK_TIPAR_OPF _WRITE PROBLEM. ...ttt ittt ittt et et et et e et ettt 245
Write objective, constraints, bounds etc. to an OPF file.

H.1.

PARAMETER GROUPS

MSK _IP AR _OPF _WRITE SO BAS . . ittt e et e et et et et et et et e e e
Controls what is written to the OPF files.

MSK_IPAR _OPF _WRITE SOL I G . . ittt e e e e e e e e e e e e e e e
Controls what is written to the OPF files.

MSK _IP AR _OPF _WRITE SOL T R ..ttt e e e e e et et et et et ettt et e e
Controls what is written to the OPF files.

MSK_IPAR_OPF _WRITE _SOLUTIONS ..ottt ittt e e e e e et e e et e e e e
Enable inclusion of solutions in the OPF files.

MSK_SPAR_PARAM _COMMENT LS TGN ..ttt e e e e e et et ettt et ettt et et et e
Solution file comment character.

MSK_TPAR PARAM READ CASE NAMEt e e et et e
If turned on, then names in the parameter file are case sensitive.

MSK_SPAR _PARAM READ FILE NAME ...ttt et e e ettt ettt et
Modifications to the parameter database is read from this file.

MSK_TPAR PARAM READ _IGN_ERRORttt e et et et
If turned on, then errors in paramter settings is ignored.

MSK_SPAR_PARAM WRITE FILE NAME e i
The parameter database is written to this file.

MSK_IPAR _READ _ADD AN Z . . ottt e e e e e e e e e e e e e e e
Controls how the constraint matrix is extended.

MSK_TIPAR READ _ADD _CON. . .ttt ittt et e e e e it et et
Additional number of constraints that is made room for in the problem.

MSK_TPAR READ _ADD _CONE . ..ottt ettt et e et e e e ettt e e e et
Additional number of conic constraints that is made room for in the problem.

MSK_TIPAR READ_ADD_QNZ. . . oottt e e et e e e e et
Controls how the quadratic matrixes are extended.

MSK_TPAR READ _ADD VA R. ..ottt et e e et e e e e e e e et e e ettt i
Additional number of variables that is made room for in the problem.

MSK_IPAR READ _ANZ . ..ottt e e e e e e e et et
Controls the expected number of constraint non-zeros.

MSK_TPAR READ CON . ..ttt ittt et et e et e e e e e e e e e et e e e e e e et eens
Controls the expected number of constraints.

MSK_IPAR READ _CONEttt e e e e et e e e e e
Controls the expected number of conic constraints.

MSK_TPAR_READ DATA _COMPRESSED ...ttt ettt et et ettt ettt e e ettt et e e
Controls the input file decompression.

172

APPENDIX H. PARAMETERS REFERENCE

MSK _IPAR READ DAT A FORM AT .ttt e e e et e et et et et et e et e e e 252
Format of the data file to be read.

MSK_TPAR READ KEEP FREE CONttt ettt et e e ettt et 252
Controls whether the free constraints are included in the problem.

MSK_TPAR_READ_LP_DROP_NEW_VARS_IN_BOU.ttt it e 252
Controls how the LP files are interpreted.

MSK_TIPAR_READ _LP _QUOTED NAMES ...ttt ettt et ettt ettt ettt 253
If a name is in quotes when reading an LP file, the quotes will be removed.

MSK_SPAR_READ_MPS _BOU NAME . . oottt e e e e e et 280
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is
used.

MSK_TPAR READ MPS FORMAT . . .ttt ettt et e e e et e e e et et e 253
Controls how strictly the MPS file reader interprets the MPS format.

MSK_TIPAR READ_MPS_KEEP _INTttt e e e e et et 253
Controls if integer constraints are read.

MSK_SPAR_READ MPS OB NAMEttt ettt et e ettt et e ettt 280
Objective name in the MPS file.

MSK_IPAR READ _MPS OBJ SENSE . . ottt et e e et et e e et e e e e e e e 254
Controls the MPS format extensions.

MSK_IPAR_READ _MPS _QUOTED NAMES . ..ottt e ettt ettt et ettt et et e e 254
Controls the MPS format extensions.

MSK_SPAR_READ MP S RAN NAME . .ttt e e e e et et et et et i e e 280
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

MSK_TPAR READ MP S REL A X .ottt ettt et e e e et e e et e e e e et et et 254
Controls the meaning of integer constraints.

MSK_SPAR_READ MPS RHS NAME . ..ttt e e e et et et et e e e 281
Name of the RHS used. An empty name means that the first RHS vector is used.

MSK _IPAR READ MP S WIDTH . ettt et e et et et e et et et ettt et e 255
Controls the maximal number of characters allowed in one line of the MPS file.

MSK_TIPAR READ _Q MODE.ttt ettt e et et e e e e et e e e et et et et 255
Controls how the QQ matrices are read from the MPS file.

MSK_IPAR READ _QNZ . . . ottt e e e e e et i et 255
Controls the expected number of quadratic non-zeros.

MSK_IPAR_READ _TASK _IGNORE PARAM . ..ottt e e e e e e e e e 255
Controls what information is used from the task files.

H.1.

PARAMETER GROUPS 173

MK TP AR READ VAR .ttt e e et e et e e e e et et et et et e 256
Controls the expected number of variables.

MSK_SPAR SENSITIVITY FILE NAME.ttt e ittt 281
Sensitivity report file name.

MSK_SPAR _SENSITIVITY RES FILE NAMEttt it et et ittt 281
Name of the sensitivity report output file.

MSK_SPAR _SOL _FILTER _XC LW . .ttt ittt e e e e e e e e e e e e e 281
Solution file filter.

MSK _SP AR _SOL _FILTER X C UP R ..ottt e et et et e et et e ettt et e 282
Solution file filter.

MSK_SPAR _SOL _FILTER X L OW . .ttt ittt e e e e e e e e e e e e e e e e e 282
Solution file filter.

MSK _SP AR _SOL _FILTER X UP R ..ttt et e e e e et e et et e e ettt et e 282
Solution file filter.

MSK_IPAR _SOL _QUOTED NAMES . . .ttt ettt e e e e ettt ettt ettt e et et e et 267
Controls the solution file format.

MSK_TIPAR_SOL_READ_NAME_WIDTHttt e e e e e e 267
Controls the input solution file format.

MSK_TPAR SOL READ WIDTH . ..ttt ettt e e e e e e e e e et ettt 267
Controls the input solution file format.

MSK _SP AR ST AT FILE NAME . ..ottt e ettt et et et et et et et et e et e 283
Statistics file name.

MK SP AR ST AT KEY . ottt et et et e e e e e e e e e et e et e e 283
Key used when writing the summary file.

MSK _SPAR ST AT N AME . o e e e e e e e 283
Name used when writing the statistics file.

MSK_IPAR WRITE _BAS CONSTRAINT S . ..ttt e e e e e e e e e e e e 268
Controls the basic solution file format.

MSK _IPAR WRITE BAS HE D ..\ttt e et e et et e et et et et et et e e e 269
Controls the basic solution file format.

MSK_IPAR WRITE BAS VARIABLES ..ottt e e e e e e e e e e e e e 269
Controls the basic solution file format.

MSK_TIPAR_WRITE_DATA_COMPRESSEDttt e e et i e 269
Controls output file compression.

MSK_TPAR WRITE DAT A FORMAT . .ttt ettt e e e et et et et ettt it 269
Controls the output file format.

174

APPENDIX H. PARAMETERS REFERENCE

MSK _IPAR WRITE DAT A PARAM . .ottt e e e et e ettt ettt e e e e e iaans 270
Controls output file data.

MSK_TIPAR WRITE FREE CONttt ittt et e e et ettt ettt 270
Controls the output file data.

MSK_TPAR WRITE GENERIC NAMESttt e ittt e ettt ettt 270
Controls the output file data.

MSK_TIPAR WRITE GENERIC NAMES T0ttt ettt e et 271
Index origin used in generic names.

MSK_IPAR WRITE INT_CONSTRAINTS. ...t e e e et e i e 271
Controls the integer solution file format.

MSK_TIPAR WRITE INT HEADttt ettt ettt e e e et it ettt 271
Controls the integer solution file format.

MSK_IPAR WRITE INT_VARIABLES ... ittt e e e e et 271
Controls the integer solution file format.

MSK_SPAR_WRITE_LP_GEN_VAR NAME ittt e e e e e e e e i 283
Added variable names in the LP files.

MSK_IPAR WRITE_LP_LINE_WIDTHttt e e e i et 272
Controls the LP output file format.

MSK_TIPAR WRITE LP _QUOTED NAMES . . .ttt et et e e et 272
Controls LP output file format.

MSK_TIPAR WRITE_LP_STRICT _FORMATttt e e e e e e 272
Controls whether LP output files satisfy the LP format strictly.

MSK_TPAR WRITE LP _TERMS PER LINEttt et e e eiaee 272
Controls the LP output file format.

MSK_IPAR WRITE MPS INT ..t e e e e e e et 273
Controls the output file data.

MSK_TPAR WRITE MPS OBJ SENSE ...ttt et e e ettt et et eiiaee 273
Controls the output file data.

MSK_IPAR WRITE MPS_QUOTED _NAMES e e e e e e 273
Controls the output file data.

MSK_TPAR WRITE MPS STRICTttt ettt ettt e e e e e e e e et e et 274
Controls the output MPS file format.

MSK_TIPAR WRITE PRECTISION. ...ttt ittt ettt e et et e et enns 274
Controls data precision employed in when writing an MPS file.

MSK_IPAR WRITE _SOL _CONSTRAINTS . ..ttt e e e e e e e e e e e 274
Controls the solution file format.

H.1.

PARAMETER GROUPS 175

MSK _IP AR WRITE SOL _HE AD ..\ttt et et e et et et et et et et et ettt et e 274
Controls solution file format.

MSK_IPAR _WRITE SOL _VARI ABLES ..ottt e e et et e et e e et e e e 275
Controls the solution file format.

MSK_IPAR WRITE TASK INC SO . .ttt e e e e e e e e e e e e e e e e e 275
Controls whether the solutions are stored in the task file too.

MSK_TPAR WRITE XML _MODEttt ettt e e e e e e e e e e e et e et ettt 275
Controls if linear coefficients should be written by row or column when writing in the XML file
format.

H.1.22 Analysis parameters.

Parameters controling the behaviour of the problem and solution analyzers.

MSK TP AR AN A SOL BAS TS Lttt ettt et e e e et e e e et e et e 213
Controls whether the basis matrix is analyzed in solaution analyzer.

MSK_DPAR _ANA _SOL _INFEAS TOL . .ttt ettt ettt et ettt et e et e et eeeennn 182
If a constraint violates its bound with an amount larger than this value, the constraint name,
index and violation will be printed by the solution analyzer.

MSK_TPAR_ANA _SOL _PRINT VIOLATEDttt ettt e e e et et ettt et e 213
Controls whether a list of violated constraints is printed.

H.1.23 Solution input/output parameters.

Parameters defining the behavior of solution reader and writer.

MSK_SPAR _BAS _SOL _FILE NAMEttt e et e et e et e e e e e et e 277
Name of the bas solution file.

MSK_TPAR_INFEAS REPORT _AUT O ...ttt ittt ettt e e e e it et et e et ettt et 220
Turns the feasibility report on or off.

MSK_SPAR_INT _SOL _FILE NAMEttt e e e e e e e e e e e e e e 279
Name of the int solution file.

MSK_SP AR _ITR _SOL _FILE NAME . .ottt it e ettt et ettt et et et ettt et 279
Name of the itr solution file.

MSK_IPAR_SOL_FILTER KEEP BASTCttt et e i 266
Controls the license manager client behavior.

MSK_IPAR_SOL_FILTER_KEEP RANGEDttt e e e e e e et et e e 266
Control the contents of the solution files.

MSK_SPAR _SOL _FILTER _XC LW . .ttt ittt ettt e e e et e e e e e e e e e e e 281
Solution file filter.

176 APPENDIX H. PARAMETERS REFERENCE

o MSK_SPAR _SOL _FILTER XC _UPR ...ttt i e et et ettt et ettt et et et e e 282
Solution file filter.

@ MSK_SPAR_SOL _FILTER XX LOW . .ttt ittt e e e e e e e e e e 282
Solution file filter.

o MSK_SPAR_SOL _FILTER XX UPR ...ttt e e e e e e e e e e e e e e e 282
Solution file filter.

o MSK TPAR SOL _QUOTED NAMES . .\ttt e it e et e et ettt e et ettt e e e e e e 267
Controls the solution file format.

e MSK_IPAR_SOL_READ NAME _WIDTHot i e e et e e ean 267
Controls the input solution file format.

o MSK TPAR SOL READ WD H ..ottt e e e e e e et e et et et e et ettt ie e 267
Controls the input solution file format.

o MSK_IPAR WRITE BAS CONST RAINT S . ..ottt e e e e e e e e e e e e e e 268
Controls the basic solution file format.

@ MSK_IPAR WRITE BAS HEAD ..ttt e e et e et e e e e e e e e e e e 269
Controls the basic solution file format.

o MSK_IPAR WRITE BAS VARI ABLES ...ttt e e et et ettt et et et et e e e 269
Controls the basic solution file format.

o MSK TPAR WRITE INT CONSTRAIN TS . .ttt et e e et et et et et et et et et i e eaenn 271
Controls the integer solution file format.

@ MSK_IPAR WRITE INT HEAD ...ttt ettt ettt et et ettt it 271
Controls the integer solution file format.

o MSK_IPAR WRITE INT VARI ABLES ..ttt ittt ettt e e ettt ettt ettt 271
Controls the integer solution file format.

o MSK_IPAR WRITE SOL_CONST RAINT S . .ttt e et et e e et e et e e e e 274
Controls the solution file format.

@ MSK_TPAR WRITE SOL _HEAD ...ttt e et et ettt et et et et ettt et et e eeans 274
Controls solution file format.

o MSK_IPAR WRITE _SOL_VARIABLES ...ttt e e e e e e e e e e e 275
Controls the solution file format.

H.1.24 Infeasibility report parameters.

o MSK_IPAR INFEAS GENERIC NAMES . ..ttt e e e e et e et eee e 220
Controls the contents of the infeasibility report.

o MSK_TPAR_INFEAS REPORT _LEVELttt ettt ettt e e e e e e et eee e e 221
Controls the contents of the infeasibility report.

H.1.

PARAMETER GROUPS 177

MSK_IPAR LOG _INFEAS AN A . e e et e e i e 230
Controls log level for the infeasibility analyzer.

H.1.25 License manager parameters.

MSK_TPAR LICENSE ALLOW OVERUSEttt e e et et et ettt et e 226
Controls if license overuse is allowed when caching licenses

MSK_IPAR LICENSE_CACHE _TIMEttt e e e et e e 226
Setting this parameter no longer has any effect.

MSK_IPAR LICENSE CHECK _TIMEttt e e e et e e 226
Controls the license manager client behavior.

MSK_IPAR_LICENSE DEBUG . . .« .ttt e e e e ettt ettt e 226
Controls the license manager client debugging behavior.

MSK_IPAR LICENSE PAUSE TIMEttt e e e et e 227
Controls license manager client behavior.

MSK_IPAR_LICENSE_SUPPRESS EXPIRE WRNS.ttt i e 227
Controls license manager client behavior.

MSK TP AR LI CEN S E WA LT .ottt e e e et e et e e 227
Controls if MOSEK should queue for a license if none is available.

H.1.26 Data check parameters.

These parameters defines data checking settings and problem data tolerances, i.e. which values are
rounded to 0 or infinity, and which values are large or small enough to produce a warning.

MSK_TPAR CHECK CONVE X LT Y . ettt ittt ettt e e e et e e e et e e et i eens 217
Specify the level of convexity check on quadratic problems

MSK_TPAR CHECK TASK DA T A . ottt e et e e et e et e e ettt 217
If this feature is turned on, then the task data is checked for bad values i.e. NaNs. before an
optimization is performed.

MSK DP AR D AT A TOL AT T . ettt e e e e e e e e e e e e e e e e e e 184
Data tolerance threshold.

MSK_DPAR DATA _TOL_ AT T HUGEottt e e e e e e e e e e e e e e 184
Data tolerance threshold.

MSK_DPAR DAT A _TOL AT T LARGE . ..ottt e e e e e e e e e e e 184
Data tolerance threshold.

MSK_DPAR _DATA _TOL _BOUND _INE . .ttt e e e e e e e e e e e e e e e 185
Data tolerance threshold.

178

APPENDIX H. PARAMETERS REFERENCE

MSK_DPAR _DATA _TOL _BOUND W RN . .ottt ittt et ettt et ettt et ettt et ettt ettt e e 185
Data tolerance threshold.

MSK_DPAR DATA _TOL _C_HUGE . ..\ttt i e et et et et e et et et et et e et e e 185
Data tolerance threshold.

MSK_DPAR DAT A TOL _CJ L ARGE . .ottt e e e e e e e e e e e e e e e e 185
Data tolerance threshold.

MSK DP AR DAT A TOL QL. ottt e e e e et e e et et et et et ettt e 186
Data tolerance threshold.

MSK DP AR D AT A T 0L K . ottt e e e e e e e e e e e e e 186
Data tolerance threshold.

MSK_TPAR _LOG CHECK CONVE X LTy ..ttt et e e e e e e et e ettt ettt 228
Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

H.1.27 Debugging parameters.

These parameters defines that can be used when debugging a problem.

MSK_TPAR_AUTO_SORT _A BEFORE QP T ..ottt e e e et e et ettt 214
Controls whether the elements in each column of A are sorted before an optimization is performed.

MSK_TPAR CHECK TASK DA T A . ottt e e e e e e e e et e et e 217
If this feature is turned on, then the task data is checked for bad values i.e. NaNs. before an
optimization is performed.

H.2 Double parameters

MSK _DPAR _ANA _SOL _INFEAS TOL . .ttt ettt ettt e e e ettt et et e et e ettt ia e 182
If a constraint violates its bound with an amount larger than this value, the constraint name,
index and violation will be printed by the solution analyzer.

MSK_DPAR BAST S REL _TOL S .ttt ettt e e et e e it e et et 182
Maximum relative dual bound violation allowed in an optimal basic solution.

MSK DPAR BAS T S TOL S . ettt ettt e e et e e e et e e e e et e 183
Maximum absolute dual bound violation in an optimal basic solution.

MSK DPAR BAS T S TOL X . ittt ettt et et e e e e e et e e e e e et et 183
Maximum absolute primal bound violation allowed in an optimal basic solution.

MSK _DPAR _CALLBACK FREQ ..« ottt it ittt ettt ettt et et et ettt e ettt e 183
Controls progress call-back frequency.

H.2

DOUBLE PARAMETERS 179

MSK_DPAR_CHECK_CONVEXITY REL _TOL . ..ttt ettt ettt ettt e ittt ie e ee e ee e eaenns 183
Convexity check tolerance.

MSK DP AR D AT A TOL AT T . ettt e e e e e e e e e e e e e e e e e 184
Data tolerance threshold.

MSK_ DPAR DAT A TOL _ AT T HUGE . ..ttt e e et e et et et et et et ettt et 184
Data tolerance threshold.

MSK_ DPAR DAT A TOL AT T LARGE . .ottt e e e e e e e e e e e e e 184
Data tolerance threshold.

MSK_DPAR _DAT A _TOL _BOUND TN . .ottt ettt et ettt et ettt et ettt et e e 185
Data tolerance threshold.

MSK_DPAR_DATA _TOL_BOUND _WRN . ..ottt ittt e e e e e et e e e e e e e e 185
Data tolerance threshold.

MSK_DPAR DATA _TOL _C_HUGE . .\ttt e e et et et ettt et ettt et et e e 185
Data tolerance threshold.

MSK_DPAR DATA _TOL_CJ LARGE . .ottt e e e e e e e e e e e e e 185
Data tolerance threshold.

MSK DP AR D AT A TOL QLT ettt e e et et et et e et et e e ettt et et e 186
Data tolerance threshold.

MSK D AR D AT A T 0L K . ot ettt e e e e e e e e e e e e e 186
Data tolerance threshold.

MSK_DPAR_FEASREPATR _TOLottt e i e 186
Tolerance for constraint enforcing upper bound on sum of weighted violations in feasibility repair.

MSK _DPAR _INTPNT CO_TOL DEEAS ..ttt ettt et e e e e e et e e et 186
Dual feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT _CO_TOL _INEFEAS .. e e e et e e 187
Infeasibility tolerance for the conic solver.

MSK_DPAR_INTPNT_CO_TOL_MU_RED.ttt e 187
Optimality tolerance for the conic solver.

MSK_DPAR_INTPNT_CO_TOL_NEAR_RELttt e e e et 187
Optimality tolerance for the conic solver.

MSK_DPAR_INTPNT_CO_TOL _PEFEAS ... e e e 188
Primal feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT_CO_TOL_REL_GAP . ..ttt e e e e i 188
Relative gap termination tolerance used by the conic interior-point optimizer.

MSK _DPAR_INTPNT _NL MERIT BAL ...ttt ittt et ettt ettt ettt 188
Controls if the complementarity and infeasibility is converging to zero at about equal rates.

180

APPENDIX H. PARAMETERS REFERENCE

MSK_DPAR _INTPNT _NL _TOL _DEFEAS . . .ttt ittt et et e e e e e ettt et et 188
Dual feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT NL_TOL MU RED.ttt et et et et et e e 189
Relative complementarity gap tolerance.

MSK_DPAR_INTPNT_NL_TOL_NEAR_RELttt e e e et 189
Nonlinear solver optimality tolerance parameter.

MSK _DPAR _INTPNT NL TOL PEEAS ..ttt ettt e e e e e e e e i e 189
Primal feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT_NL_TOL_REL_GAP . ..ttt e e e et 189
Relative gap termination tolerance for nonlinear problems.

MSK_DPAR_INTPNT NL _TOL_ REL _STEP ...ttt e e et ettt ettt ettt 190
Relative step size to the boundary for general nonlinear optimization problems.

MSK_DPAR _INTPNT TOL DEEAS . .ottt et e e e e e e e 190
Dual feasibility tolerance used for linear and quadratic optimization problems.

MSK DPAR _INTPNT TOL DS AR . . .t e e et et e ettt et e eae e 190
Controls the interior-point dual starting point.

MSK DPAR _INT PN T TOL _INEEAS . .ottt e e e e e et e 190
Nonlinear solver infeasibility tolerance parameter.

MSK_DPAR_INTPNT_TOL_MU_REDttt e e et e e e 191
Relative complementarity gap tolerance.

MSK DPAR _INTPNT TOL PATH . ..ttt e e e et e e e et et 191
interior-point centering aggressiveness.

MSK_ DPAR _INTPNT TOL PEEAS . ot e e e e e e e 191
Primal feasibility tolerance used for linear and quadratic optimization problems.

MSK DPAR _INTPNT TOL P S AFE . . ittt ettt e e e e et e e e ettt 191
Controls the interior-point primal starting point.

MSK_DPAR_INTPNT _TOL _REL_GAP . ..ot e e e et et e e 192
Relative gap termination tolerance.

MSK _DPAR _INTPNT TOL REL _STEP ...ttt e e e ettt et ettt e i e 192
Relative step size to the boundary for linear and quadratic optimization problems.

MSK_DPAR_INTPNT _TOL_STEP _SIZEttt e e e ettt e 192
If the step size falls below the value of this parameter, then the interior-point optimizer assumes
that it is stalled. It it does not not make any progress.

MSK DPAR _LOWER _OBJ _CUT ..ttt ittt et et et et e ettt e ettt ettt et 193
Objective bound.

H.2

DOUBLE PARAMETERS 181

MSK_DPAR_LOWER_OBJ _CUT _FINITE TRH.ottt it ittt ettt et 193
Objective bound.

MSK_DPAR MIO DISABLE TERM TIMEttt ettt et et it 193
Certain termination criteria is disabled within the mixed-integer optimizer for period time spec-
ified by the parameter.

MSK DPAR MIO HEURI ST IC TIME ...ttt ettt ettt et ettt ettt et 194
Time limit for the mixed-integer heuristics.

MSK_DPAR MIO MAX TIME. ..ttt e e e e et e et et 194
Time limit for the mixed-integer optimizer.

MSK_DPAR MIO MAX TIME APRX OPT ...ttt e e e e e et e et e 194
Time limit for the mixed-integer optimizer.

MSK_DPAR_MIO_NEAR _TOL_ABS GAP e e i e i e e 195
Relaxed absolute optimality tolerance employed by the mixed-integer optimizer.

MSK_DPAR MIO NEAR TOL REL GAP. ...t e e et e et 195
The mixed-integer optimizer is terminated when this tolerance is satisfied.

MSK_DPAR _MIO REL _ADD _CUT _LIMITED ..ttt ittt ittt ettt ettt ettt ettt e 195
Controls cut generation for mixed-integer optimizer.

MSK_DPAR MIO REL _GAP _CONST ...ttt e e e e e e e 195
This value is used to compute the relative gap for the solution to an integer optimization problem.

MSK _DPAR MIO TOL _ABS GAP ..ottt et e e e e et et e ettt et ie i 196
Absolute optimality tolerance employed by the mixed-integer optimizer.

MSK_DPAR_MIO_TOL_ABS RELAX _INT ...ttt e e e e e 196
Integer constraint tolerance.

MSK DPAR MIO TOL FE A S . .ttt e et e e e e et e e et e et et 196
Feasibility tolerance for mixed integer solver. Any solution with maximum infeasibility below
this value will be considered feasible.

MSK DPAR MIO TOL REL GAP .ttt e e e e e e e ettt ettt et e et e et et i e 197
Relative optimality tolerance employed by the mixed-integer optimizer.

MSK_DPAR MIO_TOL REL RELAX _INT ...ttt et e e et e et es 197
Integer constraint tolerance.

MSK DPAR MI O TOL X . ettt ettt et e e e e e e e et e e et e e e et e et 197
Absolute solution tolerance used in mixed-integer optimizer.

MSK_DPAR NONCONVEX TOL _FEAS ..ot e e e e et e 197
Feasibility tolerance used by the nonconvex optimizer.

MSK _DPAR _NONCONVE X TOL P T . . ettt et ittt et e ettt et et et ettt e e et 197
Optimality tolerance used by the nonconvex optimizer.

182

APPENDIX H. PARAMETERS REFERENCE

MSK _DPAR _OPTIMIZER MA X TIME ..ottt e e e et et et ettt et ettt et et e e 198
Solver time limit.

MSK_DPAR PRESOLVE TOL AT T . .ttt et e e e ettt e i e 198
Absolute zero tolerance employed for constraint coefficients in the presolve.

MSK_DPAR_PRESOLVE_TOL_LIN.DEPttt ettt et 198
Controls when a constraint is determined to be linearly dependent.

MSK_DPAR PRESOLVE TOL S . ..ttt ettt et e e e e et et ettt 198
Absolute zero tolerance employed for slack variables in the presolve.

MSK_DPAR PRESOLVE TOL X . .ttt ettt e et e e e e e e et et et e eie e iie e 199
Absolute zero tolerance employed for variables in the presolve.

MSK_DPAR_QCQO_REFORMULATE REL DROP _TOLttt et 199
This parameter determines when columns are dropped in incomplete cholesky factorization doing
reformulation of quadratic problems.

MSK_ DPAR _SIM LU TOL REL PV ...ttt e e e ettt et et 199
Relative pivot tolerance employed when computing the LU factorization of the basis matrix.

MSK_DPAR _SIMPLEX _ABS TOL PIV ..ttt ittt e e e et ettt et 200
Absolute pivot tolerance employed by the simplex optimizers.

MSK_DPAR _UPPER _OBJ _CUT ..ottt ettt et e et e et et e e e e et i et 200
Objective bound.

MSK_DPAR _UPPER_OBJ_CUT _FINITE TRH.ttt ettt 200
Objective bound.

ana_sol_infeas_tol
Corresponding constant:
MSK_DPAR_ANA_SOL_INFEAS_TOL

Description:
If a constraint violates its bound with an amount larger than this value, the constraint
name, index and violation will be printed by the solution analyzer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
+1le-8
basis_rel_tol_s
Corresponding constant:
MSK_DPAR_BASIS_REL_TOL_S

Description:
Maximum relative dual bound violation allowed in an optimal basic solution.

H.2. DOUBLE PARAMETERS 183

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-12
e basis_tol_s
Corresponding constant:
MSK_DPAR_BASIS_TOL_S

Description:
Maximum absolute dual bound violation in an optimal basic solution.

Possible Values:
Any number between 1.0e-9 and +inf.

Default value:
1.0e-6
e basis_tol x
Corresponding constant:
MSK_DPAR BASIS TOL X

Description:
Maximum absolute primal bound violation allowed in an optimal basic solution.

Possible Values:
Any number between 1.0e-9 and +inf.

Default value:
1.0e-6

e callback_freq

Corresponding constant:
MSK_DPAR_CALLBACK_FREQ

Description:
Controls the time between calls to the progress call-back function. Hence, if the value of
this parameter is for example 10, then the call-back is called approximately each 10 seconds.
A negative value is equivalent to infinity.

In general frequent call-backs may hurt the performance.

Possible Values:
Any number between -inf and +inf.

Default value:
-1.0

e check_convexity._rel_tol

Corresponding constant:
MSK_DPAR_CHECK_CONVEXITY_REL_TOL

184 APPENDIX H. PARAMETERS REFERENCE

Description:
This parameter controls when the full convexity check declares a problem to be non-convex.
Increasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the
cholesky factor of a matrix which is required to be PSD (NSD). This parameter controles
how much this non-negativity requirement may be violated.

If d; is the pivot element for column 4, then the matrix @ is considered to not be PSD if:

d; < —|Qy;| * check_convexity rel tol

Possible Values:
Any number between 0 and +inf.

Default value:
le-10
e data_tol_aij
Corresponding constant:
MSK_DPAR_DATA_TOL_AIJ

Description:
Absolute zero tolerance for elements in A. If any value A;; is smaller than this parameter
in absolute terms MOSEK will treat the values as zero and generate a warning.

Possible Values:
Any number between 1.0e-16 and 1.0e-6.

Default value:
1.0e-12
e data_tol_aij_huge
Corresponding constant:
MSK_DPAR DATA _TOL_AIJ_HUGE

Description:
An element in A which is larger than this value in absolute size causes an error.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e20
e data_tol_aij_large
Corresponding constant:
MSK_DPAR_DATA_TOL_AIJ_LARGE

Description:
An element in A which is larger than this value in absolute size causes a warning message
to be printed.

H.2. DOUBLE PARAMETERS 185

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e10
e data_tol_bound_inf
Corresponding constant:
MSK_DPAR_DATA_TOL_BOUND_INF

Description:
Any bound which in absolute value is greater than this parameter is considered infinite.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e16
e data_tol_bound wrn
Corresponding constant:
MSK_DPAR DATA_TOL_BOUND_WRN

Description:
If a bound value is larger than this value in absolute size, then a warning message is issued.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e8
e data_tol_c_huge
Corresponding constant:
MSK_DPAR_DATA_TOL_C_HUGE

Description:
An element in ¢ which is larger than the value of this parameter in absolute terms is
considered to be huge and generates an error.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e16
e data_tol_cj_large
Corresponding constant:
MSK_DPAR_DATA_TOL_CJ_LARGE

Description:
An element in ¢ which is larger than this value in absolute terms causes a warning message
to be printed.

186

APPENDIX H. PARAMETERS REFERENCE

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e8
data_tol_gij
Corresponding constant:
MSK_DPAR_DATA_TOL_QIJ

Description:
Absolute zero tolerance for elements in) matrices.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-16
data_tol x
Corresponding constant:
MSK_DPAR DATA_TOL_X

Description:
Zero tolerance for constraints and variables i.e. if the distance between the lower and upper
bound is less than this value, then the lower and lower bound is considered identical.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-8
feasrepair_tol
Corresponding constant:
MSK_DPAR_FEASREPAIR_TOL

Description:
Tolerance for constraint enforcing upper bound on sum of weighted violations in feasibility
repair.

Possible Values:
Any number between 1.0e-16 and 1.0e+16.

Default value:
1.0e-10
intpnt_co_tol_dfeas

Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_DFEAS

Description:
Dual feasibility tolerance used by the conic interior-point optimizer.

H.2. DOUBLE PARAMETERS 187

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

See also:

MSK_DPAR_INTPNT_CO_TOL_NEAR REL Optimality tolerance for the conic solver.
e intpnt_co_tol_infeas

Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_INFEAS

Description:
Controls when the conic interior-point optimizer declares the model primal or dual infeasible.
A small number means the optimizer gets more conservative about declaring the model
infeasible.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

e intpnt_co_tol mu red

Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_MU_RED

Description:
Relative complementarity gap tolerance feasibility tolerance used by the conic interior-point
optimizer.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

e intpnt_co_tol near_rel

Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Description:
If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply
the termination tolerances with value of this parameter. If the solution then satisfies the
termination criteria, then the solution is denoted near optimal, near feasible and so forth.

Possible Values:
Any number between 1.0 and +inf.

Default value:
100

188

APPENDIX H. PARAMETERS REFERENCE

e intpnt_co_tol_pfeas

Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_PFEAS

Description:
Primal feasibility tolerance used by the conic interior-point optimizer.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

See also:

MSK_DPAR_INTPNT_CO_TOL _NEAR REL Optimality tolerance for the conic solver.
intpnt_co_tol_rel_gap
Corresponding constant:

MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Description:
Relative gap termination tolerance used by the conic interior-point optimizer.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

See also:

MSK_DPAR_INTPNT_CO_TOL_NEAR REL Optimality tolerance for the conic solver.
intpnt_nl merit_bal
Corresponding constant:

MSK_DPAR_INTPNT_NL_MERIT_BAL

Description:
Controls if the complementarity and infeasibility is converging to zero at about equal rates.

Possible Values:
Any number between 0.0 and 0.99.

Default value:
1.0e-4
intpnt_nl_tol_dfeas
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_DFEAS

Description:
Dual feasibility tolerance used when a nonlinear model is solved.

H.2. DOUBLE PARAMETERS 189

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
e intpnt_nl tol mu_red
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_MU_RED

Description:
Relative complementarity gap tolerance.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-12
e intpnt nl tol near_rel
Corresponding constant:
MSK_DPAR_INTPNT _NL_TOL_NEAR_REL

Description:
If the MOSEK nonlinear interior-point optimizer cannot compute a solution that has the
prescribed accuracy, then it will multiply the termination tolerances with value of this
parameter. If the solution then satisfies the termination criteria, then the solution is denoted
near optimal, near feasible and so forth.

Possible Values:
Any number between 1.0 and +inf.

Default value:
1000.0
e intpnt_nl tol_pfeas
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_PFEAS

Description:
Primal feasibility tolerance used when a nonlinear model is solved.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

e intpnt_nl tol_rel_gap

Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_REL_GAP

190

APPENDIX H. PARAMETERS REFERENCE

Description:
Relative gap termination tolerance for nonlinear problems.

Possible Values:
Any number between 1.0e-14 and +inf.

Default value:
1.0e-6
intpnt_nl_tol rel_step
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_REL_STEP

Description:
Relative step size to the boundary for general nonlinear optimization problems.

Possible Values:
Any number between 1.0e-4 and 0.9999999.

Default value:
0.995
intpnt_tol_dfeas
Corresponding constant:
MSK_DPAR_INTPNT_TOL_DFEAS

Description:
Dual feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
intpnt_tol_dsafe
Corresponding constant:
MSK_DPAR_INTPNT_TOL_DSAFE

Description:
Controls the initial dual starting point used by the interior-point optimizer. If the interior-
point optimizer converges slowly.

Possible Values:
Any number between 1.0e-4 and +inf.

Default value:
1.0

intpnt_tol_infeas

Corresponding constant:
MSK_DPAR_INTPNT_TOL_INFEAS

H.2. DOUBLE PARAMETERS 191

Description:
Controls when the optimizer declares the model primal or dual infeasible. A small number
means the optimizer gets more conservative about declaring the model infeasible.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
e intpnt_tol mu_red
Corresponding constant:
MSK_DPAR_INTPNT_TOL_MU_RED

Description:
Relative complementarity gap tolerance.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-16
e intpnt_tol_path
Corresponding constant:
MSK_DPAR_INTPNT_TOL_PATH

Description:
Controls how close the interior-point optimizer follows the central path. A large value of
this parameter means the central is followed very closely. On numerical unstable problems
it may be worthwhile to increase this parameter.

Possible Values:
Any number between 0.0 and 0.9999.

Default value:
1.0e-8
e intpnt_tol_pfeas
Corresponding constant:
MSK_DPAR_INTPNT_TOL_PFEAS

Description:
Primal feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

e intpnt_tol_psafe

192 APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_DPAR_INTPNT_TOL_PSAFE

Description:
Controls the initial primal starting point used by the interior-point optimizer. If the interior-
point optimizer converges slowly and/or the constraint or variable bounds are very large,
then it may be worthwhile to increase this value.

Possible Values:
Any number between 1.0e-4 and +inf.

Default value:
1.0
e intpnt_tol_rel_gap
Corresponding constant:
MSK_DPAR_INTPNT_TOL_REL_GAP

Description:
Relative gap termination tolerance.

Possible Values:
Any number between 1.0e-14 and +inf.

Default value:
1.0e-8
e intpnt_tol_rel_step
Corresponding constant:
MSK_DPAR_INTPNT_TOL_REL_STEP

Description:
Relative step size to the boundary for linear and quadratic optimization problems.

Possible Values:
Any number between 1.0e-4 and 0.999999.

Default value:
0.9999
e intpnt_tol_step_size
Corresponding constant:
MSK_DPAR_INTPNT_TOL_STEP_SIZE

Description:
If the step size falls below the value of this parameter, then the interior-point optimizer
assumes that it is stalled. It it does not not make any progress.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-10

H.2. DOUBLE PARAMETERS 193

e lower_obj_cut

Corresponding constant:
MSK_DPAR_LOWER_0BJ_CUT

Description:
If either a primal or dual feasible solution is found proving that the optimal objective value
is outside, the interval [I"[SK,DPAR,LOWER,OBJ,CUT7 MSK,DPAR,UPPER,OBJ,CUT], then MOSEK
is terminated.

Possible Values:
Any number between -inf and +inf.

Default value:
-1.0e30

See also:

MSK_DPAR_LOWER_0BJ_CUT_FINITE_TRH Objective bound.
e lower_obj_cut_finite_trh

Corresponding constant:
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

Description:
If the lower objective cut is less than the value of this parameter value, then the lower
objective cut i.e. MSK_DPAR_LOWER_0OBJ_CUT is treated as —oc.

Possible Values:
Any number between -inf and +inf.

Default value:
-0.5e30

e mio_disable_term_time

Corresponding constant:
MSK_DPAR MIO_DISABLE_TERM _TIME

Description:
The termination criteria governed by
— MSK_IPAR_MIO_MAX_NUM_RELAXS
— MSK_IPAR_MIO_MAX_NUM_BRANCHES
— MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
— MSK_DPAR_MIO_NEAR_TOL_REL_GAP

is disabled the first n seconds. This parameter specifies the number n. A negative value is
identical to infinity i.e. the termination criteria are never checked.

Possible Values:
Any number between -inf and +inf.

Default value:
-1.0

194 APPENDIX H. PARAMETERS REFERENCE

See also:

MSK_IPAR_MIO_MAX NUM RELAXS Maximum number of relaxations in branch and bound search.

MSK_IPAR_MIO_MAX_NUM_BRANCHES Maximum number of branches allowed during the branch
and bound search.

MSK_DPAR_MIO_NEAR TOL_ABS_GAP Relaxed absolute optimality tolerance employed by the
mixed-integer optimizer.

MSK_DPAR_MIO_NEAR_TOL_REL_GAP The mixed-integer optimizer is terminated when this tol-
erance is satisfied.

e mio heuristic_time

Corresponding constant:
MSK_DPAR_MIO_HEURISTIC_TIME

Description:
Minimum amount of time to be used in the heuristic search for a good feasible integer
solution. A negative values implies that the optimizer decides the amount of time to be
spent in the heuristic.

Possible Values:
Any number between -inf and +inf.

Default value:
-1.0

e mio max_time

Corresponding constant:
MSK_DPAR_MIO_MAX_TIME
Description:
This parameter limits the maximum time spent by the mixed-integer optimizer. A negative
number means infinity.
Possible Values:
Any number between -inf and +inf.

Default value:
-1.0

e mio max_time_aprx_opt

Corresponding constant:
MSK_DPAR_MIO_MAX_TIME_APRX_OPT

Description:
Number of seconds spent by the mixed-integer optimizer before the MSK_DPAR_MIO_TOL_REL RELAX_INT
is applied.

Possible Values:
Any number between 0.0 and +inf.

Default value:
60

H.2. DOUBLE PARAMETERS 195

e mio near_tol_abs_gap
Corresponding constant:
MSK_DPAR_MIO_NEAR_TOL_ABS_GAP

Description:
Relaxed absolute optimality tolerance employed by the mixed-integer optimizer. This ter-
mination criteria is delayed. See MSK_DPAR MI0 _DISABLE TERM_TIME for details.

Possible Values:
Any number between 0.0 and +inf.

Default value:
0.0

See also:
MSK_DPAR_MIO DISABLE TERM_TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.
e mio near_tol_rel_gap
Corresponding constant:
MSK_DPAR_MIO_NEAR_TOL_REL_GAP

Description:
The mixed-integer optimizer is terminated when this tolerance is satisfied. This termination
criteria is delayed. See MSK_DPAR MI0 DISABLE_TERM_TIME for details.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-3

See also:
MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.
e mio rel add_cut_limited
Corresponding constant:
MSK_DPAR _MIO_REL_ADD_CUT_LIMITED

Description:
Controls how many cuts the mixed-integer optimizer is allowed to add to the problem. Let «
be the value of this parameter and m the number constraints, then mixed-integer optimizer
is allowed to am cuts.

Possible Values:
Any number between 0.0 and 2.0.

Default value:
0.75

e mio_rel_gap_const

196

APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_DPAR MIO_REL_GAP_CONST

Description:
This value is used to compute the relative gap for the solution to an integer optimization
problem.

Possible Values:
Any number between 1.0e-15 and +inf.

Default value:
1.0e-10

e mio_tol_abs_gap

Corresponding constant:
MSK_DPAR_MIO_TOL_ABS_GAP

Description:
Absolute optimality tolerance employed by the mixed-integer optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
0.0

e mio_tol_abs_relax_int

Corresponding constant:
MSK_DPAR MIO_TOL_ABS_RELAX_INT

Description:
Absolute relaxation tolerance of the integer constraints. L.e. min(|z| — |z], [z] — |z]) is less
than the tolerance then the integer restrictions assumed to be satisfied.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-5

e mio_tol_feas

Corresponding constant:
MSK_DPAR MIO_TOL_FEAS

Description:
Feasibility tolerance for mixed integer solver. Any solution with maximum infeasibility
below this value will be considered feasible.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-7

H.2. DOUBLE PARAMETERS 197

e mio_tol_rel_gap
Corresponding constant:
MSK_DPAR MIO_TOL_REL_GAP

Description:
Relative optimality tolerance employed by the mixed-integer optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-4
e mio_tol_rel relax_int
Corresponding constant:
MSK_DPAR_MIO_TOL_REL_RELAX_INT

Description:
Relative relaxation tolerance of the integer constraints. I.e (min(|z| — |x], [] — |x])) is less
than the tolerance times |z| then the integer restrictions assumed to be satisfied.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-6
e mio_tol x
Corresponding constant:
MSK_DPAR_MIO_TOL_X

Description:
Absolute solution tolerance used in mixed-integer optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-6
e nonconvex_tol_feas
Corresponding constant:
MSK_DPAR_NONCONVEX_TOL_FEAS

Description:
Feasibility tolerance used by the nonconvex optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-6

e nonconvex_tol_opt

198 APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_DPAR_NONCONVEX_TOL_OPT

Description:
Optimality tolerance used by the nonconvex optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-7
e optimizer max_time
Corresponding constant:
MSK_DPAR_OPTIMIZER MAX_TIME

Description:
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative
number means infinity.

Possible Values:
Any number between -inf and +inf.

Default value:
-1.0
e presolve_tol_aij
Corresponding constant:
MSK_DPAR_PRESOLVE_TOL_AIJ

Description:
Absolute zero tolerance employed for a;; in the presolve.

Possible Values:
Any number between 1.0e-15 and +inf.

Default value:
1.0e-12
e presolve_tol_lin_dep
Corresponding constant:
MSK_DPAR_PRESOLVE_TOL_LIN_DEP

Description:
Controls when a constraint is determined to be linearly dependent.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-6

e presolve_tol_s

H.2. DOUBLE PARAMETERS 199

Corresponding constant:
MSK_DPAR_PRESOLVE_TOL_S

Description:
Absolute zero tolerance employed for s; in the presolve.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-8

e presolve_tol x

Corresponding constant:
MSK_DPAR_PRESOLVE_TOL_X

Description:
Absolute zero tolerance employed for z; in the presolve.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-8

e qcqo_reformulate_rel_drop_tol

Corresponding constant:
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

Description:
This parameter determines when columns are dropped in incomplete cholesky factorization
doing reformulation of quadratic problems.

Possible Values:
Any number between 0 and +inf.

Default value:
le-15

e sim_lu_tol_rel piv

Corresponding constant:
MSK_DPAR_SIM_LU_TOL_REL_PIV

Description:
Relative pivot tolerance employed when computing the LU factorization of the basis in the
simplex optimizers and in the basis identification procedure.
A value closer to 1.0 generally improves numerical stability but typically also implies an
increase in the computational work.

Possible Values:
Any number between 1.0e-6 and 0.999999.

Default value:
0.01

200 APPENDIX H. PARAMETERS REFERENCE

e simplex_abs_tol piv
Corresponding constant:
MSK_DPAR_SIMPLEX_ABS_TOL_PIV

Description:
Absolute pivot tolerance employed by the simplex optimizers.

Possible Values:
Any number between 1.0e-12 and +inf.

Default value:
1.0e-7
e upper_obj_cut
Corresponding constant:
MSK_DPAR_UPPER_0BJ_CUT

Description:
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside, [MSK,DPAR,LOWER,OBJ,CUT, IVISK,DPAR,UPPER,OBJ,CUT]7 then MOSEK is terminated.

Possible Values:
Any number between -inf and +inf.

Default value:
1.0e30

See also:
MSK_DPAR_UPPER _0BJ _CUT _FINITE_TRH Objective bound.
e upper_obj_cut_finite_trh
Corresponding constant:
MSK_DPAR _UPPER_0BJ_CUT _FINITE_TRH

Description:
If the upper objective cut is greater than the value of this value parameter, then the the
upper objective cut MSK_DPAR UPPER_0BJ_CUT is treated as cc.

Possible Values:
Any number between -inf and +inf.

Default value:
0.5e30

H.3 Integer parameters

® MSK_TIPAR _ALLOC ADD QN Z ..ttt ettt et et et e e et e et e ettt ettt ettt et 213
Controls how the quadratic matrixes are extended.

o MSK TPAR ANA SOL BAS TS .. e e e e 213
Controls whether the basis matrix is analyzed in solaution analyzer.

H.3.

INTEGER PARAMETERS 201

MSK_TPAR_ANA _SOL PRINT VIOLATEDttt e e e et ettt et et 213
Controls whether a list of violated constraints is printed.

MSK_TPAR _AUTO_SORT _A BEEFORE QP T ..ottt e e et et et ettt et et 214
Controls whether the elements in each column of A are sorted before an optimization is performed.

MSK_TPAR _AUTO_UPDATE _SOL_INFO . ..ttt ettt et e e e et e et et e eeae e 214
Controls whether the solution information items are automatically updated after an optimization
is performed.

MSK_TPAR BASTIS SOLVE USE PLUS ONEttt ettt 214
Controls the sign of the columns in the basis matrix corresponding to slack variables.

MSK_TPAR BI _CLEAN_OPTIMIZERttt ettt ittt e it ettt ettt e 215
Controls which simplex optimizer is used in the clean-up phase.

MSK_TPAR BT IGNORE MAX T B R . .ttt ettt e et e e ettt et e et et ettt 215
Turns on basis identification in case the interior-point optimizer is terminated due to maximum
number of iterations.

MSK_TIPAR BI_IGNORE_NUM_ERRORttt ittt e e et ettt 215
Turns on basis identification in case the interior-point optimizer is terminated due to a numerical
problem.

MSK_IPAR BI MAX TTERATION S . .ttt ettt e e e e e e e e e e e e e e 216
Maximum number of iterations after basis identification.

MSK_TPAR CACHE LICENSEttt ettt e ettt ettt ettt et 216
Control license caching.

MSK_IPAR CACHE SIZE Ll ..t e e e e et et e 216
Specifies the size of the level 1 cache of the processor.

MSK_TIPAR CACHE SIZE L2 ..ttt ettt e e et e e e et e e e et e 217
Specifies the size of the level 2 cache of the processor.

MSK TP AR _CHECK CONVE I T Y . ettt ettt e e e e e e ittt e et et et et et et et i e 217
Specify the level of convexity check on quadratic problems

MK TP AR CHECK TASK D AT A Lottt et e e e e e e et e et et et e 217
If this feature is turned on, then the task data is checked for bad values i.e. NaNs. before an
optimization is performed.

MSK_TPAR_CONCURRENT _NUM_OPTIMIZERS\ttt ittt ittt e e 218
The maximum number of simultaneous optimizations that will be started by the concurrent
optimizer.

MSK_TPAR_CONCURRENT _PRIORITY DUAL _STIMPLEXttt 218
Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.

MSK_TPAR_CONCURRENT _PRIORITY FREE STIMPLEXttt eeaeen 218
Priority of the free simplex optimizer when selecting solvers for concurrent optimization.

202

APPENDIX H. PARAMETERS REFERENCE

MSK_TIPAR_CONCURRENT _PRIORITY_INTPNTt i i 218
Priority of the interior-point algorithm when selecting solvers for concurrent optimization.

MSK_TPAR_CONCURRENT_PRIORITY PRIMAL SIMPLEX. cuuuttttetit i 218
Priority of the primal simplex algorithm when selecting solvers for concurrent optimization.

MK TP AR CPU T Y PE . . .ttt e e e ettt e e e e e e ettt et et et 219
Specifies the CPU type.

MSK_TIPAR DATA CHECK. . o ottt ettt e e et e e e ettt e 219
Enable data checking for debug purposes.

MSK_IPAR FEASREPATIR QP T IMIZE . ..ttt ettt et et ettt ettt ettt 220
Controls which type of feasibility analysis is to be performed.

MSK_TIPAR_INFEAS GENERIC NAMES . . . ittt i e e e e i e 220
Controls the contents of the infeasibility report.

MSK_IPAR_INFEAS PREFER PRIMAL e e 220
Controls which certificate is used if both primal- and dual- certificate of infeasibility is available.

MSK_TIPAR_INFEAS REPORT_AUTO ...ttt e e e e i e e e 220
Turns the feasibility report on or off.

MSK_TIPAR_INFEAS REPORT _LEVELttt ettt ettt ettt e ie e 221
Controls the contents of the infeasibility report.

MK TP AR TN T PN T BA ST S .ttt e e e et e e e e e e ettt ettt e 221
Controls whether basis identification is performed.

MSK_TIPAR_INTPNT DIEF _STEP.ttt ittt e e e ettt i 222
Controls whether different step sizes are allowed in the primal and dual space.

MSK_TPAR_INTPNT_FACTOR_DEBUG_LVLttt e et ettt ettt e 222
Controls factorization debug level.

MSK_IPAR_INTPNT_FACTOR_METHODttt et ettt ee 222
Controls the method used to factor the Newton equation system.

MSK_TIPAR _INTPNT MAX ITERATION S . ..ttt ittt it e et e ettt et et ettt 222
Controls the maximum number of iterations allowed in the interior-point optimizer.

MSK_IPAR_INTPNT MAX_NUM_COR. ...ttt e e e e e e 223
Maximum number of correction steps.

MSK_TPAR_INTPNT MAX NUM_REFINEMENT STEPSttt it et 223
Maximum number of steps to be used by the iterative search direction refinement.

MSK_IPAR _INTPNT NUM _ THREADS . .ttt ettt ettt et e et e et ettt et e 223
Controls the number of threads employed by the interior-point optimizer. If set to a positive
number MOSEK will use this number of threads. If zero the number of threads used will equal
the number of cores detected on the machine.

H.3.

INTEGER PARAMETERS

MSK_TPAR _INTPNT _OFF _COL _TRH. ...ttt e ettt e ettt et et ee e
Controls the aggressiveness of the offending column detection.

MSK_TPAR_INTPNT_ORDER METHODttt ittt et et et e et e ie e eie e
Controls the ordering strategy.

MSK_TIPAR_INTPNT REGULARIZATION_USEttt i et
Controls whether regularization is allowed.

MSK _TPAR _INT PN T S C AL ING . ..ttt e e et et ettt e e et e et ettt e e it iaeinans
Controls how the problem is scaled before the interior-point optimizer is used.

MSK_TIPAR_INTPNT_SOLVE _FORM. . .o\ttt e e e e et e
Controls whether the primal or the dual problem is solved.

MSK_IPAR _INTPNT _STARTING POINT ...ttt e e et e ettt ettt ettt
Starting point used by the interior-point optimizer.

MSK_TIPAR LIC TRH EXPIRY WRN . ..ttt e e et e et it ees
Controls when expiry warnings are issued.

MSK_TPAR LICENSE ALLOW OVERUSEttt e e et e et ettt e et e i
Controls if license overuse is allowed when caching licenses

MSK_TIPAR LICENSE CACHE TIMEttt ettt e enns
Setting this parameter no longer has any effect.

MSK_TPAR LICENSE CHECK TIMEttt ittt e it ettt et
Controls the license manager client behavior.

MSK_TPAR LICENSE DEBUG . . .« ettt ittt et e et e e e e e ettt ee e eaae e
Controls the license manager client debugging behavior.

MSK_IPAR_LICENSE PAUSE_TIME e i
Controls license manager client behavior.

MSK_IPAR_LICENSE_SUPPRESS EXPIRE WRNS e
Controls license manager client behavior.

MSK TP AR LI CEN SE WA LT .ottt e e e ettt
Controls if MOSEK should queue for a license if none is available.

MSK TP AR LG . ottt ittt e e e et e e e e e e e e e et e e e e e e e e
Controls the amount of log information.

MSK _IPAR LOG BT .. e

Controls the amount of output printed by the basis identification procedure. A higher level

implies that more information is logged.

MSK_TPAR LOG BT _FREQ . ..ttt ittt ittt ettt e et e et e e e e e e e e ettt
Controls the logging frequency.

204

APPENDIX H. PARAMETERS REFERENCE

MSK_TPAR LOG_CHECK _CONVE X I Y .ttt ettt et e e e e et e ittt et 228
Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on.

If a quadratic coeflicient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

MSK_TPAR _LOG_CONCURRENTottt e e et e e et et e ettt et 229
Controls amount of output printed by the concurrent optimizer.

MSK_TIPAR_LOG_CUT _SECOND _OPT . ..ttt ettt et e et e e e 229
Controls the reduction in the log levels for the second and any subsequent optimizations.

MSK_TPAR LOG _FACTOR. . o ettt ettt et e e e e et e e e e e ettt et 229
If turned on, then the factor log lines are added to the log.

MSK_TPAR LOG FEASREP AT R . ..ttt ittt ettt e e e et e e e e e e e et 230
Controls the amount of output printed when performing feasibility repair.

MSK_IPAR LOG EILE . ..ttt e e e e et et et e 230
If turned on, then some log info is printed when a file is written or read.

MSK_TIPAR LOG _HEAD . ..ttt e e e e et e e et e et 230
If turned on, then a header line is added to the log.

MSK TP AR LOG INFEAS AN A ot e e et e et e et e e et 230
Controls log level for the infeasibility analyzer.

MK TP AR LOG TN PN T . . ettt ettt e e e e e e e ettt ettt et ettt et e 231
Controls the amount of log information from the interior-point optimizers.

MSK_TIPAR LOG MIO ..ttt et e e e e e et et e 231
Controls the amount of log information from the mixed-integer optimizers.

MSK_TPAR LOG MIO FREQ. ...ttt ittt et et e e e e et e e e 231
The mixed-integer solver logging frequency.

MSK_TPAR _LOG NONCONVE X . .\ttt e ettt et ettt et ettt e e e et ettt et ettt 231
Controls amount of output printed by the nonconvex optimizer.

MSK_IPAR_LOG_OPTIMIZER.ttt e e et e et 232
Controls the amount of general optimizer information that is logged.

MSK_IPAR_LOG_ORDER. . . .ottt ittt e et e e et et e e et 232
If turned on, then factor lines are added to the log.

MSK _TPAR LOG P AR AN . ottt e e e et e e e e e e e e et e 232
Controls the amount of information printed out about parameter changes.

MSK_IPAR LOG PRESOLVE . .ttt e e e e et et et e ettt et ettt e 232
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

H.3.

INTEGER PARAMETERS 205

MSK_TPAR LOG RESPONSE . . .ottt ettt e et e e e e e e e ettt et 233
Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

MSK_IPAR LOG _ SEN ST T IV LTy . ettt et e e e et e e et e 233
Control logging in sensitivity analyzer.

MSK_TPAR LOG SENSTITIVITY OPT ..ttt ettt e e e e et e e e et ettt 233
Control logging in sensitivity analyzer.

MSK _TPAR LOG ST M . ittt et e e e e e e e 233
Controls the amount of log information from the simplex optimizers.

MSK_TPAR LOG_SIM FREQ. ..ttt ittt ettt e e e e e et e e e et et ettt 234
Controls simplex logging frequency.

MSK_TPAR LOG_STM MINDR ...ttt ettt et e e e e e e et ettt et ettt te et 234
Currently not in use.

MSK_TIPAR LOG_SIM NETWORK _FREQ . ..ottt e e ettt 234
Controls the network simplex logging frequency.

MSK_TPAR LOG_STORAGE . . .ottt e et e e e e e e ettt et et et 235
Controls the memory related log information.

MSK_TIPAR_LP WRITE_IGNORE_INCOMPATIBLE ITEMS.ottt 235
Controls the result of writing a problem containing incompatible items to an LP file.

MSK_TPAR MAX NUM WARNINGS . . oottt et et e e e e e e e e et i 235
Waning level. A higher value results in more warnings.

MSK_TIPAR_MIO_BRANCH DIR . ..ttt e e e et ettt et 235
Controls whether the mixed-integer optimizer is branching up or down by default.

MSK_IPAR_MIO_BRANCH_PRIORITIES USEttt i 236
Controls whether branching priorities are used by the mixed-integer optimizer.

MSK_IPAR_MIO_CONSTRUCT_SOL.ttt e e i s 236
Controls if an initial mixed integer solution should be constructed from the values of the integer
variables.

MSK_TPAR MIO _CONT _SOL. ..ttt ettt et et e e e et e et e et i e 236
Controls the meaning of interior-point and basic solutions in mixed integer problems.

MSK_TIPAR MIO _CUT _LEVEL RODTttt e e e e et e ettt ettt ettt 237
Controls the cut level employed by the mixed-integer optimizer at the root node.

MSK_IPAR MIO_CUT_LEVEL_TREE.ttt e e e e e 237
Controls the cut level employed by the mixed-integer optimizer in the tree.

MSK_TIPAR MIO _FEASPUMP LEVELttt ittt et ettt et ettt ettt ie e 237
Controls the feasibility pump heuristic which is used to construct a good initial feasible solution.

206

APPENDIX H. PARAMETERS REFERENCE

MSK_TPAR MIO HEURISTIC LEVEL ...ttt ittt ettt it e te e e ie ettt 238
Controls the heuristic employed by the mixed-integer optimizer to locate an initial integer feasible
solution.

MSK_TIPAR MIO HOT ST ART ..ttt ettt e e e e et et et et e 238
Controls whether the integer optimizer is hot-started.

MSK TP AR MI O KEE P BA S S Lttt ittt et e e e e ettt ettt ettt ettt et et it 238
Controls whether the integer presolve keeps bases in memory.

MSK_TPAR MIO_LOCAL BRANCH NUMBER.ttt e e e et et 239
Controls the size of the local search space when doing local branching.

MSK_TPAR MIO MAX NUM BRANCHESttt e ettt e ettt ettt et 239
Maximum number of branches allowed during the branch and bound search.

MSK_IPAR MIO MAX NUM REL AKX S . .ttt e e e e e e e e e e e e e e e 239
Maximum number of relaxations in branch and bound search.

MSK_TIPAR_MIO MAX_NUM_SOLUTIONSttt e et e ettt 240
Controls how many feasible solutions the mixed-integer optimizer investigates.

MSK_IPAR MIO MODE . . .ottt et e e e e e e e e e e e e 240
Turns on/off the mixed-integer mode.

MSK_IPAR_MIO_NODE_OPTIMIZERttt ittt e et e e e 240
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

MSK_TPAR MIO _NODE SELECTION . .ttt et e e e e e e et ettt ettt et 241
Controls the node selection strategy employed by the mixed-integer optimizer.

MSK_TPAR MIO _OPTIMIZER MODE ...ttt ettt ettt ettt e it ettt e et 241
An exprimental feature.

MSK_TPAR MIO PRESOLVE AGGREGATEttt e e et et ettt et et e 242
Controls whether problem aggregation is performed in the mixed-integer presolve.

MSK_TPAR MIO _PRESOLVE PROBINGttt it ettt et eeaaees 242
Controls whether probing is employed by the mixed-integer presolve.

MSK_IPAR MIO_PRESOLVE_USE.ttt e e it e et 242
Controls whether presolve is performed by the mixed-integer optimizer.

MSK_TPAR MIO_ROOT_OPTIMIZERttt ettt ettt e et eia e 242
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

MSK_TIPAR_MIO_STRONG_BRANCH.ttt e e e e et e 243
The depth from the root in which strong branching is employed.

MSK_TPAR NONCONVEX MAX TTERATIONS ..ttt ittt ettt e et e e e et e e 243
Maximum number of iterations that can be used by the nonconvex optimizer.

H.3.

INTEGER PARAMETERS 207

MSK _TPAR OBJECT I VE SENSE . . .ttt et e et et e e e e et e et ettt et 243
If the objective sense for the task is undefined, then the value of this parameter is used as the
default objective sense.

MSK_IPAR_OPF MAX_TERMS_PER_LINE i i e 244
The maximum number of terms (linear and quadratic) per line when an OPF file is written.

MSK_IPAR _OPF _WRITE _HEADERttt e e e e e e e e e e e e i 244
Write a text header with date and MOSEK version in an OPF file.

MSK_TIPAR OPF WRITE HINTSttt ettt et ettt e enns 244
Write a hint section with problem dimensions in the beginning of an OPF file.

MSK_TPAR OPF WRITE PARAME T E RS ..ottt e e e et e et et e e 244
Write a parameter section in an OPF file.

MSK_TPAR OPF WRITE PROBLEM.ttt ettt et e et et e e et 245
Write objective, constraints, bounds etc. to an OPF file.

MSK _IP AR _OPF _WRITE SO BAS .. ittt e e et e e et e e e et e e ettt et e 245
Controls what is written to the OPF files.

MSK_IPAR _OPF _WRITE SOL _TTG . . ettt e e e e e e e e e e e e e e i 245
Controls what is written to the OPF files.

MSK_IPAR _OPF _WRITE SOL I R ..ottt e e e e et e et et e e e e e e 246
Controls what is written to the OPF files.

MSK_IPAR _OPF _WRITE _SOLUTTIONS . ..ottt e e e e e e e e e e e i 246
Enable inclusion of solutions in the OPF files.

MSK_TIPAR OPTIMIZER ...ttt ittt ettt e e e e et e e e et e it es 246
Controls which optimizer is used to optimize the task.

MSK_IPAR PARAM READ CASE NAME . .ttt ittt et et et e et e ettt 247
If turned on, then names in the parameter file are case sensitive.

MSK_TPAR PARAM READ _IGN_ERRORttt e e e et 247
If turned on, then errors in paramter settings is ignored.

MSK_IPAR PRESOLVE _ELIM_FILL ...\ttt et it it it et eaes 247
Maximum amount of fill-in in the elimination phase.

MSK_IPAR_PRESOLVE_ELIMINATOR _MAX NUM_TRIES et e 248
Control the maximum number of times the eliminator is tried.

MSK_TIPAR_PRESOLVE_ELIMINATOR_USEttt e e it een 248
Controls whether free or implied free variables are eliminated from the problem.

MSK _IPAR PRESOLVE LEVEL ...ttt ettt e ettt et e et et e ettt 248
Currently not used.

208

APPENDIX H. PARAMETERS REFERENCE

MSK_TPAR PRESOLVE _LINDEP USEttt ettt e e et ettt 248
Controls whether the linear constraints are checked for linear dependencies.

MSK_TPAR PRESOLVE_LINDEP WORK _LIM.ttt ettt ettt iie e 249
Controls linear dependency check in presolve.

MSK _TPAR PRESOLVE USE . . .ttt ittt it ettt e e e e e ettt ittt 249
Controls whether the presolve is applied to a problem before it is optimized.

MSK_TPAR _QO_SEPARABLE REFORMULATIONttt ettt ettt e e et ie e 249
Determine if Quadratic programing problems should be reformulated to separable form.

MSK _IPAR READ _ADD AN Z . .ottt et e et et et et e et et e e e e e e e e 249
Controls how the constraint matrix is extended.

MSK_TPAR READ _ADD _CON . . . ettt ettt e e e et e e e e e e e e et ettt 250
Additional number of constraints that is made room for in the problem.

MSK_TIPAR_ READ_ADD._CONE . . .ottt e e e e e et e e 250
Additional number of conic constraints that is made room for in the problem.

MSK_TPAR READ _ADD _QNZ. . .t e ettt ettt e e e e et e e e e et e e e et e e e ettt 250
Controls how the quadratic matrixes are extended.

MSK_IPAR READ _ADD _VAR. .. ot e e e e e e e e 250
Additional number of variables that is made room for in the problem.

MSK_TPAR READ AN Z . .ttt ettt e et e e e e e e e e e e et e et e e et 251
Controls the expected number of constraint non-zeros.

MSK_TIPAR READ _CON . . .ottt e e e e e it e et e 251
Controls the expected number of constraints.

MSK_TPAR READ _CONEttt et et et e e e e e e e e e e ettt 251
Controls the expected number of conic constraints.

MSK_TPAR_READ_DATA_COMPRESSED . . .ttt e e e et et 251
Controls the input file decompression.

MSK_IPAR _READ DAT A FORMAT ...ttt e e e e e e e e e e 252
Format of the data file to be read.

MSK_IPAR_ READ_KEEP _FREE _CON. ...ttt e e e e et 252
Controls whether the free constraints are included in the problem.

MSK_TPAR READ_LP DROP _NEW _VARS TN BOU.ttt ettt et 252
Controls how the LP files are interpreted.

MSK_TIPAR_READ_LP_QUOTED_NAMES . ..ttt e e e et e 253
If a name is in quotes when reading an LP file, the quotes will be removed.

MSK_TIPAR _READ MP S FORM AT ..ottt ettt et e et ettt ettt ettt ettt 253
Controls how strictly the MPS file reader interprets the MPS format.

H.3.

INTEGER PARAMETERS 209

MSK_TPAR READ MPS KEEP TN T ..ttt et et e e et et ettt 253
Controls if integer constraints are read.

MSK_IPAR _READ MPS OBJ SENSE . .ottt e e e e e et e e e e e e e e e e 254
Controls the MPS format extensions.

MSK_IPAR_READ _MPS _QUOTED NAME S . ..ottt ettt et et et et ettt et et e e 254
Controls the MPS format extensions.

MSK_TIPAR READ MP S REL X . .ttt e e e et et et 254
Controls the meaning of integer constraints.

MSK_TIPAR _READ MPS WIDTH . ..ttt e e e e e e e e e e e e e e 255
Controls the maximal number of characters allowed in one line of the MPS file.

MSK_IPAR READ_Q_MODE.ttt ettt et e e et e e e e i e e 255
Controls how the QQ matrices are read from the MPS file.

MSK_TPAR READ QN Z . ..ttt ettt e e e e e e e e e e et e et e e et 255
Controls the expected number of quadratic non-zeros.

MSK_IPAR _READ _TASK _IGNORE PARAM . ..ot e e e e et e e et et e e 255
Controls what information is used from the task files.

MSK_TIPAR READ VAR . ..ttt ittt e e e e e e e e et e e e e ettt iaeeen 256
Controls the expected number of variables.

MK TP AR SENS I T IV T Y AL L . ottt et e e e e e e e e e e e e ettt et 256
Controls sensitivity report behavior.

MSK_TPAR_SENSITIVITY OPTIMIZERttt ettt et 256
Controls which optimizer is used for optimal partition sensitivity analysis.

MSK TP AR SENS I T IV I Y T PE . .ottt et e e e e e ettt ettt et e et et e 257
Controls which type of sensitivity analysis is to be performed.

MSK_TIPAR_SIM BASIS FACTOR_USEttt e e ettt 257
Controls whether a (LU) factorization of the basis is used in a hot-start. Forcing a refactor-
ization sometimes improves the stability of the simplex optimizers, but in most cases there is a
performance penanlty.

MSK_TIPAR SIM DEGENttt e et et e e e et ettt et e 257
Controls how aggressively degeneration is handled.

MSK _TPAR STM DUAL CRASH . .ottt e et e et e et et et et et ettt e e 258
Controls whether crashing is performed in the dual simplex optimizer.

MSK_TIPAR_SIM_DUAL_PHASEONE_METHOD.ttt e e e e 258
An exprimental feature.

MSK_TPAR_SIM DUAL RESTRICT SELECTIONttt ittt eeaaeens 258
Controls how aggressively restricted selection is used.

210

APPENDIX H. PARAMETERS REFERENCE

MSK_TIPAR_SIM_DUAL_SELECTION\ttt ittt et it it e eans 259
Controls the dual simplex strategy.

MSK_TIPAR_SIM EXPLOIT DUPVEC . ..ttt ittt et ettt e et ettt e e ettt ettt 259
Controls if the simplex optimizers are allowed to exploit duplicated columns.

MO K TP AR STM HO T ST AR T .ottt et e e et et e et e e e et et et et 259
Controls the type of hot-start that the simplex optimizer perform.

MSK_IPAR_SIM_HOTSTART LU . ..ttt e e e e e et et e 260
Determines if the simplex optimizer should exploit the initial factorization.

MSK_TPAR_SIM_INTEGER\ttt ittt ettt et et et e et ettt et ettt et et i 260
An exprimental feature.

MSK_TPAR _SIM MAX _TITERATIONS ...ttt ettt e e et et ettt e e e eans 260
Maximum number of iterations that can be used by a simplex optimizer.

MSK_TPAR _STIM MAX NUM_SETBACKS . . .ottt e et et ettt 261
Controls how many set-backs that are allowed within a simplex optimizer.

MSK_TPAR _SIM _NETWORK DETECTttt ettt et e et e e e e e et eens 261
Level of aggressiveness of network detection.

MSK_TIPAR_SIM _NETWORK DETECT _HOTSTARTottt e e en 261
Level of aggressiveness of network detection in a simplex hot-start.

MSK_TPAR_SIM_NETWORK _DETECT METHODttt it et ettt ie e 262
Controls which type of detection method the network extraction should use.

MSK_TPAR_SIM NON _STINGUL ARttt e e et e et et et et ettt e e eeeens 262
Controls if the simplex optimizer ensures a non-singular basis, if possible.

MSK_TIPAR SIM PRIMAL CRASH . . o\ttt e e e e e e e e 262
Controls the simplex crash.

MSK_TPAR_SIM_PRIMAL PHASEONE METHODttt ittt et ettt 262
An exprimental feature.

MSK_TPAR_SIM _PRIMAL RESTRICT _SELECTION.ttt ettt et eiieeenns 263
Controls how aggressively restricted selection is used.

MSK_TIPAR_SIM _PRIMAL SELECTIONttt ettt et et e e e 263
Controls the primal simplex strategy.

MSK_TIPAR_SIM_REFACTOR _FREQ.ttt i e e e e e e 264
Controls the basis refactoring frequency.

MSK_TPAR _STIM REFORMUL AT ION ..\ttt ittt ettt et e et et et e e ettt it 264
Controls if the simplex optimizers are allowed to reformulate the problem.

H.3.

INTEGER PARAMETERS 211

MSK_IPAR STIM SAVE LU . .ttt e e e e e e et et et 264
Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

MSK_TPAR STM _SCALING . ..ttt ettt et e ettt e e e e et e e e e et eenns 265
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

MSK_TPAR_STM_SCALING METHODttt ettt et e et e ettt ettt et e 265
Controls how the problem is scaled before a simplex optimizer is used.

MSK_TIPAR _SIM_SOLVE FORM . . .ottt et e e e e e e e et e e et et 265
Controls whether the primal or the dual problem is solved by the primal-/dual- simplex optimizer.

MSK_IPAR_SIM_STABILITY PRIORITY ...t e e et e e 265
Controls how high priority the numerical stability should be given.

MSK_TPAR _SIM_SWITCH OPTIMIZERttt ettt et et i ettt eaaeens 266
Controls the simplex behavior.

MSK_TIPAR_SOL_FILTER KEEP BASTICttt e et ettt e 266
Controls the license manager client behavior.

MSK_IPAR_SOL_FILTER_KEEP RANGEDttt e e e e e et e e 266
Control the contents of the solution files.

MSK_IPAR _SOL _QUOTED N AME S . o .ttt e e e et e e et e e e e e e e e e e e 267
Controls the solution file format.

MSK_TPAR _SOL _READ NAME WIDTH . ..ttt e e e e et e ettt ittt e e 267
Controls the input solution file format.

MSK_TPAR _SOL READ WD TH ..ottt e e e e e et e et et et et it et 267
Controls the input solution file format.

MSK TP AR SOLUT ION CAL L BACK . ittt et e e e e e e et e e e ettt e e e et 267
Indicates whether solution call-backs will be performed during the optimization.

MSK _TPAR TIMING LEVEL ...ttt ettt et et e et ettt et i et ettt 268
Controls the a amount of timing performed inside MOSEK.

MSK_IPAR_WARNING_LEVEL i e i 268
Warning level.

MSK_IPAR WRITE _BAS CONSTRAINT S . ..ttt e e e e e e e e e e e e e 268
Controls the basic solution file format.

MSK _IPAR WRITE BAS HE D ..ttt e e e et e et e et et et et et e et e e 269
Controls the basic solution file format.

MSK_IPAR WRITE _BAS VARIABLES ..ottt e e e e e e e e e e e e e 269
Controls the basic solution file format.

212

APPENDIX H. PARAMETERS REFERENCE

MSK_TPAR WRITE DATA COMPRESSEDttt ettt ettt e ettt ettt e et 269
Controls output file compression.

MSK_TIPAR WRITE DATA FORMAT . .ttt et e e e e et e e 269
Controls the output file format.

MSK _TPAR WRITE DAT A PARAM . .ottt e e e e e e ettt ettt e e e e e 270
Controls output file data.

MSK_TIPAR WRITE FREE CONttt ettt e e e e e et ettt 270
Controls the output file data.

MSK_TPAR WRITE GENERIC NAMESttt e e e e ettt 270
Controls the output file data.

MSK_TIPAR WRITE GENERIC NAMES T0ttt ettt ettt ettt 271
Index origin used in generic names.

MSK_IPAR WRITE _INT_CONSTRAINTS. ...ttt e e e et e e 271
Controls the integer solution file format.

MSK_TIPAR WRITE INT HEADttt ittt et e et e e e et et ettt 271
Controls the integer solution file format.

MSK_IPAR WRITE INT_VARIABLES ... it e e e e et 271
Controls the integer solution file format.

MSK_TPAR WRITE LP _LINE WIDTHttt ittt ettt e e e e ettt ie e 272
Controls the LP output file format.

MSK_IPAR WRITE_LP_QUOTED_NAMES it e e et 272
Controls LP output file format.

MSK_TPAR WRITE LP _STRICT FORMAT ...ttt e e et et e 272
Controls whether LP output files satisfy the LP format strictly.

MSK_IPAR WRITE_LP_TERMS_PER_LINE i e e 272
Controls the LP output file format.

MSK_TPAR WRITE MP S TN T ..ottt ettt e et et e e e e et et ettt eeae e 273
Controls the output file data.

MSK_IPAR_WRITE_MPS_OBJ_SENSEttt e e e e e e 273
Controls the output file data.

MSK_TPAR WRITE MPS QUOTED NAMES ...ttt e e et 273
Controls the output file data.

MSK_IPAR WRITE MPS_STRICTttt e e e e e 274
Controls the output MPS file format.

MSK_IPAR WRITE PRECTSTIONttt ettt ittt ettt et ettt it ettt ettt 274
Controls data precision employed in when writing an MPS file.

H.3.

INTEGER PARAMETERS 213

MSK_IPAR _WRITE _SOL _CONSTRAINT S . .\ttt e e e ettt et ettt et ettt e e 274
Controls the solution file format.

MSK_IPAR WRITE _SOL _HEAD . ..ttt e e e e e e e e e e e e e e e e e 274
Controls solution file format.

MSK_IPAR _WRITE _SOL _VARIABLES .. ittt e e e e e e e e e e e 275
Controls the solution file format.

MSK_IPAR WRITE TASK INC SO . .ttt et e e e et e e e e e e e e e e 275
Controls whether the solutions are stored in the task file too.

MSK_IPAR WRITE XML _MODE ittt e et e et et et e 275
Controls if linear coefficients should be written by row or column when writing in the XML file
format.

alloc_add_gnz
Corresponding constant:
MSK_TIPAR_ALLOC_ADD_QNZ

Description:
Additional number of () non-zeros that are allocated space for when numanz exceeds maxnumqnz
during addition of new @ entries.

Possible Values:
Any number between 0 and +inf.

Default value:
5000
ana_sol_basis
Corresponding constant:
MSK_TPAR_ANA_SOL_BASIS

Description:
Controls whether the basis matrix is analyzed in solaution analyzer.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

ana_sol_print_violated

Corresponding constant:
MSK_IPAR_ANA_SOL_PRINT_VIOLATED

Description:

Controls whether a list of violated constraints is printed.

214

APPENDIX H. PARAMETERS REFERENCE

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
auto_sort_a_before_opt
Corresponding constant:
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Description:
Controls whether the elements in each column of A are sorted before an optimization is
performed. This is not required but makes the optimization more deterministic.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
auto_update_sol_info
Corresponding constant:
MSK_TIPAR_AUTO_UPDATE_SOL_INFO

Description:
Controls whether the solution information items are automatically updated after an opti-
mization is performed.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e basis_solve_use_plus_one

Corresponding constant:
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

Description:
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector
with -1 in the right position. However, if this parameter is set to MSK_ON, -1 is replaced by
1.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

H.3. INTEGER PARAMETERS 215

Default value:
MSK_OFF

e bi_clean_optimizer

Corresponding constant:
MSK_TPAR_BI_CLEAN_OPTIMIZER

Description:
Controls which simplex optimizer is used in the clean-up phase.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER MIXED_INT The mixed-integer optimizer.
MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER_FREE The optimizer is chosen automatically.
MSK_OPTIMIZER PRIMAL DUAL_SIMPLEX The primal dual simplex optimizer is used.
MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.
MSK_OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER_PRIMAL_SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER FREE_SIMPLEX One of the simplex optimizers is used.

Default value:
MSK_OPTIMIZER_FREE

e bi_ignore max_iter
Corresponding constant:

MSK_IPAR_BI_IGNORE_MAX_ITER

Description:
If the parameter MSK_TIPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-
point optimizer has terminated due to maximum number of iterations, then basis identifi-
cation is performed if this parameter has the value MSK_ON.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e bi_ignore num_error

Corresponding constant:
MSK_IPAR_BI_IGNORE_NUM_ERROR

216

APPENDIX H. PARAMETERS REFERENCE

Description:
If the parameter MSK_IPAR_INTPNT BASIS has the value MSK_BI_NO_ERROR and the interior-
point optimizer has terminated due to a numerical problem, then basis identification is
performed if this parameter has the value MSK_ON.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

bi_max_iterations

Corresponding constant:
MSK_TIPAR BI MAX_ITERATIONS

Description:
Controls the maximum number of simplex iterations allowed to optimize a basis after the
basis identification.

Possible Values:
Any number between 0 and +inf.

Default value:
1000000

cache_license

Corresponding constant:
MSK_IPAR_CACHE_LICENSE

Description:
Specifies if the license is kept checked out for the lifetime of the mosek environment (on) or
returned to the server immediately after the optimization (off).

Check-in and check-out of licenses have an overhead. Frequent communication with the
license server should be avoided.
Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

cache_size_11

Corresponding constant:
MSK_TIPAR_CACHE_SIZE_L1

Description:
Specifies the size of the cache of the computer. This parameter is potentially very important
for the efficiency on computers if MOSEK cannot determine the cache size automatically.
If the cache size is negative, then MOSEK tries to determine the value automatically.

H.3. INTEGER PARAMETERS 217

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e cache_size 12
Corresponding constant:
MSK_IPAR _CACHE _SIZE L2

Description:
Specifies the size of the cache of the computer. This parameter is potentially very important
for the efficiency on computers where MOSEK cannot determine the cache size automati-
cally. If the cache size is negative, then MOSEK tries to determine the value automatically.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e check_convexity
Corresponding constant:
MSK_IPAR_CHECK_CONVEXITY

Description:
Specify the level of convexity check on quadratic problems

Possible values:
MSK_CHECK_CONVEXITY_SIMPLE Perform simple and fast convexity check.

MSK_CHECK_CONVEXITY_NONE No convexity check.
MSK_CHECK_CONVEXITY FULL Perform a full convexity check.

Default value:
MSK_CHECK_CONVEXITY_FULL
e check_task_data
Corresponding constant:
MSK_TIPAR_CHECK_TASK_DATA

Description:
If this feature is turned on, then the task data is checked for bad values i.e. NaNs. before
an optimization is performed.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

218

APPENDIX H. PARAMETERS REFERENCE

e concurrent_num_optimizers

Corresponding constant:
MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS

Description:
The maximum number of simultaneous optimizations that will be started by the concurrent
optimizer.
Possible Values:
Any number between 0 and +inf.
Default value:
2
concurrent_priority_dual_simplex
Corresponding constant:
MSK_TIPAR_CONCURRENT_PRIORITY DUAL_SIMPLEX

Description:
Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.

Possible Values:
Any number between 0 and +inf.

Default value:
2
concurrent_priority_free_simplex
Corresponding constant:
MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX

Description:
Priority of the free simplex optimizer when selecting solvers for concurrent optimization.

Possible Values:
Any number between 0 and +inf.

Default value:
3
concurrent_priority_intpnt
Corresponding constant:
MSK_TIPAR_CONCURRENT_PRIORITY_INTPNT

Description:
Priority of the interior-point algorithm when selecting solvers for concurrent optimization.

Possible Values:
Any number between 0 and +inf.

Default value:
4

e concurrent_priority primal_simplex

H.3. INTEGER PARAMETERS 219

Corresponding constant:
MSK_IPAR_CONCURRENT_PRIORITY _PRIMAL_SIMPLEX

Description:
Priority of the primal simplex algorithm when selecting solvers for concurrent optimization.

Possible Values:
Any number between 0 and +inf.

Default value:
1

® cpu_type

Corresponding constant:
MSK_IPAR_CPU_TYPE

Description:
Specifies the CPU type. By default MOSEK tries to auto detect the CPU type. Therefore,
we recommend to change this parameter only if the auto detection does not work properly.

Possible values:

MSK_CPU_POWERPC_G5 A G5 PowerPC CPU.
MSK_CPU_INTEL_PM An Intel PM cpu.

MSK_CPU_GENERIC An generic CPU type for the platform
MSK_CPU_UNKNOWN An unknown CPU.
MSK_CPU_AMD_OPTERON An AMD Opteron (64 bit).
MSK_CPU_INTEL_ITANIUM2 An Intel Itanium?2.
MSK_CPU_AMD_ATHLON An AMD Athlon.
MSK_CPU_HP_PARISC20 An HP PA RISC version 2.0 CPU.
MSK_CPU_INTEL_P4 An Intel Pentium P4 or Intel Xeon.
MSK_CPU_INTEL_P3 An Intel Pentium P3.
MSK_CPU_INTEL_CORE2 An Intel CORE2 cpu.

Default value:
MSK_CPU_UNKNOWN

e data_check
Corresponding constant:

MSK_IPAR_DATA_CHECK

Description:
If this option is turned on, then extensive data checking is enabled. It will slow down
MOSEK but on the other hand help locating bugs.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

220

APPENDIX H. PARAMETERS REFERENCE

e feasrepair_optimize

Corresponding constant:
MSK_IPAR FEASREPAIR OPTIMIZE

Description:
Controls which type of feasibility analysis is to be performed.

Possible values:

MSK_FEASREPAIR_OPTIMIZE NONE Do not optimize the feasibility repair problem.

MSK_FEASREPAIR _OPTIMIZE COMBINED Minimize with original objective subject to minimal
weighted violation of bounds.

MSK_FEASREPAIR OPTIMIZE PENALTY Minimize weighted sum of violations.
Default value:

MSK_FEASREPAIR_OPTIMIZE _NONE
infeas_generic_names
Corresponding constant:

MSK_TIPAR_INFEAS_GENERIC_NAMES

Description:
Controls whether generic names are used when an infeasible subproblem is created.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
infeas_prefer_primal
Corresponding constant:
MSK_IPAR_INFEAS PREFER_PRIMAL

Description:
If both certificates of primal and dual infeasibility are supplied then only the primal is used
when this option is turned on.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

infeas_report_auto

Corresponding constant:
MSK_IPAR_INFEAS_REPORT_AUTO

H.3. INTEGER PARAMETERS 221

Description:
Controls whether an infeasibility report is automatically produced after the optimization if
the problem is primal or dual infeasible.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e infeas report_level

Corresponding constant:
MSK_IPAR_INFEAS REPORT_LEVEL

Description:
Controls the amount of information presented in an infeasibility report. Higher values imply
more information.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e intpnt_basis

Corresponding constant:
MSK_TIPAR_INTPNT_BASIS

Description:
Controls whether the interior-point optimizer also computes an optimal basis.

Possible values:
MSK_BI_ALWAYS Basis identification is always performed even if the interior-point optimizer
terminates abnormally.

MSK_BI_NO_ERROR Basis identification is performed if the interior-point optimizer terminates
without an error.

MSK_BI_NEVER Never do basis identification.

MSK_BI_IF_FEASIBLE Basis identification is not performed if the interior-point optimizer
terminates with a problem status saying that the problem is primal or dual infeasible.

MSK_BI_OTHER Try another BI method.

Default value:
MSK_BI_ALWAYS

See also:
MSK_IPAR BI_IGNORE MAX_ITER Turns on basis identification in case the interior-point opti-
mizer is terminated due to maximum number of iterations.

MSK_IPAR_BI_IGNORE_NUM_ERROR Turns on basis identification in case the interior-point op-
timizer is terminated due to a numerical problem.

222 APPENDIX H. PARAMETERS REFERENCE

e intpnt_diff_step
Corresponding constant:
MSK_IPAR_INTPNT_DIFF_STEP

Description:
Controls whether different step sizes are allowed in the primal and dual space.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e intpnt_factor_debug_1lvl
Corresponding constant:
MSK_IPAR_INTPNT FACTOR_DEBUG_LVL

Description:
Controls factorization debug level.

Possible Values:
Any number between 0 and +inf.

Default value:
0
e intpnt_factor_method
Corresponding constant:
MSK_IPAR_INTPNT_FACTOR_METHOD

Description:
Controls the method used to factor the Newton equation system.

Possible Values:
Any number between 0 and +inf.

Default value:
0
e intpnt max_iterations
Corresponding constant:
MSK_IPAR_INTPNT_MAX_ITERATIONS

Description:
Controls the maximum number of iterations allowed in the interior-point optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
400

H.3. INTEGER PARAMETERS 223

e intpnt_max_num_cor

Corresponding constant:
MSK_IPAR_INTPNT_MAX_NUM_COR

Description:
Controls the maximum number of correctors allowed by the multiple corrector procedure.
A negative value means that MOSEK is making the choice.

Possible Values:

Any number between -1 and +inf.
Default value:

-1

e intpnt max num refinement_steps

Corresponding constant:
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

Description:
Maximum number of steps to be used by the iterative refinement of the search direction.
A negative value implies that the optimizer Chooses the maximum number of iterative
refinement steps.

Possible Values:
Any number between -inf and +inf.

Default value:
-1

e intpnt _num threads

Corresponding constant:
MSK_IPAR_INTPNT_NUM_THREADS

Description:
Controls the number of threads employed by the interior-point optimizer. If set to a positive
number MOSEK will use this number of threads. If zero the number of threads used will
equal the number of cores detected on the machine.

Possible Values:
Any integer greater or equal to 0.

Default value:
1

e intpnt_off_col_trh
Corresponding constant:
MSK_IPAR_INTPNT_OFF_COL_TRH

Description:
Controls how many offending columns are detected in the Jacobian of the constraint matrix.
1 means aggressive detection, higher values mean less aggressive detection.

0 means no detection.

224 APPENDIX H. PARAMETERS REFERENCE

Possible Values:
Any number between 0 and +inf.

Default value:
40
e intpnt_order method
Corresponding constant:
MSK_TIPAR_INTPNT_ORDER_METHOD

Description:
Controls the ordering strategy used by the interior-point optimizer when factorizing the
Newton equation system.

Possible values:

MSK_ORDER_METHOD_NONE No ordering is used.

MSK_ORDER_METHOD_APPMINLOC2 A variant of the approximate minimum local-fill-in ordering
is used.

MSK_ORDER_METHOD_APPMINLOC1 Approximate minimum local-fill-in ordering is used.
MSK_ORDER_METHOD_GRAPHPAR2 An alternative graph partitioning based ordering.
MSK_ORDER_METHOD_FREE The ordering method is chosen automatically.
MSK_ORDER_METHOD_GRAPHPAR1 Graph partitioning based ordering.

Default value:
MSK_ORDER_METHOD_FREE
e intpnt_regularization_use
Corresponding constant:
MSK_IPAR_INTPNT_REGULARIZATION_USE

Description:
Controls whether regularization is allowed.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e intpnt_scaling

Corresponding constant:
MSK_IPAR_INTPNT_SCALING

Description:
Controls how the problem is scaled before the interior-point optimizer is used.

Possible values:

MSK_SCALING_NONE No scaling is performed.

H.3. INTEGER PARAMETERS 225

MSK_SCALING_MODERATE A conservative scaling is performed.
MSK_SCALING_AGGRESSIVE A very aggressive scaling is performed.
MSK_SCALING_FREE The optimizer chooses the scaling heuristic.

Default value:
MSK_SCALING_FREE

e intpnt_solve_form

Corresponding constant:
MSK_IPAR_INTPNT_SOLVE_FORM

Description:

Controls whether the primal or the dual problem is solved.

Possible values:

MSK_SOLVE_PRIMAL The optimizer should solve the primal problem.
MSK_SOLVE DUAL The optimizer should solve the dual problem.
MSK_SOLVE_FREE The optimizer is free to solve either the primal or the dual problem.

Default value:
MSK_SOLVE_FREE

e intpnt_starting point

Corresponding constant:
MSK_IPAR_INTPNT_STARTING_POINT

Description:
Starting point used by the interior-point optimizer.

Possible values:

MSK_STARTING_POINT_GUESS The optimizer guesses a starting point.

MSK_STARTING_POINT_SATISFY BOUNDS The starting point is choosen to satisfy all the sim-
ple bounds on nonlinear variables. If this starting point is employed, then more care
than usual should employed when choosing the bounds on the nonlinear variables. In
particular very tight bounds should be avoided.

MSK_STARTING_POINT_CONSTANT The optimizer constructs a starting point by assigning a
constant value to all primal and dual variables. This starting point is normally robust.

MSK_STARTING_POINT_FREE The starting point is chosen automatically.

Default value:
MSK_STARTING_POINT_FREE
e lic_trh expiry_wrn
Corresponding constant:
MSK_IPAR_LIC_TRH_EXPIRY_WRN

Description:
If a license feature expires in a numbers days less than the value of this parameter then a
warning will be issued.

226

APPENDIX H. PARAMETERS REFERENCE

Possible Values:
Any number between 0 and +inf.

Default value:
7
license_allow_overuse
Corresponding constant:
MSK_IPAR_LICENSE_ALLOW_OVERUSE

Description:
Controls if license overuse is allowed when caching licenses

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
license_cache_time
Corresponding constant:
MSK_IPAR_LICENSE_CACHE_TIME

Description:
Setting this parameter no longer has any effect. Please see MSK_IPAR_CACHE_LICENSE for an
alternative.

Possible Values:
Any number between 0 and 65555.

Default value:
5
license_check_time
Corresponding constant:
MSK_IPAR_LICENSE_CHECK_TIME

Description:
The parameter specifies the number of seconds between the checks of all the active licenses
in the MOSEK environment license cache. These checks are performed to determine if the
licenses should be returned to the server.

Possible Values:
Any number between 1 and 120.

Default value:
1

license_debug

Corresponding constant:
MSK_TIPAR_LICENSE_DEBUG

H.3. INTEGER PARAMETERS 227

Description:
This option is used to turn on debugging of the incense manager.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e license_pause_time
Corresponding constant:
MSK_TIPAR_LICENSE_PAUSE_TIME

Description:
If MSK_TPAR_LICENSE_WAIT=MSK_ON and no license is available, then MOSEK sleeps a num-
ber of milliseconds between each check of whether a license has become free.

Possible Values:
Any number between 0 and 1000000.

Default value:
100
e license_suppress_expire_wrns
Corresponding constant:
MSK_TIPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Description:
Controls whether license features expire warnings are suppressed.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e license wait

Corresponding constant:

MSK_IPAR_LICENSE_WAIT

Description:
If all licenses are in use MOSEK returns with an error code. However, by turning on this
parameter MOSEK will wait for an available license.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

228

APPENDIX H. PARAMETERS REFERENCE

e log

Corresponding constant:
MSK_IPAR_LOG

Description:
Controls the amount of log information. The value 0 implies that all log information is
suppressed. A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value
of this parameter is reduced by the value of MSK_IPAR_LOG_CUT_SECOND_OPT for the second
and any subsequent optimizations.

Possible Values:
Any number between 0 and +inf.

Default value:
10

See also:
MSK_IPAR_LOG_CUT_SECOND_OPT Controls the reduction in the log levels for the second and
any subsequent optimizations.
log bi
Corresponding constant:
MSK_TIPAR_LOG_BI

Description:
Controls the amount of output printed by the basis identification procedure. A higher level
implies that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
4
log bi_freq
Corresponding constant:
MSK_IPAR_LOG_BI_FREQ

Description:
Controls how frequent the optimizer outputs information about the basis identification and
how frequent the user-defined call-back function is called.

Possible Values:
Any number between 0 and +inf.

Default value:
2500

log_check_convexity

Corresponding constant:
MSK_TIPAR_LOG_CHECK_CONVEXITY

H.3. INTEGER PARAMETERS 229

Description:
Controls logging in convexity check on quadratic problems. Set to a positive value to turn
logging on.
If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a
list of negative (positive) pivot elements is printed. The absolute value of the pivot elements
is also shown.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e log_concurrent

Corresponding constant:
MSK_TIPAR_LOG_CONCURRENT

Description:
Controls amount of output printed by the concurrent optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e log cut_second_opt

Corresponding constant:
MSK_TIPAR_LOG_CUT_SECOND_OPT

Description:
If a task is employed to solve a sequence of optimization problems, then the value of the log
levels is reduced by the value of this parameter. E.g MSK_TPAR_LOG and MSK_IPAR_LOG_SIM
are reduced by the value of this parameter for the second and any subsequent optimizations.

Possible Values:
Any number between 0 and +inf.

Default value:
1

See also:

MSK_IPAR_LOG Controls the amount of log information.

MSK_IPAR_LOG_INTPNT Controls the amount of log information from the interior-point opti-
mizers.

MSK_IPAR_LOGMIO Controls the amount of log information from the mixed-integer optimiz-
ers.

MSK_IPAR_LOG_SIM Controls the amount of log information from the simplex optimizers.

e log factor

230

APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_TPAR _LOG_FACTOR

Description:
If turned on, then the factor log lines are added to the log.

Possible Values:
Any number between 0 and +inf.

Default value:
1
log_feasrepair
Corresponding constant:
MSK_IPAR_LOG_FEASREPAIR

Description:
Controls the amount of output printed when performing feasibility repair.

Possible Values:
Any number between 0 and +inf.

Default value:
0

log file

Corresponding constant:
MSK_IPAR_LOG_FILE

Description:
If turned on, then some log info is printed when a file is written or read.

Possible Values:
Any number between 0 and +inf.

Default value:
1

log_head

Corresponding constant:
MSK_TIPAR_LOG_HEAD

Description:
If turned on, then a header line is added to the log.

Possible Values:
Any number between 0 and +inf.

Default value:
1

log_infeas_ana

Corresponding constant:
MSK_TIPAR_LOG_INFEAS_ANA

H.3. INTEGER PARAMETERS 231

Description:
Controls amount of output printed by the infeasibility analyzer procedures. A higher level
implies that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e log intpnt
Corresponding constant:
MSK_IPAR_LOG_INTPNT

Description:
Controls amount of output printed printed by the interior-point optimizer. A higher level
implies that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
4
e logmio
Corresponding constant:
MSK_IPAR_LOG_MIO

Description:
Controls the log level for the mixed-integer optimizer. A higher level implies that more
information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
4
e log mio_freq
Corresponding constant:
MSK_TPAR _LOG_MIO_FREQ

Description:
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every
time MSK_IPAR_LOG_MIO_FREQ relaxations have been solved.

Possible Values:
A integer value.

Default value:
1000

e log nonconvex

232 APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_IPAR_LOG_NONCONVEX

Description:
Controls amount of output printed by the nonconvex optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e log_optimizer
Corresponding constant:
MSK_IPAR_LOG_OPTIMIZER

Description:
Controls the amount of general optimizer information that is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e log_order
Corresponding constant:
MSK_IPAR_LOG_ORDER

Description:
If turned on, then factor lines are added to the log.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e log_param
Corresponding constant:
MSK_IPAR_LOG_PARAM

Description:
Controls the amount of information printed out about parameter changes.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e log presolve

Corresponding constant:
MSK_TIPAR_LOG_PRESOLVE

H.3. INTEGER PARAMETERS 233

Description:
Controls amount of output printed by the presolve procedure. A higher level implies that
more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e log response
Corresponding constant:
MSK_IPAR_LOG_RESPONSE

Description:
Controls amount of output printed when response codes are reported. A higher level implies
that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
0
e log_sensitivity
Corresponding constant:
MSK_TIPAR LOG_SENSITIVITY

Description:
Controls the amount of logging during the sensitivity analysis. 0: Means no logging infor-
mation is produced. 1: Timing information is printed. 2: Sensitivity results are printed.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e log_sensitivity_opt
Corresponding constant:
MSK_IPAR LOG_SENSITIVITY OPT

Description:
Controls the amount of logging from the optimizers employed during the sensitivity analysis.
0 means no logging information is produced.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e log_sim

234 APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_IPAR_LOG_SIM

Description:
Controls amount of output printed by the simplex optimizer. A higher level implies that
more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
4
e log_sim freq
Corresponding constant:
MSK_TPAR_LOG_SIM_FREQ

Description:
Controls how frequent the simplex optimizer outputs information about the optimization
and how frequent the user-defined call-back function is called.

Possible Values:
Any number between 0 and +inf.

Default value:
500
e log_sim minor
Corresponding constant:
MSK_IPAR_LOG_SIM _MINOR

Description:
Currently not in use.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e log _sim network freq

Corresponding constant:
MSK_TIPAR_LOG_SIM_NETWORK_FREQ

Description:
Controls how frequent the network simplex optimizer outputs information about the opti-
mization and how frequent the user-defined call-back function is called. The network opti-
mizer will use a logging frequency equal to MSK_IPAR_LOG_SIM_FREQ times MSK_IPAR_LOG_SIM NETWORK_FREQ.

Possible Values:
Any number between 0 and +inf.

Default value:
50

H.3. INTEGER PARAMETERS 235

e log_storage
Corresponding constant:
MSK_TPAR_LOG_STORAGE

Description:
When turned on, MOSEK prints messages regarding the storage usage and allocation.

Possible Values:
Any number between 0 and +inf.

Default value:
0
e lp write_ignore_incompatible_items
Corresponding constant:
MSK_IPAR_LP_WRITE_IGNORE_INCOMPATIBLE_ITEMS

Description:
Controls the result of writing a problem containing incompatible items to an LP file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e max_num_warnings
Corresponding constant:
MSK_TIPAR_MAX_NUM_WARNINGS

Description:
Waning level. A higher value results in more warnings.

Possible Values:
Any number between 0 and +inf.

Default value:
10
e mio_branch dir
Corresponding constant:
MSK_IPAR_MIO_BRANCH_DIR

Description:
Controls whether the mixed-integer optimizer is branching up or down by default.

Possible values:
MSK_BRANCH_DIR_DOWN The mixed-integer optimizer always chooses the down branch first.

MSK_BRANCH_DIR UP The mixed-integer optimizer always chooses the up branch first.
MSK_BRANCH_DIR FREE The mixed-integer optimizer decides which branch to choose.

236 APPENDIX H. PARAMETERS REFERENCE

Default value:
MSK_BRANCH_DIR_FREE

e mio_branch priorities_use

Corresponding constant:
MSK_IPAR_MIO_BRANCH_PRIORITIES_USE

Description:
Controls whether branching priorities are used by the mixed-integer optimizer.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e mio_construct_sol

Corresponding constant:
MSK_TPAR_MIQO_CONSTRUCT_SOL

Description:
If set to MSK_ON and all integer variables have been given a value for which a feasible mixed
integer solution exists, then MOSEK generates an initial solution to the mixed integer
problem by fixing all integer values and solving the remaining problem.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e mio_cont_sol

Corresponding constant:
MSK_IPAR_MIO_CONT_SOL

Description:
Controls the meaning of the interior-point and basic solutions in mixed integer problems.

Possible values:

MSK_MIO_CONT_SOL_ITG The reported interior-point and basic solutions are a solution to the
problem with all integer variables fixed at the value they have in the integer solution.
A solution is only reported in case the problem has a primal feasible solution.

MSK_MIO_CONT_SOL_NONE No interior-point or basic solution are reported when the mixed-
integer optimizer is used.

MSK_MIO_CONT_SOL_ROOT The reported interior-point and basic solutions are a solution to
the root node problem when mixed-integer optimizer is used.

H.3. INTEGER PARAMETERS 237

MSK_MIO_CONT_SOL_ITG_REL In case the problem is primal feasible then the reported interior-
point and basic solutions are a solution to the problem with all integer variables fixed
at the value they have in the integer solution. If the problem is primal infeasible, then
the solution to the root node problem is reported.

Default value:
MSK_MIO_CONT_SOL_NONE

e mio_cut_level_root

Corresponding constant:
MSK_IPAR MIO_CUT_LEVEL_ROQOT

Description:
Controls the cut level employed by the mixed-integer optimizer at the root node. A negative
value means a default value determined by the mixed-integer optimizer is used. By adding
the appropriate values from the following table the employed cut types can be controlled.

GUB cover +2
Flow cover +4
Lifting +8
Plant location +16
Disaggregation +32
Knapsack cover +64
Lattice +128
Gomory +256
Coefficient reduction +512
GCD +1024
Obj. integrality +2048
Possible Values:
Any value.

Default value:
-1

e mio_cut_level_tree
Corresponding constant:

MSK_IPAR_MIO_CUT_LEVEL_TREE

Description:
Controls the cut level employed by the mixed-integer optimizer at the tree. See MSK_IPAR_MIO_CUT_LEVEL ROOT
for an explanation of the parameter values.

Possible Values:
Any value.

Default value:
-1

e mio_feaspump_level

Corresponding constant:
MSK_IPAR MIO_FEASPUMP_LEVEL

238 APPENDIX H. PARAMETERS REFERENCE

Description:
Feasibility pump is a heuristic designed to compute an initial feasible solution. A value of
0 implies that the feasibility pump heuristic is not used. A value of -1 implies that the
mixed-integer optimizer decides how the feasibility pump heuristic is used. A larger value
than 1 implies that the feasibility pump is employed more aggressively. Normally a value
beyond 3 is not worthwhile.

Possible Values:
Any number between -inf and 3.

Default value:
-1

e mio_heuristic_level

Corresponding constant:
MSK_TIPAR_MIO_HEURISTIC_LEVEL

Description:
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good
integer feasible solution. A value of zero means the heuristic is not used at all. A larger value
than 0 means that a gradually more sophisticated heuristic is used which is computationally
more expensive. A negative value implies that the optimizer chooses the heuristic. Normally
a value around 3 to 5 should be optimal.

Possible Values:
Any value.

Default value:
-1
e mio_hotstart
Corresponding constant:
MSK_IPAR_MIO_HOTSTART

Description:
Controls whether the integer optimizer is hot-started.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e mio_keep_basis

Corresponding constant:

MSK_TIPAR MIO_KEEP_BASIS

Description:
Controls whether the integer presolve keeps bases in memory. This speeds on the solution
process at cost of bigger memory consumption.

H.3. INTEGER PARAMETERS 239

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e mio_local_branch_number
Corresponding constant:
MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER

Description:
Controls the size of the local search space when doing local branching.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e mio_max_num_branches
Corresponding constant:
MSK_IPAR_MIO_MAX_NUM_BRANCHES

Description:
Maximum number of branches allowed during the branch and bound search. A negative
value means infinite.

Possible Values:
Any number between -inf and +inf.

Default value:
-1

See also:
MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-

integer optimizer for period time specified by the parameter.
e mio max num relaxs

Corresponding constant:

MSK_IPAR_MIO_MAX_NUM_RELAXS

Description:
Maximum number of relaxations allowed during the branch and bound search. A negative
value means infinite.

Possible Values:
Any number between -inf and +inf.

Default value:
-1

See also:

240

APPENDIX H. PARAMETERS REFERENCE

MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

e mio max num_solutions

Corresponding constant:
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

Description:
The mixed-integer optimizer can be terminated after a certain number of different feasible
solutions has been located. If this parameter has the value n and n is strictly positive, then
the mixed-integer optimizer will be terminated when n feasible solutions have been located.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
See also:

MSK_DPAR_MIO DISABLE_TERM_TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

e mio_mode

Corresponding constant:
MSK_IPAR_MIO_MODE

Description:
Controls whether the optimizer includes the integer restrictions when solving a (mixed)
integer optimization problem.

Possible values:

MSK_MIO_MODE_IGNORED The integer constraints are ignored and the problem is solved as a
continuous problem.

MSK_MIO_MODE_LAZY Integer restrictions should be satisfied if an optimizer is available for
the problem.

MSK_MIO_MODE_SATISFIED Integer restrictions should be satisfied.

Default value:
MSK_MIO_MODE_SATISFIED

e mio node_optimizer

Corresponding constant:
MSK_TPAR_MIO_NODE_OPTIMIZER

Description:
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.

H.3. INTEGER PARAMETERS 241

MSK_OPTIMIZER MIXED_INT The mixed-integer optimizer.

MSK_OPTIMIZER DUAL_SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER FREE The optimizer is chosen automatically.
MSK_OPTIMIZER PRIMAL DUAL_SIMPLEX The primal dual simplex optimizer is used.
MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.
MSK_OPTIMIZER _NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER_PRIMAL_SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER FREE_SIMPLEX One of the simplex optimizers is used.

Default value:
MSK_OPTIMIZER_FREE

e mio node_selection

Corresponding constant:
MSK_TPAR_MIO_NODE_SELECTION

Description:
Controls the node selection strategy employed by the mixed-integer optimizer.

Possible values:
MSK_MIO_NODE_SELECTION_PSEUDO The optimizer employs selects the node based on a pseudo
cost estimate.
MSK_MIO_NODE_SELECTION_HYBRID The optimizer employs a hybrid strategy.
MSK_MIO_NODE_SELECTION_FREE The optimizer decides the node selection strategy.
MSK_MIO_NODE_SELECTION_WORST The optimizer employs a worst bound node selection strat-
egy.
MSK_MIO_NODE_SELECTION_BEST The optimizer employs a best bound node selection strat-
egy.
MSK_MIO_NODE_SELECTION_FIRST The optimizer employs a depth first node selection strat-
egy.
Default value:
MSK_MIQ_NODE_SELECTION_FREE

e mio_optimizer_mode
Corresponding constant:
MSK_IPAR_MIO_OPTIMIZER_MODE

Description:
An exprimental feature.

Possible Values:
Any number between 0 and 1.

Default value:
0

242

APPENDIX H. PARAMETERS REFERENCE

e mio_presolve_aggregate

Corresponding constant:
MSK_IPAR MIO_PRESOLVE_AGGREGATE

Description:
Controls whether the presolve used by the mixed-integer optimizer tries to aggregate the
constraints.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e mio_presolve_probing

Corresponding constant:
MSK_TPAR_MIO_PRESOLVE_PROBING

Description:
Controls whether the mixed-integer presolve performs probing. Probing can be very time
consuming.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e mio_presolve_use

Corresponding constant:
MSK_IPAR_MIO_PRESOLVE_USE

Description:
Controls whether presolve is performed by the mixed-integer optimizer.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e mio_root_optimizer

Corresponding constant:
MSK_TPAR_MIO_ROOT_OPTIMIZER

Description:
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

H.3. INTEGER PARAMETERS 243

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER MIXED_INT The mixed-integer optimizer.
MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER_FREE The optimizer is chosen automatically.
MSK_OPTIMIZER_PRIMAL DUAL_SIMPLEX The primal dual simplex optimizer is used.
MSK_OPTIMIZER CONIC The optimizer for problems having conic constraints.
MSK_OPTIMIZER _NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER_FREE_SIMPLEX One of the simplex optimizers is used.

Default value:
MSK_OPTIMIZER_FREE

e mio_strong_branch

Corresponding constant:
MSK_IPAR_MIO_STRONG_BRANCH

Description:
The value specifies the depth from the root in which strong branching is used. A negative
value means that the optimizer chooses a default value automatically.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e nonconvex_max_iterations
Corresponding constant:
MSK_IPAR_NONCONVEX_MAX_ITERATIONS

Description:
Maximum number of iterations that can be used by the nonconvex optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
100000
e objective_sense
Corresponding constant:
MSK_IPAR_OBJECTIVE_SENSE

Description:
If the objective sense for the task is undefined, then the value of this parameter is used as
the default objective sense.

244

APPENDIX H. PARAMETERS REFERENCE

Possible values:

MSK_OBJECTIVE_SENSE MINIMIZE The problem should be minimized.
MSK_OBJECTIVE_SENSE UNDEFINED The objective sense is undefined.
MSK_OBJECTIVE_SENSE MAXIMIZE The problem should be maximized.

Default value:
MSK_OBJECTIVE_SENSE_MINIMIZE

opf_max_terms_per_line

Corresponding constant:
MSK_IPAR_OPF_MAX_TERMS_PER_LINE

Description:
The maximum number of terms (linear and quadratic) per line when an OPF file is written.

Possible Values:
Any number between 0 and +inf.

Default value:
5
opf_write_header
Corresponding constant:
MSK_IPAR_OPF_WRITE_HEADER

Description:
Write a text header with date and MOSEK version in an OPF file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
opf_write_hints
Corresponding constant:
MSK_IPAR OPF _WRITE_HINTS

Description:
Write a hint section with problem dimensions in the beginning of an OPF file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e opf_write_parameters

H.3. INTEGER PARAMETERS 245

Corresponding constant:
MSK_IPAR OPF _WRITE PARAMETERS

Description:
Write a parameter section in an OPF file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e opf_write_problem
Corresponding constant:
MSK_IPAR_OPF_WRITE_PROBLEM

Description:
Write objective, constraints, bounds etc. to an OPF file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e opf write_sol_bas
Corresponding constant:
MSK_IPAR_OPF_WRITE_SOL_BAS

Description:
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and a basic solution is defined, include the
basic solution in OPF files.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e opf write_sol_itg
Corresponding constant:
MSK_IPAR _OPF _WRITE_SOL_ITG

Description:
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an integer solution is defined, write the
integer solution in OPF files.

Possible values:

246 APPENDIX H. PARAMETERS REFERENCE

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON
e opf write_sol_itr
Corresponding constant:
MSK_IPAR_OPF_WRITE_SOL_ITR

Description:
If MSK_TPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an interior solution is defined, write the
interior solution in OPF files.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e opf_write_solutions
Corresponding constant:
MSK_IPAR_OPF_WRITE_SOLUTIONS

Description:
Enable inclusion of solutions in the OPF files.
Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e optimizer

Corresponding constant:
MSK_IPAR_OPTIMIZER

Description:
The paramter controls which optimizer is used to optimize the task.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER MIXED_INT The mixed-integer optimizer.

MSK_OPTIMIZER _DUAL_SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER FREE The optimizer is chosen automatically.
MSK_OPTIMIZER PRIMAL DUAL_SIMPLEX The primal dual simplex optimizer is used.

H.3. INTEGER PARAMETERS 247

MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.
MSK_OPTIMIZER _NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE For internal use only.
MSK_OPTIMIZER PRIMAL _SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER FREE_SIMPLEX One of the simplex optimizers is used.

Default value:
MSK_OPTIMIZER _FREE
e param read_case_name
Corresponding constant:
MSK_IPAR_PARAM_READ_CASE_NAME

Description:
If turned on, then names in the parameter file are case sensitive.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e param_read_ign_error
Corresponding constant:
MSK_TIPAR PARAM READ_IGN_ERROR

Description:
If turned on, then errors in paramter settings is ignored.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e presolve_elim fill
Corresponding constant:
MSK_IPAR_PRESOLVE_ELIM_FILL

Description:
Controls the maximum amount of fill-in that can be created during the elimination phase
of the presolve. This parameter times (numcon+numvar) denotes the amount of fill-in.

Possible Values:
Any number between 0 and +inf.

Default value:
1

248 APPENDIX H. PARAMETERS REFERENCE

e presolve_eliminator max num_tries
Corresponding constant:
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

Description:
Control the maximum number of times the eliminator is tried.

Possible Values:
A negative value implies MOSEK decides maximum number of times.

Default value:
-1
e presolve_eliminator_use
Corresponding constant:
MSK_IPAR_PRESOLVE_ELIMINATOR_USE

Description:
Controls whether free or implied free variables are eliminated from the problem.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e presolve_level

Corresponding constant:

MSK_IPAR _PRESOLVE_LEVEL

Description:
Currently not used.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e presolve_lindep_use
Corresponding constant:
MSK_TIPAR_PRESOLVE_LINDEP_USE

Description:
Controls whether the linear constraints are checked for linear dependencies.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

H.3. INTEGER PARAMETERS 249

Default value:
MSK_ON

e presolve_lindep_work_lim
Corresponding constant:
MSK_TIPAR_PRESOLVE_LINDEP_WORK_LIM

Description:
Is used to limit the amount of work that can done to locate linear dependencies. In general
the higher value this parameter is given the less work can be used. However, a value of 0
means no limit on the amount work that can be used.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e presolve_use
Corresponding constant:
MSK_IPAR_PRESOLVE_USE

Description:
Controls whether the presolve is applied to a problem before it is optimized.

Possible values:

MSK_PRESOLVE_MODE_ON The problem is presolved before it is optimized.
MSK_PRESOLVE_MODE_OFF The problem is not presolved before it is optimized.

MSK_PRESOLVE _MODE_FREE It is decided automatically whether to presolve before the prob-
lem is optimized.

Default value:
MSK_PRESOLVE_MODE_FREE

e qo_separable_reformulation

Corresponding constant:
MSK_TIPAR_QO_SEPARABLE_REFORMULATION

Description:
Determine if Quadratic programing problems should be reformulated to separable form.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e read_add_anz

250

APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_TPAR READ_ADD_ANZ

Description:
Additional number of non-zeros in A that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0
read_add_con
Corresponding constant:
MSK_TPAR READ_ADD_CON

Description:
Additional number of constraints that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0
read_add_cone
Corresponding constant:
MSK_TIPAR_READ_ADD_CONE

Description:
Additional number of conic constraints that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0
read_add_gnz
Corresponding constant:
MSK_TPAR READ_ADD_QNZ

Description:
Additional number of non-zeros in the () matrices that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0

read_add_var

Corresponding constant:
MSK_IPAR READ_ADD_VAR

H.3. INTEGER PARAMETERS 251

Description:
Additional number of variables that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0
e read_anz
Corresponding constant:
MSK_IPAR_READ_ANZ

Description:
Expected maximum number of A non-zeros to be read. The option is used only by fast
MPS and LP file readers.

Possible Values:
Any number between 0 and +inf.

Default value:
100000
e read_con
Corresponding constant:
MSK_TPAR READ_CON

Description:
Expected maximum number of constraints to be read. The option is only used by fast MPS
and LP file readers.

Possible Values:
Any number between 0 and +inf.

Default value:
10000
e read_cone
Corresponding constant:
MSK_IPAR_READ_CONE

Description:
Expected maximum number of conic constraints to be read. The option is used only by fast
MPS and LP file readers.

Possible Values:
Any number between 0 and +inf.

Default value:
2500

e recad_data_compressed

252 APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_TIPAR READ DATA_COMPRESSED

Description:
If this option is turned on,it is assumed that the data file is compressed.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e read_data_format
Corresponding constant:
MSK_TPAR_READ_DATA_FORMAT

Description:
Format of the data file to be read.
Possible values:

MSK_DATA _FORMAT_XML The data file is an XML formatted file.
MSK_DATA_FORMAT_FREE_MPS The data data a free MPS formatted file.
MSK_DATA_FORMAT_EXTENSION The file extension is used to determine the data file format.
MSK_DATA _FORMAT MPS The data file is MPS formatted.

MSK_DATA_FORMAT_LP The data file is LP formatted.

MSK_DATA_FORMAT_MBT The data file is a MOSEK binary task file.

MSK_DATA_FORMAT_OP The data file is an optimization problem formatted file.

Default value:
MSK_DATA_FORMAT_EXTENSION

e read_keep_free_con
Corresponding constant:
MSK_TIPAR_READ_KEEP_FREE_CON

Description:
Controls whether the free constraints are included in the problem.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e read_lp_drop_new_vars_in_bou

Corresponding constant:
MSK_IPAR READ_LP _DROP_NEW_VARS_IN_BOU

H.3. INTEGER PARAMETERS 253

Description:
If this option is turned on, MOSEK will drop variables that are defined for the first time in
the bounds section.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e read_lp_quoted_names
Corresponding constant:
MSK_IPAR READ_LP_QUOTED_NAMES

Description:
If a name is in quotes when reading an LP file, the quotes will be removed.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e read mps_format

Corresponding constant:

MSK_IPAR_READ_MPS_FORMAT

Description:
Controls how strictly the MPS file reader interprets the MPS format.

Possible values:

MSK_MPS_FORMAT_STRICT It is assumed that the input file satisfies the MPS format strictly.

MSK_MPS_FORMAT RELAXED It is assumed that the input file satisfies a slightly relaxed version
of the MPS format.

MSK_MPS_FORMAT_FREE It is assumed that the input file satisfies the free MPS format. This
implies that spaces are not allowed in names. Otherwise the format is free.

Default value:
MSK_MPS_FORMAT_RELAXED

e read mps_keep_int

Corresponding constant:
MSK_IPAR_READ_MPS_KEEP_INT

Description:
Controls whether MOSEK should keep the integer restrictions on the variables while reading
the MPS file.

254 APPENDIX H. PARAMETERS REFERENCE

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e read mps_obj_sense
Corresponding constant:
MSK_IPAR_READ_MPS_0BJ_SENSE

Description:
If turned on, the MPS reader uses the objective sense section. Otherwise the MPS reader
ignores it.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e read mps_quoted_names
Corresponding constant:
MSK_IPAR_READ_MPS_QUOTED_NAMES

Description:
If a name is in quotes when reading an MPS file, then the quotes will be removed.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e read mps_relax

Corresponding constant:

MSK_IPAR READ MPS_RELAX

Description:
If this option is turned on, then mixed integer constraints are ignored when a problem is
read.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

H.3. INTEGER PARAMETERS 255

e read mps_width

Corresponding constant:

MSK_IPAR_READ_MPS_WIDTH
Description:

Controls the maximal number of characters allowed in one line of the MPS file.
Possible Values:

Any positive number greater than 80.

Default value:
1024

e read_g mode

Corresponding constant:
MSK_TIPAR_READ_Q_MODE

Description:
Controls how the QQ matrices are read from the MPS file.

Possible values:
MSK_Q_READ_ADD All elements in a QQ matrix are assumed to belong to the lower triangular

part. Duplicate elements in a Q matrix are added together.

MSK_Q_READ_DROP_LOWER All elements in the strict lower triangular part of the Q matrices
are dropped.

MSK_Q_READ DROP_UPPER All elements in the strict upper triangular part of the Q matrices
are dropped.

Default value:
MSK_Q_READ_ADD

e read_gnz
Corresponding constant:

MSK_IPAR_READ_QNZ

Description:
Expected maximum number of () non-zeros to be read. The option is used only by MPS
and LP file readers.

Possible Values:
Any number between 0 and +inf.

Default value:
20000

e read_task_ignore_param
Corresponding constant:

MSK_IPAR_READ_TASK_IGNORE_PARAM

Description:
Controls whether MOSEK should ignore the parameter setting defined in the task file and
use the default parameter setting instead.

256

Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:
MSK_OFF

e read_var

Corresponding constant:
MSK_IPAR READ_VAR

Description:

APPENDIX H. PARAMETERS REFERENCE

Expected maximum number of variable to be read. The option is used only by MPS and

LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:
10000

e sensitivity_all

Corresponding constant:
MSK_IPAR_SENSITIVITY_ALL

Description:

Not applicable.
Possible values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:
MSK_OFF

e sensitivity_optimizer

Corresponding constant:

MSK_IPAR_SENSITIVITY_OPTIMIZER

Description:

Controls which optimizer is used for optimal partition sensitivity analysis.

Possible values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_MIXED_INT The mixed-integer optimizer.
MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER FREE The optimizer is chosen automatically.

H.3. INTEGER PARAMETERS 257

MSK_OPTIMIZER PRIMAL DUAL_SIMPLEX The primal dual simplex optimizer is used.
MSK_OPTIMIZER_CONIC The optimizer for problems having conic constraints.
MSK_OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE For internal use only.

MSK_OPTIMIZER PRIMAL _SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER FREE_SIMPLEX One of the simplex optimizers is used.

Default value:
MSK_OPTIMIZER_FREE_SIMPLEX

e sensitivity_type
Corresponding constant:
MSK_TPAR_SENSITIVITY_TYPE

Description:
Controls which type of sensitivity analysis is to be performed.

Possible values:

MSK_SENSITIVITY_TYPE OPTIMAL PARTITION Optimal partition sensitivity analysis is per-
formed.

MSK_SENSITIVITY_TYPE BASIS Basis sensitivity analysis is performed.
Default value:
MSK_SENSITIVITY_TYPE BASIS
e sim basis_factor_use
Corresponding constant:
MSK_TPAR_SIM_BASIS FACTOR_USE

Description:
Controls whether a (LU) factorization of the basis is used in a hot-start. Forcing a refactor-
ization sometimes improves the stability of the simplex optimizers, but in most cases there
is a performance penanlty.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e sim_degen

Corresponding constant:

MSK_IPAR_SIM DEGEN

Description:
Controls how aggressively degeneration is handled.

Possible values:

258

APPENDIX H. PARAMETERS REFERENCE

MSK_SIM DEGEN_NONE The simplex optimizer should use no degeneration strategy.

MSK_SIM DEGEN_MODERATE The simplex optimizer should use a moderate degeneration strat-
egy.

MSK_SIM_DEGEN_MINIMUM The simplex optimizer should use a minimum degeneration strat-
egy.

MSK_SIM DEGEN_AGGRESSIVE The simplex optimizer should use an aggressive degeneration
strategy.

MSK_SIM_DEGEN_FREE The simplex optimizer chooses the degeneration strategy.

Default value:
MSK_SIM_DEGEN_FREE

sim_dual_crash

Corresponding constant:
MSK_TIPAR_SIM DUAL_CRASH

Description:
Controls whether crashing is performed in the dual simplex optimizer.
In general if a basis consists of more than (100-this parameter value)% fixed variables, then
a crash will be performed.

Possible Values:
Any number between 0 and +inf.

Default value:
90

sim_dual_phaseone_method

Corresponding constant:
MSK_TIPAR_SIM_DUAL_PHASEONE_METHOD

Description:
An exprimental feature.

Possible Values:
Any number between 0 and 10.

Default value:
0

sim_dual_restrict_selection

Corresponding constant:
MSK_TIPAR_SIM_DUAL_RESTRICT_SELECTION

Description:
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to
chooses the outgoing variable. Hence, if restricted selection is applied, then the dual simplex
optimizer first choose a subset of all the potential outgoing variables. Next, for some time
it will choose the outgoing variable only among the subset. From time to time the subset
is redefined.

H.3. INTEGER PARAMETERS 259

A larger value of this parameter implies that the optimizer will be more aggressive in its
restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at
all.

Possible Values:
Any number between 0 and 100.

Default value:
50

e sim dual_selection

Corresponding constant:
MSK_IPAR_SIM _DUAL_SELECTION

Description:
Controls the choice of the incoming variable, known as the selection strategy, in the dual
simplex optimizer.

Possible values:

MSK_SIM_SELECTION_FULL The optimizer uses full pricing.

MSK_SIM_SELECTION_PARTIAL The optimizer uses a partial selection approach. The ap-
proach is usually beneficial if the number of variables is much larger than the number
of constraints.

MSK_SIM_SELECTION_FREE The optimizer chooses the pricing strategy.
MSK_SIM _SELECTION_ASE The optimizer uses approximate steepest-edge pricing.

MSK_SIM_SELECTION_DEVEX The optimizer uses devex steepest-edge pricing (or if it is not
available an approximate steep-edge selection).

MSK_SIM_SELECTION_SE The optimizer uses steepest-edge selection (or if it is not available
an approximate steep-edge selection).

Default value:
MSK_SIM_SELECTION_FREE

e sim_exploit_dupvec

Corresponding constant:
MSK_IPAR_SIM_EXPLOIT_DUPVEC

Description:
Controls if the simplex optimizers are allowed to exploit duplicated columns.

Possible values:

MSK_SIM EXPLOIT_DUPVEC_ON Allow the simplex optimizer to exploit duplicated columns.
MSK_SIM_EXPLOIT_DUPVEC_OFF Disallow the simplex optimizer to exploit duplicated columns.
MSK_SIM_EXPLOIT_DUPVEC_FREE The simplex optimizer can choose freely.

Default value:
MSK_SIM_EXPLOIT_DUPVEC_OFF

e sim hotstart

260 APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_TIPAR_SIM HOTSTART

Description:
Controls the type of hot-start that the simplex optimizer perform.

Possible values:

MSK_SIM_HOTSTART_NONE The simplex optimizer performs a coldstart.

MSK_SIM_HOTSTART_STATUS_KEYS Only the status keys of the constraints and variables are
used to choose the type of hot-start.

MSK_SIM HOTSTART_FREE The simplex optimize chooses the hot-start type.
Default value:
MSK_SIM_HOTSTART_FREE
e sim hotstart_lu
Corresponding constant:
MSK_IPAR_SIM HOTSTART_LU

Description:
Determines if the simplex optimizer should exploit the initial factorization.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e sim_integer

Corresponding constant:

MSK_TPAR_SIM_INTEGER

Description:
An exprimental feature.

Possible Values:
Any number between 0 and 10.

Default value:
0
e sim max_iterations
Corresponding constant:
MSK_IPAR_SIM_MAX_ITERATIONS

Description:
Maximum number of iterations that can be used by a simplex optimizer.

Possible Values:
Any number between 0 and +inf.

H.3. INTEGER PARAMETERS 261

Default value:
10000000

e sim max_num_setbacks

Corresponding constant:
MSK_IPAR_SIM MAX_NUM_SETBACKS

Description:
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event
where the optimizer moves in the wrong direction. This is impossible in theory but may
happen due to numerical problems.

Possible Values:
Any number between 0 and +inf.

Default value:
250

e sim network_detect

Corresponding constant:
MSK_IPAR_SIM_NETWORK_DETECT

Description:
The simplex optimizer is capable of exploiting a network flow component in a problem.
However it is only worthwhile to exploit the network flow component if it is sufficiently
large. This parameter controls how large the network component has to be in “relative”
terms before it is exploited. For instance a value of 20 means at least 20% of the model
should be a network before it is exploited. If this value is larger than 100 the network flow
component is never detected or exploited.

Possible Values:
Any number between 0 and +inf.

Default value:
101
e sim network_detect_hotstart
Corresponding constant:
MSK_TPAR_SIM _NETWORK_DETECT _HOTSTART

Description:
This parameter controls has large the network component in “relative” terms has to be
before it is exploited in a simplex hot-start. The network component should be equal or
larger than

max (MSK_IPAR_SIM_NETWORK_DETECT,MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART)

before it is exploited. If this value is larger than 100 the network flow component is never
detected or exploited.

Possible Values:
Any number between 0 and +inf.

262

APPENDIX H. PARAMETERS REFERENCE

Default value:
100

sim_network_detect_method
Corresponding constant:
MSK_IPAR_SIM_NETWORK_DETECT_METHOD

Description:
Controls which type of detection method the network extraction should use.

Possible values:

MSK_NETWORK_DETECT_SIMPLE The network detection should use a very simple heuristic.

MSK_NETWORK_DETECT_ADVANCED The network detection should use a more advanced heuris-
tic.

MSK_NETWORK_DETECT_FREE The network detection is free.
Default value:

MSK_NETWORK_DETECT_FREE
sim non_singular
Corresponding constant:

MSK_IPAR_SIM_NON_SINGULAR

Description:
Controls if the simplex optimizer ensures a non-singular basis, if possible.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
sim_primal_crash
Corresponding constant:
MSK_TIPAR_SIM PRIMAL_CRASH

Description:
Controls whether crashing is performed in the primal simplex optimizer.

In general, if a basis consists of more than (100-this parameter value)% fixed variables, then
a crash will be performed.

Possible Values:
Any nonnegative integer value.

Default value:
90

e sim primal_phaseone_method

H.3. INTEGER PARAMETERS 263

Corresponding constant:
MSK_IPAR_SIM PRIMAL_PHASEONE_METHOD

Description:
An exprimental feature.

Possible Values:
Any number between 0 and 10.

Default value:
0

e sim primal_restrict_selection

Corresponding constant:
MSK_IPAR_SIM _PRIMAL RESTRICT_SELECTION

Description:

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to
chooses the outgoing variable. Hence, if restricted selection is applied, then the primal
simplex optimizer first choose a subset of all the potential incoming variables. Next, for
some time it will choose the incoming variable only among the subset. From time to time
the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its
restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at
all.

Possible Values:
Any number between 0 and 100.

Default value:
50

e sim primal_selection

Corresponding constant:
MSK_TPAR_SIM_PRIMAL_SELECTION

Description:
Controls the choice of the incoming variable, known as the selection strategy, in the primal
simplex optimizer.

Possible values:

MSK_SIM SELECTION_FULL The optimizer uses full pricing.

MSK_SIM SELECTION_PARTIAL The optimizer uses a partial selection approach. The ap-
proach is usually beneficial if the number of variables is much larger than the number
of constraints.

MSK_SIM_SELECTION_FREE The optimizer chooses the pricing strategy.

MSK_SIM_SELECTION_ASE The optimizer uses approximate steepest-edge pricing.

MSK_SIM_SELECTION DEVEX The optimizer uses devex steepest-edge pricing (or if it is not
available an approximate steep-edge selection).

264

APPENDIX H. PARAMETERS REFERENCE

MSK_SIM_SELECTION_SE The optimizer uses steepest-edge selection (or if it is not available
an approximate steep-edge selection).

Default value:
MSK_SIM_SELECTION_FREE

sim refactor_freq

Corresponding constant:
MSK_TIPAR_SIM REFACTOR_FREQ

Description:
Controls how frequent the basis is refactorized. The value 0 means that the optimizer
determines the best point of refactorization.

It is strongly recommended NOT to change this parameter.

Possible Values:
Any number between 0 and +inf.

Default value:
0
sim_reformulation
Corresponding constant:
MSK_IPAR_SIM_REFORMULATION

Description:
Controls if the simplex optimizers are allowed to reformulate the problem.

Possible values:

MSK_SIM_REFORMULATION_ON Allow the simplex optimizer to reformulate the problem.

MSK_SIM REFORMULATION_AGGRESSIVE The simplex optimizer should use an aggressive re-
formulation strategy.

MSK_SIM_REFORMULATION_OFF Disallow the simplex optimizer to reformulate the problem.
MSK_SIM _REFORMULATION_FREE The simplex optimizer can choose freely.

Default value:
MSK_SIM_REFORMULATION_OFF

sim_save_lu
Corresponding constant:
MSK_IPAR_SIM_SAVE LU

Description:
Controls if the LU factorization stored should be replaced with the LU factorization corre-
sponding to the initial basis.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

H.3. INTEGER PARAMETERS 265

Default value:
MSK_OFF

e sim_scaling
Corresponding constant:

MSK_IPAR_SIM_SCALING

Description:
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Possible values:
MSK_SCALING_NONE No scaling is performed.
MSK_SCALING_MODERATE A conservative scaling is performed.
MSK_SCALING_AGGRESSIVE A very aggressive scaling is performed.
MSK_SCALING_FREE The optimizer chooses the scaling heuristic.

Default value:
MSK_SCALING_FREE
e sim_scaling method
Corresponding constant:
MSK_IPAR_SIM_SCALING_METHOD

Description:
Controls how the problem is scaled before a simplex optimizer is used.

Possible values:
MSK_SCALING_METHOD_POW2 Scales only with power of 2 leaving the mantissa untouched.
MSK_SCALING_METHOD_FREE The optimizer chooses the scaling heuristic.

Default value:
MSK_SCALING_-METHOD_POW2

e sim_solve_form

Corresponding constant:

MSK_IPAR_SIM_SOLVE_FORM

Description:
Controls whether the primal or the dual problem is solved by the primal-/dual- simplex
optimizer.

Possible values:
MSK_SOLVE_PRIMAL The optimizer should solve the primal problem.

MSK_SOLVE DUAL The optimizer should solve the dual problem.
MSK_SOLVE_FREE The optimizer is free to solve either the primal or the dual problem.

Default value:
MSK_SOLVE_FREE

e sim stability priority

266

APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_IPAR_SIM _STABILITY PRIORITY

Description:

Controls how high priority the numerical stability should be given.
Possible Values:

Any number between 0 and 100.

Default value:
50

sim_switch optimizer

Corresponding constant:
MSK_IPAR_SIM_SWITCH_OPTIMIZER

Description:
The simplex optimizer sometimes chooses to solve the dual problem instead of the primal
problem. This implies that if you have chosen to use the dual simplex optimizer and the
problem is dualized, then it actually makes sense to use the primal simplex optimizer instead.
If this parameter is on and the problem is dualized and furthermore the simplex optimizer
is chosen to be the primal (dual) one, then it is switched to the dual (primal).

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
sol_filter_keep_basic
Corresponding constant:
MSK_TIPAR_SOL_FILTER KEEP BASIC

Description:
If turned on, then basic and super basic constraints and variables are written to the solution
file independent of the filter setting.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
sol_filter_keep_ranged
Corresponding constant:
MSK_IPAR_SOL_FILTER_KEEP_RANGED

Description:
If turned on, then ranged constraints and variables are written to the solution file indepen-
dent of the filter setting.

H.3. INTEGER PARAMETERS 267

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e sol_quoted_names
Corresponding constant:

MSK_IPAR_SOL_QUOTED_NAMES

Description:
If this options is turned on, then MOSEK will quote names that contains blanks while

writing the solution file. Moreover when reading leading and trailing quotes will be stripped
of.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e sol_read name_width
Corresponding constant:
MSK_TPAR_SOL_READ_NAME WIDTH

Description:
When a solution is read by MOSEK and some constraint, variable or cone names contain
blanks, then a maximum name width much be specified. A negative value implies that no
name contain blanks.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e sol_read_width
Corresponding constant:
MSK_TPAR_SOL_READ WIDTH

Description:
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Possible Values:
Any positive number greater than 80.

Default value:
1024

e solution_callback

268 APPENDIX H. PARAMETERS REFERENCE

Corresponding constant:
MSK_TIPAR_SOLUTION_CALLBACK

Description:
Indicates whether solution call-backs will be performed during the optimization.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e timing level

Corresponding constant:

MSK_IPAR_TIMING_LEVEL

Description:
Controls the a amount of timing performed inside MOSEK.

Possible Values:
Any integer greater or equal to 0.

Default value:
1
e warning level
Corresponding constant:
MSK_TIPAR WARNING_LEVEL

Description:
Warning level.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e write_bas_constraints
Corresponding constant:
MSK_TIPAR_WRITE_BAS_CONSTRAINTS

Description:
Controls whether the constraint section is written to the basic solution file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

H.3. INTEGER PARAMETERS 269

e write_bas_head
Corresponding constant:
MSK_IPAR_WRITE_BAS_HEAD

Description:
Controls whether the header section is written to the basic solution file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write_bas_variables
Corresponding constant:
MSK_IPAR_WRITE_ BAS_VARIABLES

Description:
Controls whether the variables section is written to the basic solution file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write_data_compressed
Corresponding constant:
MSK_TIPAR_WRITE_DATA_COMPRESSED

Description:
Controls whether the data file is compressed while it is written. 0 means no compression
while higher values mean more compression.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e write_ data_format

Corresponding constant:
MSK_IPAR_WRITE DATA_FORMAT

Description:

Controls the file format when writing task data to a file.

Possible values:

270

APPENDIX H. PARAMETERS REFERENCE

MSK_DATA _FORMAT XML The data file is an XML formatted file.
MSK_DATA_FORMAT_FREE_MPS The data data a free MPS formatted file.
MSK_DATA_FORMAT_EXTENSION The file extension is used to determine the data file format.
MSK_DATA_FORMAT_MPS The data file is MPS formatted.

MSK_DATA _FORMAT_LP The data file is LP formatted.

MSK_DATA _FORMAT MBT The data file is a MOSEK binary task file.

MSK_DATA _FORMAT_OP The data file is an optimization problem formatted file.

Default value:
MSK_DATA_FORMAT_EXTENSION

e write_data_param

Corresponding constant:
MSK_TIPAR_WRITE DATA_PARAM

Description:
If this option is turned on the parameter settings are written to the data file as parameters.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e write_free_con

Corresponding constant:
MSK_IPAR WRITE FREE_CON

Description:
Controls whether the free constraints are written to the data file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e write_generic_names

Corresponding constant:
MSK_IPAR_WRITE_GENERIC_NAMES

Description:
Controls whether the generic names or user-defined names are used in the data file.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

H.3. INTEGER PARAMETERS 271

Default value:
MSK_OFF

e write_generic names_io
Corresponding constant:
MSK_IPAR WRITE GENERIC _NAMES_IO

Description:
Index origin used in generic names.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e write_int_constraints
Corresponding constant:
MSK_IPAR_WRITE_INT_CONSTRAINTS

Description:
Controls whether the constraint section is written to the integer solution file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_int_head

Corresponding constant:

MSK_IPAR _WRITE_INT_HEAD

Description:
Controls whether the header section is written to the integer solution file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write_int_variables
Corresponding constant:
MSK_TPAR WRITE_INT_VARIABLES

Description:
Controls whether the variables section is written to the integer solution file.

272 APPENDIX H. PARAMETERS REFERENCE

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write lp_line width
Corresponding constant:
MSK_IPAR_WRITE_LP_LINE_WIDTH

Description:
Maximum width of line in an LP file written by MOSEK.

Possible Values:
Any positive number.

Default value:
80
e write_lp_quoted_names
Corresponding constant:
MSK_TIPAR_WRITE_LP_QUOTED_NAMES

Description:
If this option is turned on, then MOSEK will quote invalid LP names when writing an LP
file.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_lp_strict_format

Corresponding constant:
MSK_IPAR_WRITE_LP_STRICT_FORMAT

Description:
Controls whether LP output files satisfy the LP format strictly.

Possible values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e write_ lp_terms_per_line

H.3. INTEGER PARAMETERS 273

Corresponding constant:
MSK_IPAR WRITE LP_TERMS_PER_LINE

Description:
Maximum number of terms on a single line in an LP file written by MOSEK. 0 means
unlimited.

Possible Values:
Any number between 0 and +inf.

Default value:
10
e write mps_int
Corresponding constant:
MSK_IPAR WRITE MPS_INT

Description:
Controls if marker records are written to the MPS file to indicate whether variables are
integer restricted.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write mps_obj_sense
Corresponding constant:
MSK_IPAR WRITE MPS_0BJ_SENSE

Description:
If turned off, the objective sense section is not written to the MPS file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write mps_quoted_names
Corresponding constant:
MSK_IPAR_WRITE_MPS_QUOTED_NAMES

Description:
If a name contains spaces (blanks) when writing an MPS file, then the quotes will be
removed.

Possible values:

274

APPENDIX H. PARAMETERS REFERENCE

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write mps_strict

Corresponding constant:
MSK_TIPAR WRITE MPS_STRICT

Description:
Controls whether the written MPS file satisfies the MPS format strictly or not.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e write_precision

Corresponding constant:
MSK_IPAR_WRITE_PRECISION

Description:
Controls the precision with which double numbers are printed in the MPS data file. In
general it is not worthwhile to use a value higher than 15.

Possible Values:
Any number between 0 and +inf.

Default value:
8

e write_sol_constraints

Corresponding constant:
MSK_TPAR_WRITE_SOL_CONSTRAINTS

Description:
Controls whether the constraint section is written to the solution file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_sol_head

Corresponding constant:
MSK_IPAR WRITE_SOL_HEAD

H.3. INTEGER PARAMETERS 275

Description:
Controls whether the header section is written to the solution file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write_sol_variables
Corresponding constant:
MSK_IPAR_WRITE_SOL_VARIABLES

Description:
Controls whether the variables section is written to the solution file.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write_task_inc_sol
Corresponding constant:
MSK_TIPAR WRITE_TASK_INC_SOL

Description:
Controls whether the solutions are stored in the task file too.

Possible values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_xml_mode

Corresponding constant:

MSK_IPAR_WRITE_XML_MODE

Description:
Controls if linear coefficients should be written by row or column when writing in the XML
file format.

Possible values:

MSK_WRITE_XML_MODE_COL Write in column order.
MSK_WRITE_XML_MODE_ROW Write in row order.

Default value:
MSK_WRITE_XML_MODE_ROW

276

APPENDIX H. PARAMETERS REFERENCE

H.4 String parameter types

MSK_SPAR _BAS _SOL FILE NAMEttt e e e e e e e e e e e e e e i e 277
Name of the bas solution file.

MSK_SPAR DAT A FILE NAME . e e e e e e e e e e e i 277
Data are read and written to this file.

MSK_SPAR DEBUG_FILE NAME ittt e e e e i e e 278
MOSEK debug file.

MSK_SPAR FEASREPAIR NAME PREF IX. ...ttt e et e i 278
Feasibility repair name prefix.

MSK_SPAR_FEASREPATR NAME SEPARATORottt e et et et e e e 278
Feasibility repair name separator.

MSK_SPAR_FEASREPAIR NAME WSUMVIOLttt e e it 278
Feasibility repair name violation name.

MSK_SPAR_INT _SOL _ FILE NAMEttt e e e e e e e e e e e e e e 279
Name of the int solution file.

MSK_SP AR _ITR _SOL _FILE NAME . . ittt ittt ettt e et et et et et ettt et 279
Name of the itr solution file.

MSK_SPAR_PARAM _COMMENT LS TGN ..ttt e e e et et e et e e et e et et e e e 279
Solution file comment character.

MSK_SPAR_PARAM READ FILE NAMEttt et ettt ettt e it 279
Modifications to the parameter database is read from this file.

MSK_SPAR_PARAM WRITE FILE NAME e i et e 280
The parameter database is written to this file.

MSK_SPAR_READ MPS BOU NAMEttt ettt e et et et e et ettt e ettt 280
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is
used.

MSK_SPAR READ MPS _OBJ NAME . ..ottt e e et e e e e e et e 280
Objective name in the MPS file.

MSK_SPAR _READ MPS RAN NAME . .ttt et et ettt e e et ettt e 280
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

MSK_SPAR READ MPS RHS NAME . .ttt e et e e et et et e et et et 281
Name of the RHS used. An empty name means that the first RHS vector is used.

MSK_SPAR _SENSITIVITY FILE NAMEttt ettt ettt ettt it 281
Sensitivity report file name.

H.4.

STRING PARAMETER TYPES

MSK_SPAR_SENSITIVITY RES_FILENAMEt

Name of the sensitivity report output file.

MSK_SPAR_SOL_FILTER XC_LOW......coviiiiiiiii i

Solution file filter.

MSK_SPAR_SOL_FILTER.XCUPR....... ...

Solution file filter.

MSK_SPAR_SOL_FILTER XX LOW......coiiiiiiiii i

Solution file filter.

MSK_SPAR_SOL_FILTER XX UPR......o,

Solution file filter.

MSK_SPAR_STAT FILE NAME ... e

Statistics file name.

MSK_SPAR STAT KEY et

Key used when writing the summary file.

MSK_SPAR STAT NAME . . . e e e
Name used when writing the statistics file.

MSK_SPAR_WRITE_LP GEN_.VAR NAME

Added variable names in the LP files.

bas_sol_file_name
Corresponding constant:
MSK_SPAR_BAS_SOL_FILE_NAME

Description:
Name of the bas solution file.

Possible Values:
Any valid file name.

Default value:

data_file_name

Corresponding constant:
MSK_SPAR DATA FILE NAME

Description:

Data are read and written to this file.

Possible Values:
Any valid file name.

Default value:

278

e debug_file name

Corresponding constant:
MSK_SPAR_DEBUG_FILE_NAME

Description:
MOSEK debug file.

Possible Values:
Any valid file name.
Default value:

feasrepair_name prefix
Corresponding constant:
MSK_SPAR_FEASREPAIR NAME_PREFIX

Description:

Not applicable.

Possible Values:
Any valid string.

Default value:

n MSK_ n
feasrepair name_separator
Corresponding constant:

MSK_SPAR _FEASREPATIR NAME_SEPARATOR

Description:

Not applicable.

Possible Values:
Any valid string.

Default value:

feasrepair name_wsumviol

Corresponding constant:
MSK_SPAR_FEASREPAIR_NAME WSUMVIOL

Description:

APPENDIX H. PARAMETERS REFERENCE

The constraint and variable associated with the total weighted sum of violations are each
given the name of this parameter postfixed with CON and VAR respectively.

Possible Values:
Any valid string.

H.4. STRING PARAMETER TYPES 279

Default value:
"WSUMVIQL"

e int_sol file name
Corresponding constant:
MSK_SPAR_INT_SOL_FILE NAME

Description:
Name of the int solution file.

Possible Values:
Any valid file name.
Default value:

e itr sol file name
Corresponding constant:
MSK_SPAR_ITR_SOL_FILE_NAME

Description:
Name of the itr solution file.

Possible Values:
Any valid file name.
Default value:

e param_comment_sign
Corresponding constant:
MSK_SPAR_PARAM_COMMENT_SIGN

Description:
Only the first character in this string is used. It is considered as a start of comment sign in
the MOSEK parameter file. Spaces are ignored in the string.

Possible Values:
Any valid string.

Default value:
Il%%ll
e param read_file name
Corresponding constant:
MSK_SPAR_PARAM_READ_FILE_NAME

Description:
Modifications to the parameter database is read from this file.

Possible Values:
Any valid file name.

280 APPENDIX H. PARAMETERS REFERENCE

Default value:

e param write_file name
Corresponding constant:
MSK_SPAR_PARAM WRITE_FILE NAME

Description:
The parameter database is written to this file.

Possible Values:
Any valid file name.
Default value:

e read mps_bou_name

Corresponding constant:
MSK_SPAR_READ _MPS_BOU_NAME

Description:
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector
is used.

Possible Values:
Any valid MPS name.
Default value:

e read mps_obj_name

Corresponding constant:
MSK_SPAR_READ_MPS_0OBJ_NAME

Description:
Name of the free constraint used as objective function. An empty name means that the
first constraint is used as objective function.

Possible Values:
Any valid MPS name.
Default value:

(] readmpsxa.nma.me

Corresponding constant:
MSK_SPAR _READ MPS_RAN_NAME

Description:
Name of the RANGE vector used. An empty name means that the first RANGE vector is
used.

H.4. STRING PARAMETER TYPES

Possible Values:
Any valid MPS name.

Default value:

e read mps_rhs name

Corresponding constant:
MSK_SPAR_READ_MPS_RHS_NAME

Description:

Name of the RHS used. An empty name means that the first RHS vector is used.

Possible Values:
Any valid MPS name.
Default value:

sensitivity_file name
Corresponding constant:
MSK_SPAR_SENSITIVITY FILE NAME

Description:

Not applicable.

Possible Values:
Any valid string.
Default value:

sensitivity_res_file name
Corresponding constant:
MSK_SPAR_SENSITIVITY RES_FILE_NAME

Description:

Not applicable.

Possible Values:
Any valid string.

Default value:

sol_filter_xc_low

Corresponding constant:
MSK_SPAR_SOL_FILTER_XC_LOW

281

282

APPENDIX H. PARAMETERS REFERENCE

Description:
A filter used to determine which constraints should be listed in the solution file. A value of
“0.5” means that all constraints having xc[1]>0.5 should be listed, whereas “+0.5” means
that all constraints having xc[i]>=blc[i]+0.5 should be listed. An empty filter means
that no filter is applied.

Possible Values:
Any valid filter.
Default value:

sol_filter_xc_upr

Corresponding constant:
MSK_SPAR_SOL_FILTER_XC_UPR

Description:
A filter used to determine which constraints should be listed in the solution file. A value of
“0.5” means that all constraints having xc[i]<0.5 should be listed, whereas “-0.5” means
all constraints having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no
filter is applied.

Possible Values:
Any valid filter.
Default value:

nn

sol_filter xx_low

Corresponding constant:
MSK_SPAR_SOL_FILTER_XX_LOW

Description:
A filter used to determine which variables should be listed in the solution file. A value of
“0.5” means that all constraints having xx[j]1>=0.5 should be listed, whereas “40.5” means
that all constraints having xx[j]1>=b1x[j]1+0.5 should be listed. An empty filter means no
filter is applied.

Possible Values:
Any valid filter..
Default value:

sol_filter xx upr

Corresponding constant:
MSK_SPAR_SOL_FILTER_XX_UPR

Description:
A filter used to determine which variables should be listed in the solution file. A value of
“0.5” means that all constraints having xx[j]<0.5 should be printed, whereas “-0.5” means
all constraints having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter
is applied.

H.4. STRING PARAMETER TYPES 283

Possible Values:
Any valid file name.
Default value:

e stat_file name
Corresponding constant:
MSK_SPAR_STAT FILE NAME

Description:
Statistics file name.

Possible Values:
Any valid file name.
Default value:

e stat_key
Corresponding constant:
MSK_SPAR_STAT KEY

Description:
Key used when writing the summary file.

Possible Values:
Any valid XML string.
Default value:

e stat_name
Corresponding constant:
MSK_SPAR_STAT_NAME

Description:
Name used when writing the statistics file.

Possible Values:
Any valid XML string.

Default value:

nn

e write_lp_gen_var_name

Corresponding constant:
MSK_SPAR WRITE LP_GEN_VAR_NAME

Description:
Sometimes when an LP file is written additional variables must be inserted. They will have
the prefix denoted by this parameter.

284

Possible Values:

Any valid string.

Default value:
"xmskgen"

APPENDIX H. PARAMETERS REFERENCE

Appendix I

Symbolic constants reference

I.1 Constraint or variable access modes

Value Name

Description
0 MSK_ACC_VAR

Access data by columns (variable orinted)
1 MSK_ACC_CON

Access data by rows (constraint oriented)

1.2 Function opcode

Value

Name
Description

MSK_ADOP_SUB

Subtract two operands.
MSK_ADOP_POW

First operand to the power the second operand.
MSK_ADOP_RET

Return one operand.

MSK_ADOP_ADD

Add two operands.

MSK_ADOP_EXP

Exponential function of one oparand.
MSK_ADOP_MUL

Multiply two operands.
MSK_ADOP_DIV

Divide two operands.

MSK_ADQOP_LOG

continued on next page

285

286 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
Logarithm function of one operand.

1.3 Function operand type

Value Name

Description
2 MSK_ADOPTYPE_VARIABLE
Operand refers to a variable.
0 MSK_ADOPTYPE_NONE
Operand not used.
1 MSK_ADOPTYPE_CONSTANT
Operand refers to a constant.
3 MSK_ADOPTYPE_REFERENCE

Operand refers to the result of another operation.

1.4 Basis identification

Value Name
Description

1 MSK_BI_ALWAYS
Basis identification is always performed even if the interior-point op-
timizer terminates abnormally.

2 MSK_BI_NO_ERROR
Basis identification is performed if the interior-point optimizer termi-
nates without an error.

0 MSK_BI_NEVER
Never do basis identification.
3 MSK_BI_IF_FEASIBLE

Basis identification is not performed if the interior-point optimizer
terminates with a problem status saying that the problem is primal
or dual infeasible.

4 MSK_BI_OTHER
Try another BI method.

I.5 Bound keys

Value Name
Description
2 MSK_BK_FX

continued on next page

1.7. PROGRESS CALL-BACK CODES 287

continued from previous page

0

The constraint or variable is fixed.

MSK_BK_LO

The constraint or variable has a finite lower bound and an infinite
upper bound.

MSK_BK_FR

The constraint or variable is free.

MSK_BK_UP

The constraint or variable has an infinite lower bound and an finite
upper bound.

MSK_BK_RA

The constraint or variable is ranged.

I.6 Specifies the branching direction.

Value Name
Description
2 MSK_BRANCH_DIR_DOWN
The mixed-integer optimizer always chooses the down branch first.
1 MSK_BRANCH_DIR_UP
The mixed-integer optimizer always chooses the up branch first.
0 MSK_BRANCH_DIR_FREE

The mixed-integer optimizer decides which branch to choose.

1.7 Progress call-back codes

Value

Name
Description

44

21

48

99

115

MSK_CALLBACK_END_INTPNT

The call-back function is called when the interior-point optimizer is
terminated.

MSK_CALLBACK_BEGIN_PRIMAL DUAL_SIMPLEX BI

The call-back function is called from within the basis identification
procedure when the primal-dual simplex clean-up phase is started.
MSK_CALLBACK_END _NETWORK_PRIMAL_SIMPLEX

The call-back function is called when the primal network simplex
optimizer is terminated.

MSK_CALLBACK_READ_ADD_CONS

A chunk of constraints has been read from a problem file.
MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX BI

continued on next page

288 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
The call-back function is called from within the basis identification
procedure at an intermediate point in the primal simplex clean-
up phase. The frequency of the call-backs is controlled by the
MSK_TPAR_LOG_SIM_FREQ parameter.

46 MSK_CALLBACK_END_MIO
The call-back function is called when the mixed-integer optimizer is
terminated.

13 MSK_CALLBACK_BEGIN_NETWORK_DUAL_SIMPLEX

The call-back function is called when the dual network simplex opti-
mizer is started.

35 MSK_CALLBACK_END_CONCURRENT
Concurrent optimizer is terminated.
93 MSK_CALLBACK_NEW_INT_MIO

The call-back function is called after a new integer solution has been
located by the mixed-integer optimizer.

88 MSK_CALLBACK_IM PRIMAL_SIMPLEX
The call-back function is called at an intermediate point in the primal
simplex optimizer.

64 MSK_CALLBACK_END_SIMPLEX_NETWORK_DETECT
The call-back function is called when the network detection procedure
is terminated.

47 MSK_CALLBACK_END _NETWORK_DUAL_SIMPLEX
The call-back function is called when the dual network simplex opti-
mizer is terminated.

72 MSK_CALLBACK_IM_INTPNT
The call-back function is called at an intermediate stage within the
interior-point optimizer where the information database has not been
updated.

68 MSK_CALLBACK_IM_DUAL_BI
The call-back function is called from within the basis identification
procedure at an intermediate point in the dual phase.

8 MSK_CALLBACK BEGIN_FULL_CONVEXITY_CHECK
Begin full convexity check.
3 MSK_CALLBACK_BEGIN_DUAL BI

The call-back function is called from within the basis identification
procedure when the dual phase is started.

4 MSK_CALLBACK BEGIN DUAL_SENSITIVITY
Dual sensitivity analysis is started.
79 MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX

The call-back function is called at an intermediate point in the mixed-
integer optimizer while running the primal simplex optimizer.

19 MSK_CALLBACK BEGIN_PRIMAL BT
The call-back function is called from within the basis identification
procedure when the primal phase is started.

continued on next page

I.7. PROGRESS CALL-BACK CODES

continued from previous page

100

104

70

11

81

49

32

89

106

o1

110

90

102

73

15

MSK_CALLBACK_READ_ADD_QNZ

A chunk of @ non-zeos has been read from a problem file.
MSK_CALLBACK_BEGIN_CONCURRENT

Concurrent optimizer is started.

MSK_CALLBACK_UPDATE DUAL_BI

The call-back function is called from within the basis identification
procedure at an intermediate point in the dual phase.
MSK_CALLBACK_IM_DUAL_SIMPLEX

The call-back function is called at an intermediate point in the dual
simplex optimizer.

MSK_CALLBACK BEGIN_LICENSE WAIT

Begin waiting for license.
MSK_CALLBACK_IM_NETWORK_PRIMAL_SIMPLEX

The call-back function is called at an intermediate point in the primal
network simplex optimizer.

MSK_CALLBACK_END NETWORK_SIMPLEX

The call-back function is called when the simplex network optimizer
is terminated.

MSK_CALLBACK_CONIC

The call-back function is called from within the conic optimizer after
the information database has been updated.
MSK_CALLBACK_IM_QO_REFORMULATE

The call-back function is called at an intermediate stage of the QP to
SOCP reformulation.

MSK_CALLBACK_BEGIN_CONIC

The call-back function is called when the conic optimizer is started.
MSK_CALLBACK _UPDATE DUAL_SIMPLEX BT

The call-back function is called from within the basis identifica-
tion procedure at an intermediate point in the dual simplex clean-
up phase. The frequency of the call-backs is controlled by the
MSK_TPAR_LOG_SIM_FREQ parameter.

MSK_CALLBACK_END_OPTIMIZER

The call-back function is called when the optimizer is terminated.
MSK_CALLBACK_UPDATE_PRESOLVE

The call-back function is called from within the presolve procedure.
MSK_CALLBACK_IM_SIMPLEX

The call-back function is called from within the simplex optimizer at
an intermediate point.

MSK_CALLBACK_READ_QOPF

The call-back function is called from the OPF reader.
MSK_CALLBACK_IM_LICENSE_WAIT

MOSEK is waiting for a license.

MSK_CALLBACK BEGIN_NETWORK_SIMPLEX

continued on next page

289

290

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

36

107

26

38

99

101

103

74

41

45

84

43

92

111

94

113

The call-back function is called when the simplex network optimizer
is started.

MSK_CALLBACK_END_CONIC

The call-back function is called when the conic optimizer is termi-
nated.

MSK_CALLBACK UPDATE_NETWORK_DUAL_SIMPLEX

The call-back function is called in the dual network simplex optimizer.
MSK_CALLBACK_BEGIN_QCQO_REFORMULATE

Begin QCQO reformulation.

MSK_CALLBACK_END DUAL_SENSITIVITY

Dual sensitivity analysis is terminated.
MSK_CALLBACK_END_PRIMAL_SIMPLEX BI

The call-back function is called from within the basis identification
procedure when the primal clean-up phase is terminated.
MSK_CALLBACK_READ_ADD_VARS

A chunk of variables has been read from a problem file.
MSK_CALLBACK_READ_QOPF_SECTION

A chunk of @ non-zeos has been read from a problem file.
MSK_CALLBACK_IM_LU

The call-back function is called from within the LU factorization pro-
cedure at an intermediate point.

MSK_CALLBACK_END DUAL_STIMPLEX BT

The call-back function is called from within the basis identification
procedure when the dual clean-up phase is terminated.
MSK_CALLBACK_END_LICENSE_WAIT

End waiting for license.

MSK_CALLBACK_IM _PRESOLVE

The call-back function is called from within the presolve procedure
at an intermediate stage.

MSK_CALLBACK_BEGIN_DUAL_SETUP_BI

The call-back function is called when the dual BI phase is started.
MSK_CALLBACK_END_INFEAS_ANA

The call-back function is called when the infeasibility analyzer is ter-
minated.

MSK_CALLBACK_INTPNT

The call-back function is called from within the interior-point opti-
mizer after the information database has been updated.
MSK_CALLBACK_UPDATE_PRIMAL BI

The call-back function is called from within the basis identification
procedure at an intermediate point in the primal phase.
MSK_CALLBACK_NONCOVEX

The call-back function is called from within the nonconvex optimizer
after the information database has been updated.
MSK_CALLBACK_UPDATE_PRIMAL_DUAL_SIMPLEX BI

continued on next page

I.7. PROGRESS CALL-BACK CODES

continued from previous page

109

37

61

98

25

30

97

86

114

33

71

95

16

91

The call-back function is called from within the basis identifica-
tion procedure at an intermediate point in the primal-dual simplex
clean-up phase. The frequency of the call-backs is controlled by the
MSK_TPAR_LOG_SIM_FREQ parameter.
MSK_CALLBACK_UPDATE_NONCONVEX

The call-back function is called at an intermediate stage within the
nonconvex optimizer where the information database has been up-
dated.

MSK_CALLBACK_END_DUAL_BI

The call-back function is called from within the basis identification
procedure when the dual phase is terminated.
MSK_CALLBACK_END_READ

MOSEK has finished reading a problem file.
MSK_CALLBACK_READ_ADD_CONES

A chunk of cones has been read from a problem file.

MSK_CALLBACK BEGIN_PRIMAL_SIMPLEX BI

The call-back function is called from within the basis identification
procedure when the primal simplex clean-up phase is started.
MSK_CALLBACK_BEGIN_SIMPLEX_NETWORK_DETECT

The call-back function is called when the network detection procedure
is started.

MSK_CALLBACK_READ_ADD_ANZ

A chunk of A non-zeos has been read from a problem file.
MSK_CALLBACK_IM_PRIMAL _DUAL_SIMPLEX

The call-back function is called at an intermediate point in the primal-
dual simplex optimizer.

MSK_CALLBACK UPDATE_PRIMAL_SIMPLEX

The call-back function is called in the primal simplex optimizer.
MSK_CALLBACK_DUAL_SIMPLEX

The call-back function is called from within the dual simplex opti-
mizer.

MSK_CALLBACK_IM FULL_CONVEXITY_CHECK

The call-back function is called at an intermediate stage of the full
convexity check.

MSK_CALLBACK_PRIMAL_SIMPLEX

The call-back function is called from within the primal simplex opti-
mizer.

MSK_CALLBACK_BEGIN_NONCONVEX

The call-back function is called when the nonconvex optimizer is
started.

MSK_CALLBACK_IM_SIMPLEX_BI

continued on next page

291

292 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
The call-back function is called from within the basis identifi-
cation procedure at an intermediate point in the simplex clean-
up phase. The frequency of the call-backs is controlled by the
MSK_TPAR_LOG_SIM_FREQ parameter.

6 MSK_CALLBACK BEGIN_DUAL_SIMPLEX
The call-back function is called when the dual simplex optimizer
started.

24 MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX
The call-back function is called when the primal simplex optimizer is
started.

50 MSK_CALLBACK_END_NONCONVEX
The call-back function is called when the nonconvex optimizer is ter-
minated.

23 MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI
The call-back function is called when the primal BI setup is started.

17 MSK_CALLBACK BEGIN_OPTIMIZER
The call-back function is called when the optimizer is started.

27 MSK_CALLBACK_BEGIN_READ
MOSEK has started reading a problem file.

82 MSK_CALLBACK_IM_NONCONVEX
The call-back function is called at an intermediate stage within the
nonconvex optimizer where the information database has not been

updated.

58 MSK_CALLBACK_END_PRIMAL_SIMPLEX
The call-back function is called when the primal simplex optimizer is
terminated.

55 MSK_CALLBACK_END_PRIMAL DUAL_SIMPLEX BI

The call-back function is called from within the basis identification
procedure when the primal-dual clean-up phase is terminated.

66 MSK_CALLBACK_IM_BI
The call-back function is called from within the basis identification
procedure at an intermediate point.

80 MSK_CALLBACK_IM NETWORK_DUAL_SIMPLEX
The call-back function is called at an intermediate point in the dual
network simplex optimizer.

39 MSK_CALLBACK_END_DUAL_SETUP_BI
The call-back function is called when the dual BI phase is terminated.
34 MSK_CALLBACK_END BI

The call-back function is called when the basis identification proce-
dure is terminated.

57 MSK_CALLBACK_END_PRIMAL_SETUP_BI
The call-back function is called when the primal BI setup is termi-
nated.

31 MSK_CALLBACK BEGIN _WRITE

continued on next page

I.7. PROGRESS CALL-BACK CODES 293

continued from previous page

63

56

28

52

96

20

22

60

87

65

40

112

29

10

69

MOSEK has started writing a problem file.
MSK_CALLBACK_END_SIMPLEX_BI

The call-back function is called from within the basis identification
procedure when the simplex clean-up phase is terminated.
MSK_CALLBACK_END _PRIMAL SENSITIVITY

Primal sensitivity analysis is terminated.
MSK_CALLBACK_BEGIN_SIMPLEX

The call-back function is called when the simplex optimizer is started.
MSK_CALLBACK_END_PRESOLVE

The call-back function is called when the presolve is completed.
MSK_CALLBACK_QCONE

The call-back function is called from within the Qcone optimizer.
MSK_CALLBACK_BEGIN_INFEAS_ANA

The call-back function is called when the infeasibility analyzer is
started.

MSK_CALLBACK BEGIN_PRIMAL DUAL_SIMPLEX

The call-back function is called when the primal-dual simplex opti-
mizer is started.

MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY

Primal sensitivity analysis is started.
MSK_CALLBACK BEGIN _DUAL_SIMPLEX BI

The call-back function is called from within the basis identification
procedure when the dual simplex clean-up phase is started.
MSK_CALLBACK_END_QCQO_REFORMULATE

End QCQO reformulation.

MSK_CALLBACK_IM_PRIMAL _SENSIVITY

The call-back function is called at an intermediate stage of the primal
sensitivity analysis.

MSK_CALLBACK_END_WRITE

MOSEK has finished writing a problem file.
MSK_CALLBACK_END_DUAL_SIMPLEX

The call-back function is called when the dual simplex optimizer is
terminated.

MSK_CALLBACK_UPDATE_PRIMAL DUAL_SIMPLEX

The call-back function is called in the primal-dual simplex optimizer.
MSK_CALLBACK_BEGIN_SIMPLEX BI

The call-back function is called from within the basis identification
procedure when the simplex clean-up phase is started.
MSK_CALLBACK BEGIN_INTPNT

The call-back function is called when the interior-point optimizer is
started.

MSK_CALLBACK_IM DUAL_SENSIVITY

The call-back function is called at an intermediate stage of the dual
sensitivity analysis.

continued on next page

294 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

62 MSK_CALLBACK_END_SIMPLEX
The call-back function is called when the simplex optimizer is termi-
nated.

53 MSK_CALLBACK_END_PRIMAL_BI

The call-back function is called from within the basis identification
procedure when the primal phase is terminated.
75 MSK_CALLBACK_IM_MIO
The call-back function is called at an intermediate point in the mixed-
integer optimizer.
105 MSK_CALLBACK_UPDATE DUAL_SIMPLEX
The call-back function is called in the dual simplex optimizer.
77 MSK_CALLBACK_IM_MIO_INTPNT
The call-back function is called at an intermediate point in the mixed-
integer optimizer while running the interior-point optimizer.
54 MSK_CALLBACK_END_PRIMAL DUAL_SIMPLEX
The call-back function is called when the primal-dual simplex opti-
mizer is terminated.
67 MSK_CALLBACK_IM_CONIC
The call-back function is called at an intermediate stage within the
conic optimizer where the information database has not been updated.
78 MSK_CALLBACK_IM MIQ_PRESOLVE
The call-back function is called at an intermediate point in the mixed-
integer optimizer while running the presolve.

0 MSK_CALLBACK_BEGIN_BI
The basis identification procedure has been started.
76 MSK_CALLBACK_IM MIOQ_DUAL_SIMPLEX

The call-back function is called at an intermediate point in the mixed-
integer optimizer while running the dual simplex optimizer.
116 MSK_CALLBACK_WRITE_OPF
The call-back function is called from the OPF writer.
108 MSK_CALLBACK_UPDATE_NETWORK_PRIMAL_SIMPLEX
The call-back function is called in the primal network simplex opti-

mizer.

42 MSK_CALLBACK_END_FULL_CONVEXITY_CHECK
End full convexity check.

83 MSK_CALLBACK_IM_ORDER

The call-back function is called from within the matrix ordering pro-
cedure at an intermediate point.

85 MSK_CALLBACK_IM_PRIMAL BI
The call-back function is called from within the basis identification
procedure at an intermediate point in the primal phase.

18 MSK_CALLBACK_BEGIN_PRESOLVE
The call-back function is called when the presolve is started.
12 MSK_CALLBACK_BEGIN_MIO

continued on next page

I.11. CPU TYPE

continued from previous page

14

The call-back function is called when the mixed-integer optimizer is
started.

MSK_CALLBACK_BEGIN_NETWORK_PRIMAL_SIMPLEX

The call-back function is called when the primal network simplex
optimizer is started.

1.8 Types of convexity checks.

Value

Name
Description

MSK_CHECK_CONVEXITY_SIMPLE

Perform simple and fast convexity check.
MSK_CHECK_CONVEXITY_NONE

No convexity check.
MSK_CHECK_CONVEXITY_FULL

Perform a full convexity check.

I.9 Compression types

Value

Name
Description

MSK_COMPRESS_GZIP

The type of compression used is gzip compatible.
MSK_COMPRESS_NONE

No compression is used.

MSK_COMPRESS_FREE

The type of compression used is chosen automatically.

I.10 Cone types

Value Name

Description
0 MSK_CT_QUAD

The cone is a quadratic cone.
1 MSK_CT_RQUAD

The cone is a rotated quadratic cone.

I.11 CPU type

295

296 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

Value Name

Description
8 MSK_CPU_POWERPC_G5
A G5 PowerPC CPU.
9 MSK_CPU_INTEL_PM
An Intel PM cpu.
1 MSK_CPU_GENERIC
An generic CPU type for the platform
0 MSK_CPU_UNKNOWN
An unknown CPU.
7 MSK_CPU_AMD_OPTERON
An AMD Opteron (64 bit).
6 MSK_CPU_INTEL_ITANIUM2
An Intel Itanium?2.
4 MSK_CPU_AMD_ATHLON
An AMD Athlon.
5 MSK_CPU_HP_PARISC20
An HP PA RISC version 2.0 CPU.
3 MSK_CPU_INTEL_P4
An Intel Pentium P4 or Intel Xeon.
2 MSK_CPU_INTEL_P3
An Intel Pentium P3.
10 MSK_CPU_INTEL_CORE2

An Intel CORE2 cpu.

1.12 Data format types

Value Name

Description
5 MSK_DATA_FORMAT _XML

The data file is an XML formatted file.
6 MSK_DATA_FORMAT_FREE_MPS

The data data a free MPS formatted file.
0 MSK_DATA_FORMAT_EXTENSION

The file extension is used to determine the data file format.
1 MSK_DATA_FORMAT_MPS

The data file is MPS formatted.
2 MSK_DATA_FORMAT_LP

The data file is LP formatted.
3 MSK_DATA_FORMAT_MBT

The data file is a MOSEK binary task file.
4 MSK_DATA_FORMAT_OP

The data file is an optimization problem formatted file.

I.13. DOUBLE INFORMATION ITEMS 297

1.13 Double information items

Value

Name
Description

13

o8

32

28

22

10

25

37

30

29

33

60

38

21

MSK_DINF_INTPNT PRIMAL _FEAS

Primal feasibility measure reported by the interior-point or Qcone
optimizers. (For the interior-point optimizer this measure does not
directly related to the original problem because a homogeneous model
is employed).

MSK_DINF_SOL_ITR_MAX PCNI

Maximal primal cone infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

MSK_DINF_RD_TIME

Time spent reading the data file.

MSK_DINF_PRESOLVE_ELI_TIME

Total time spent in the eliminator since the presolve was invoked.
MSK_DINF_MIO_OPTIMIZER_TIME

Time spent in the optimizer while solving the relaxtions.
MSK_DINF_INTPNT_FACTOR_NUM_FLOPS

An estimate of the number of flops used in the factorization.
MSK_DINF_MIO_TIME

Time spent in the mixed-integer optimizer.

MSK_DINF_BI DUAL_TIME

Time spent within the dual phase basis identification procedure since
its invocation.

MSK_DINF_SIM _NETWORK_TIME

Time spent in the network simplex optimizer since invoking it.
MSK_DINF_PRESOLVE_TIME

Total time (in seconds) spent in the presolve since it was invoked.
MSK_DINF_PRESOLVE_LINDEP_TIME

Total time spent in the linear dependency checker since the presolve
was invoked.

MSK_DINF_SIM DUAL_TIME

Time spent in the dual simplex optimizer since invoking it.
MSK_DINF_SOL_ITR_-MAX_PINTI

Maximal primal integer infeasibility in the interior-point solution.
Updated at the end of the optimization.

MSK_DINF_SIM _0OBJ

Objective value reported by the simplex optimizer.
MSK_DINF_MIO_OBJ_REL_GAP

continued on next page

298 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
Given that the mixed-integer optimizer has computed a feasible so-
lution and a bound on the optimal objective value, then this item
contains the relative gap defined by

|(objective value of feasible solution) — (objective bound)]

max(J, |(objective value of feasible solution)|)

where § is given by the paramater MSK_DPAR_MI0O_REL_GAP_CONST. Oth-
erwise it has the value -1.0.

48 MSK_DINF_SOL_BAS_PRIMAL_OBJ
Primal objective value of the basic solution. Updated at the end of
the optimization.

17 MSK_DINF_MIO_HEURISTIC_TIME
Time spent in the optimizer while solving the relaxtions.
57 MSK_DINF_SOL_ITR_-MAX_PBI

Maximal primal bound infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

45 MSK_DINF_SOL_BAS_MAX PBI
Maximal primal bound infeasibility in the basic solution. Updated at
the end of the optimization.

27 MSK_DINF_OPTIMIZER_TIME
Total time spent in the optimizer since it was invoked.
955 MSK_DINF_SOL_ITR_MAX DCNI

Maximal dual cone infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

24 MSK_DINF_MIO_ROOT_PRESOLVE_TIME
Time spent in while presolveing the root relaxation.
9 MSK_DINF_INTPNT _DUAL_OBJ
Dual objective value reported by the interior-point or Qcone opti-
mizer.
15 MSK_DINF_INTPNT_TIME
Time spent within the interior-point optimizer since its invocation.
16 MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ

If MOSEK has successfully constructed an integer feasible solution,
then this item contains the optimal objective value corresponding to
the feasible solution.

34 MSK_DINF_SIM_FEAS
Feasibility measure reported by the simplex optimizer.
56 MSK_DINF_SOL_ITR_MAX DEQI

Maximal dual equality infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

40 MSK_DINF_SIM_PRIMAL_TIME
Time spent in the primal simplex optimizer since invoking it.
41 MSK_DINF_SIM_TIME

continued on next page

I.13. DOUBLE INFORMATION ITEMS

continued from previous page

36

47

ol

31

53

49

11

50

61

35

20

Time spent in the simplex optimizer since invoking it.
MSK_DINF_SIM_NETWORK_PRIMAL_TIME

Time spent in the primal network simplex optimizer since invoking
it.

MSK_DINF_SOL_BAS_MAX PINTI

Maximal primal integer infeasibility in the basic solution. Updated
at the end of the optimization.

MSK_DINF_SOL_INT_MAX_PINTI

Maximal primal integer infeasibility in the integer solution. Updated
at the end of the optimization.

MSK_DINF BI_CLEAN_TIME

Time spent within the clean-up phase of the basis identification pro-
cedure since its invocation.

MSK_DINF_QCQO_REFORMULATE_TIME

Time spent with QP reformulation.

MSK_DINF_SOL_ITR_DUAL_OBJ

Dual objective value of the interior-point solution. Updated at the
end of the optimization.

MSK_DINF_SOL_INT_MAX_PBI

Maximal primal bound infeasibility in the integer solution. Updated
at the end of the optimization.

MSK_DINF_INTPNT DUAL_FEAS

Dual feasibility measure reported by the interior-point and Qcone
optimizer. (For the interior-point optimizer this measure does not
directly related to the original problem because a homogeneous model
is employed.)

MSK_DINF_CONCURRENT_TIME

Time spent within the concurrent optimizer since its invocation.
MSK_DINF_INTPNT_KAP_DIV_TAU

This measure should converge to zero if the problem has a primal-
dual optimal solution or to infinity if problem is (strictly) primal or
dual infeasible. In case the measure is converging towards a positive
but bounded constant the problem is usually ill-posed.
MSK_DINF_SOL_INT_MAX PEQI

Maximal primal equality infeasibility in the basic solution. Updated
at the end of the optimization.

MSK_DINF_SOL_ITR_PRIMAL_OBJ

Primal objective value of the interior-point solution. Updated at the
end of the optimization.

MSK_DINF_SIM_NETWORK_DUAL_TIME

Time spent in the dual network simplex optimizer since invoking it.
MSK_DINF_MIO_OBJ_INT

continued on next page

299

300 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
The primal objective value corresponding to the best integer feasible
solution. Please note that at least one integer feasible solution must
have located i.e. check MSK_IINF MIO NUM_INT_SOLUTIONS.

26 MSK_DINF_MIO_USER_0BJ_CUT
If the objective cut is used, then this information item has the value
of the cut.

43 MSK_DINF_SOL_BAS_MAX DBI

Maximal dual bound infeasibility in the basic solution. Updated at
the end of the optimization.

46 MSK_DINF_SOL_BAS_MAX PEQI
Maximal primal equality infeasibility in the basic solution. Updated
at the end of the optimization.

19 MSK_DINF_MIO_0OBJ_BOUND
The best known bound on the objective function. This value is un-
defined until at least one relaxation has been solved: To see if this is
the case check that MSK_IINF_MIO_NUM_RELAX is stricly positive.

0 MSK_DINF _BI_CLEAN_DUAL _TIME
Time spent within the dual clean-up optimizer of the basis identifi-
cation procedure since its invocation.

6 MSK_DINF_BI_TIME
Time spent within the basis identification procedure since its invoca-
tion.

42 MSK_DINF_SOL_BAS_DUAL_OBJ
Dual objective value of the basic solution. Updated at the end of the
optimization.

1 MSK_DINF_BI_CLEAN_PRIMAL DUAL_TIME
Time spent within the primal-dual clean-up optimizer of the basis
identification procedure since its invocation.

14 MSK_DINF_INTPNT_PRIMAL_OBJ
Primal objective value reported by the interior-point or Qcone opti-
mizer.

12 MSK_DINF_INTPNT_ORDER_TIME
Order time (in seconds).

52 MSK_DINF_SOL_INT_PRIMAL_OBJ

Primal objective value of the integer solution. Updated at the end of
the optimization.

) MSK_DINF_BI_PRIMAL TIME
Time spent within the primal phase of the basis identification proce-
dure since its invocation.

18 MSK_DINF_MIO_OBJ_ABS_GAP

continued on next page

1.14. DOUBLE PARAMETERS 301

continued from previous page

44

99

39

54

23

Given the mixed-integer optimizer has computed a feasible solution
and a bound on the optimal objective value, then this item contains
the absolute gap defined by

|(objective value of feasible solution) — (objective bound)].

Otherwise it has the value -1.0.

MSK_DINF_SOL_BAS_MAX DEQI

Maximal dual equality infeasibility in the basic solution. Updated at
the end of the optimization.

MSK_DINF_SOL_ITR_-MAX_PEQI

Maximal primal equality infeasibility in the interior-point solution.
Updated at the end of the optimization.
MSK_DINF_SIM _PRIMAL DUAL_TIME

Time spent in the primal-dual simplex optimizer optimizer since in-
voking it.

MSK_DINF_BI_CLEAN_PRIMAL_TIME

Time spent within the primal clean-up optimizer of the basis identi-
fication procedure since its invocation.

MSK_DINF_SOL_ITR_MAX DBI

Maximal dual bound infeasibility in the interior-point solution. Up-
dated at the end of the optimization.
MSK_DINF_MIO_ROOT_OPTIMIZER TIME

Time spent in the optimizer while solving the root relaxation.

1.14 Double parameters

Value

Name
Description

40

43

60

65

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

If the lower objective cut is less than the value of this parameter value,
then the lower objective cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated
as —oo.

MSK_DPAR_MIO_MAX_TIME

This parameter limits the maximum time spent by the mixed-integer
optimizer. A negative number means infinity.

MSK_DPAR BASIS_TOL_S

Maximum absolute dual bound violation in an optimal basic solution.
MSK_DPAR_PRESOLVE_TOL_S

Absolute zero tolerance employed for s; in the presolve.
MSK_DPAR_UPPER_0BJ_CUT

continued on next page

302 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
If either a primal or dual feasible solution is found proving that
the optimal objective value is outside, [MSK_DPAR_LOWER_OBJ_CUT,
MSK_DPAR_UPPER_0BJ_CUT], then MOSEK is terminated.

16 MSK_DPAR_INTPNT_CO_TOL_DFEAS
Dual feasibility tolerance used by the conic interior-point optimizer.
8 MSK_DPAR _DATA_TOL_AIJ_LARGE

An element in A which is larger than this value in absolute size causes
a warning message to be printed.

49 MSK_DPAR_MIO_TOL_ABS_GAP
Absolute optimality tolerance employed by the mixed-integer opti-
mizer.

66 MSK_DPAR_UPPER_0BJ_CUT_FINITE_TRH

If the upper objective cut is greater than the value of this value pa-
rameter, then the the upper objective cut MSK_DPAR _UPPER_0BJ_CUT
is treated as oo.

50 MSK_DPAR_MIO_TOL_ABS _RELAX_INT
Absolute relaxation tolerance of the integer constraints. I.e. min(|z|—
||, [z] — |z|) is less than the tolerance then the integer restrictions
assumed to be satisfied.

56 MSK_DPAR_NONCONVEX_TOL_OPT
Optimality tolerance used by the nonconvex optimizer.
55 MSK_DPAR_NONCONVEX_TOL_FEAS
Feasibility tolerance used by the nonconvex optimizer.
64 MSK_DPAR_SIMPLEX_ABS_TOL_PIV
Absolute pivot tolerance employed by the simplex optimizers.
42 MSK_DPAR MIO_HEURISTIC_TIME

Minimum amount of time to be used in the heuristic search for a good
feasible integer solution. A negative values implies that the optimizer
decides the amount of time to be spent in the heuristic.

5 MSK_DPAR_CHECK_CONVEXITY_REL_TOL
This parameter controls when the full convexity check declares a prob-
lem to be non-convex. Increasing this tolerance relaxes the criteria
for declaring the problem non-convex.
A problem is declared non-convex if negative (positive) pivot elements
are detected in the cholesky factor of a matrix which is required to be
PSD (NSD). This parameter controles how much this non-negativity
requirement may be violated.
If d; is the pivot element for column 4, then the matrix () is considered
to not be PSD if:

d; < —|Qy;| * check_convexity rel_tol

61 MSK_DPAR_PRESOLVE_TOL_X

continued on next page

1.14. DOUBLE PARAMETERS

continued from previous page

24

46

15

30

ol

31

25

57

14

47

Absolute zero tolerance employed for x; in the presolve.
MSK_DPAR_INTPNT_NL_TOL_MU_RED

Relative complementarity gap tolerance.
MSK_DPAR_MIO_NEAR_TOL_REL_GAP

The mixed-integer optimizer is terminated when this toler-
ance is satisfied. = This termination criteria is delayed. See
MSK_DPAR_MIO_DISABLE_TERM_TIME for details.
MSK_DPAR_DATA_TOL_ATIJ

Absolute zero tolerance for elements in A. If any value A;; is smaller
than this parameter in absolute terms MOSEK will treat the values
as zero and generate a warning.

MSK_DPAR_FEASREPAIR_TOL

Tolerance for constraint enforcing upper bound on sum of weighted
violations in feasibility repair.

MSK_DPAR_INTPNT_TOL_DSAFE

Controls the initial dual starting point used by the interior-point op-
timizer. If the interior-point optimizer converges slowly.
MSK_DPAR_MIO_TOL_FEAS

Feasibility tolerance for mixed integer solver. Any solution with max-
imum infeasibility below this value will be considered feasible.
MSK_DPAR_INTPNT_TOL_INFEAS

Controls when the optimizer declares the model primal or dual infea-
sible. A small number means the optimizer gets more conservative
about declaring the model infeasible.
MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

If the MOSEK nonlinear interior-point optimizer cannot compute a
solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution
then satisfies the termination criteria, then the solution is denoted
near optimal, near feasible and so forth.

MSK_DPAR OPTIMIZER MAX TIME

Maximum amount of time the optimizer is allowed to spent on the
optimization. A negative number means infinity.

MSK_DPAR DATA_TOL_X

Zero tolerance for constraints and variables i.e. if the distance be-
tween the lower and upper bound is less than this value, then the
lower and lower bound is considered identical.
MSK_DPAR_ANA_SOL_INFEAS_TOL

If a constraint violates its bound with an amount larger than this
value, the constraint name, index and violation will be printed by the
solution analyzer.

MSK_DPAR_MIO_REL_ADD_CUT_LIMITED

continued on next page

303

304 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
Controls how many cuts the mixed-integer optimizer is allowed to
add to the problem. Let « be the value of this parameter and m the
number constraints, then mixed-integer optimizer is allowed to am

cuts.
32 MSK_DPAR_INTPNT_TOL_MU_RED

Relative complementarity gap tolerance.
18 MSK_DPAR_INTPNT_CO_TOL_MU_RED

Relative complementarity gap tolerance feasibility tolerance used by
the conic interior-point optimizer.

21 MSK_DPAR_INTPNT_CO_TOL_REL_GAP
Relative gap termination tolerance used by the conic interior-point
optimizer.

39 MSK_DPAR_LOWER_0BJ_CUT

If either a primal or dual feasible solution is found prov-
ing that the optimal objective value is outside, the interval
[MSK,DPAR,LOWER,DBJ,CUT, MSK,DPAR,UPPER,OBJ,CUT], then MOSEK
is terminated.

41 MSK_DPAR_MIO_DISABLE _TERM _TIME
The termination criteria governed by

e MSK_TPAR_MIO_MAX_NUM_RELAXS

e MSK_TPAR_MIO_MAX_NUM_BRANCHES
e MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
e MSK_DPAR_MIO_NEAR_TOL_REL_GAP

is disabled the first n seconds. This parameter specifies the number
n. A negative value is identical to infinity i.e. the termination criteria
are never checked.

37 MSK_DPAR_INTPNT_TOL_REL_STEP
Relative step size to the boundary for linear and quadratic optimiza-
tion problems.

54 MSK_DPAR_MIO_TOL_X
Absolute solution tolerance used in mixed-integer optimizer.
11 MSK_DPAR_DATA_TOL_C_HUGE

An element in ¢ which is larger than the value of this parameter in
absolute terms is considered to be huge and generates an error.

59 MSK_DPAR_PRESOLVE_TOL_LIN_DEP
Controls when a constraint is determined to be linearly dependent.
63 MSK_DPAR_SIM_LU_TOL_REL_PIV

continued on next page

1.14. DOUBLE PARAMETERS

continued from previous page

12

28

38

34

17

48

98

44

33

22

Relative pivot tolerance employed when computing the LU factoriza-
tion of the basis in the simplex optimizers and in the basis identifica-
tion procedure.

A value closer to 1.0 generally improves numerical stability but typi-
cally also implies an increase in the computational work.

MSK_DPAR DATA_TOL_CJ_LARGE

An element in ¢ which is larger than this value in absolute terms
causes a warning message to be printed.
MSK_DPAR_INTPNT_NL_TOL_REL_STEP

Relative step size to the boundary for general nonlinear optimization
problems.

MSK_DPAR_INTPNT_TOL_STEP_SIZE

If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. It it does not not
make any progress.

MSK_DPAR_INTPNT_TOL_PFEAS

Primal feasibility tolerance used for linear and quadratic optimization
problems.

MSK_DPAR_BASIS_REL_TOL_S

Maximum relative dual bound violation allowed in an optimal basic
solution.

MSK_DPAR_INTPNT_CO_TOL_INFEAS

Controls when the conic interior-point optimizer declares the model
primal or dual infeasible. A small number means the optimizer gets
more conservative about declaring the model infeasible.
MSK_DPAR_MIO_REL_GAP_CONST

This value is used to compute the relative gap for the solution to an
integer optimization problem.

MSK_DPAR_PRESOLVE_TOL_ATIJ

Absolute zero tolerance employed for a;; in the presolve.
MSK_DPAR_MIO_MAX_TIME_APRX OPT

Number of seconds spent by the mixed-integer optimizer before the
MSK_DPAR_MIO_TOL_REL _RELAX_INT is applied.
MSK_DPAR_INTPNT_TOL_PATH

Controls how close the interior-point optimizer follows the central
path. A large value of this parameter means the central is followed
very closely. On numerical unstable problems it may be worthwhile
to increase this parameter.

MSK_DPAR_INTPNT_NL_MERIT_BAL

Controls if the complementarity and infeasibility is converging to zero
at about equal rates.

MSK_DPAR_BASIS_TOL X

Maximum absolute primal bound violation allowed in an optimal ba-
sic solution.

continued on next page

305

306 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

36 MSK_DPAR_INTPNT_TOL_REL_GAP
Relative gap termination tolerance.

7 MSK_DPAR_DATA_TOL_AIJ_HUGE
An element in A which is larger than this value in absolute size causes
an error.

10 MSK_DPAR_DATA_TOL_BOUND_WRN

If a bound value is larger than this value in absolute size, then a
warning message is issued.

9 MSK_DPAR_DATA_TOL_BOUND_INF
Any bound which in absolute value is greater than this parameter is
considered infinite.

35 MSK_DPAR_INTPNT_TOL_PSAFE
Controls the initial primal starting point used by the interior-point
optimizer. If the interior-point optimizer converges slowly and/or the
constraint or variable bounds are very large, then it may be worth-
while to increase this value.

19 MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
If MOSEK cannot compute a solution that has the prescribed accu-
racy, then it will multiply the termination tolerances with value of
this parameter. If the solution then satisfies the termination criteria,
then the solution is denoted near optimal, near feasible and so forth.

4 MSK_DPAR_CALLBACK_FREQ
Controls the time between calls to the progress call-back function.
Hence, if the value of this parameter is for example 10, then the call-
back is called approximately each 10 seconds. A negative value is
equivalent to infinity.
In general frequent call-backs may hurt the performance.

26 MSK_DPAR_INTPNT_NL_TOL_PFEAS
Primal feasibility tolerance used when a nonlinear model is solved.
23 MSK_DPAR_INTPNT_NL_TOL_DFEAS
Dual feasibility tolerance used when a nonlinear model is solved.
52 MSK_DPAR_MIO_TOL_REL_GAP
Relative optimality tolerance employed by the mixed-integer opti-
mizer.
29 MSK_DPAR_INTPNT_TOL_DFEAS
Dual feasibility tolerance used for linear and quadratic optimization
problems.
45 MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
Relaxed absolute optimality tolerance employed by the mixed-
integer optimizer. This termination criteria is delayed. See
MSK_DPAR_MIO_DISABLE_TERM_TIME for details.
53 MSK_DPAR_MIO_TOL_REL_RELAX_INT

continued on next page

1.17. INTEGER INFORMATION ITEMS. 307

continued from previous page

62

13

27

20

Relative relaxation tolerance of the integer constraints. L.e (min(|z|—
||, [z] — |z|)) is less than the tolerance times |z| then the integer
restrictions assumed to be satisfied.
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

This parameter determines when columns are dropped in incomplete
cholesky factorization doing reformulation of quadratic problems.
MSK_DPAR_DATA_TOL_QIJ

Absolute zero tolerance for elements in) matrices.
MSK_DPAR_INTPNT_NL_TOL_REL_GAP

Relative gap termination tolerance for nonlinear problems.
MSK_DPAR_INTPNT_CO_TOL_PFEAS

Primal feasibility tolerance used by the conic interior-point optimizer.

1.15 Feasibility repair types

Value

Name
Description

MSK_FEASREPAIR_OPTIMIZE_NONE

Do not optimize the feasibility repair problem.

MSK_FEASREPAIR _OPTIMIZE COMBINED

Minimize with original objective subject to minimal weighted viola-
tion of bounds.

MSK_FEASREPAIR_OPTIMIZE PENALTY

Minimize weighted sum of violations.

I.16 License feature

Value Name
Description
2 MSK_FEATURE_PTOM
Mixed-integer extension.
1 MSK_FEATURE_PTON
Nonlinear extension.
0 MSK_FEATURE_PTS
Base system.
3 MSK_FEATURE_PTOX

Non-convex extension.

.17 Integer information items.

308

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

Value

Name
Description

o7

90

97

48

88

30

93

7

46

71

58

19

11

69

65

61

MSK_IINF_RD_NUMINTVAR

Number of integer-constrained variables read.
MSK_IINF_SOL_BAS_SOLSTA

Solution status of the basic solution. Updated after each optimiza-
tion.

MSK_IINF_STO_NUM_A_TRANSPOSES

Number of times the A matrix is transposed. A large number implies
that maxnumanz is too small or an inefficient usage of MOSEK. This
will occur in particular if the code alternate between accessing rows
and columns of A.

MSK_IINF_MIO_TOTAL_NUM_OBJ_CUTS

Number of obj cuts.

MSK_IINF_SIM_SOLVE_DUAL

Is non-zero if dual problem is solved.

MSK_TINF_MIO_NUMCON

Number of constraints in the problem solved be the mixed-integer
optimizer.

MSK_IINF_OPT_NUMVAR

Number of variables in the problem solved when the optimizer is
called

MSK_IINF_SIM_NUMVAR

Number of variables in the problem solved by the simplex optimizer.
MSK_TIINF_MIO_TOTAL_NUM_LATTICE_CUTS

Number of lattice cuts.

MSK_TINF_SIM _NETWORK_PRIMAL DEG_ITER

The number of primal network degenerate iterations.
MSK_IINF_RD_NUMQ

Number of nonempty Q matrices read.

MSK_TIINF_ANA_PRO_NUM_CON

Number of constraints in the problem.
MSK_TINF_INTPNT_FACTOR_NUM_OFFCOL

Number of columns in the constraint matrix (or Jacobian) that has
an offending structure.

MSK_IINF_ANA_PRO_NUM_VAR_INT

Number of general integer variables.

MSK_TIINF_SIM NETWORK_DUAL_INF_ITER

The number of iterations taken with dual infeasibility in the network
optimizer.

MSK_IINF_ANA_PRO_NUM_VAR_CONT

Number of continuous variables.

MSK_TINF_SIM DUAL_ITER

Number of dual simplex iterations during the last optimization.
MSK_IINF_SIM_DUAL_DEG_ITER

continued on next page

L17. INTEGER INFORMATION ITEMS.

continued from previous page

20

45

33

76

83

36

80

22

67

54

93

60

94

81

31

The number of dual degenerate iterations.

MSK_TIINF_INTPNT_ITER

Number of interior-point iterations since invoking the interior-point
optimizer.

MSK_TINF_MIO_TOTAL_NUM_KNAPSUR_COVER_CUTS

Number of knapsack cover cuts.
MSK_TINF_MIO_TOTAL_NUM_BASIS_CUTS

Number of basis cuts.

MSK_IINF_SIM_NUMCON

Number of constraints in the problem solved by the simplex optimizer.
MSK_TINF_SIM PRIMAL DUAL_ITER

Number of primal dual simplex iterations during the last optimiza-
tion.

MSK_IINF_ANA_PRO_NUM_CON_UP

Number of constraints with an upper bound and an infinite lower
bound.

MSK_TINF _MIO_TOTAL_NUM_CLIQUE_CUTS

Number of clique cuts.

MSK_TIINF_SIM_PRIMAL_DUAL_HOTSTART

If 1 then the primal dual simplex algorithm is solving from an ad-
vanced basis.

MSK_IINF_INTPNT_SOLVE_DUAL

Non-zero if the interior-point optimizer is solving the dual problem.
MSK_TIINF_SIM_NETWORK_DUAL_HOTSTART

If 1 then the dual network simplex algorithm is solving from an ad-
vanced basis.

MSK_IINF _OPTIMIZE RESPONSE

The reponse code returned by optimize.

MSK_TIINF_SOL_ITR_-PROSTA

Problem status of the interior-point solution. Updated after each
optimization.

MSK_IINF_RD_PROTYPE

Problem type.

MSK_IINF_SOL_ITR_SOLSTA

Solution status of the interior-point solution. Updated after each
optimization.

MSK_TIINF_ANA_PRO_NUM_CON_FR

Number of unbounded constraints.
MSK_TIINF_SIM PRIMAL DUAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used
by the primal dual simplex algorithm.

MSK_TINF_MIO_NUMINT

Number of integer variables in the problem solved be the mixed-
integer optimizer.

continued on next page

309

310

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

35

38

49

64

32

27

23

95

91

66

92

15

16

99

79

12

47

MSK_TINF_MIO_TOTAL_NUM_CARDGUB_CUTS

Number of cardgub cuts.

MSK_TIINF_MIO_TOTAL_NUM_CONTRA_CUTS

Number of contra cuts.

MSK_TINF MIO_TOTAL_NUM_PLAN_LOC_CUTS

Number of loc cuts.

MSK_IINF_SIM DUAL_INF_ITER

The number of iterations taken with dual infeasibility.
MSK_IINF_MIO_NUMVAR

Number of variables in the problem solved be the mixed-integer op-
timizer.

MSK_IINF_MIO_NUM_CUTS

Number of cuts generated by the mixed-integer optimizer.
MSK_TIINF_MIO_CONSTRUCT_SOLUTION

If this item has the value 0, then MOSEK did not try to construct an
initial integer feasible solution. If the item has a positive value, then
MOSEK successfully constructed an initial integer feasible solution.
MSK_TINF_ANA_PRO_NUM_VAR

Number of variables in the problem.
MSK_IINF_STO_NUM_A_CACHE_FLUSHES

Number of times the cache of A elements is flushed. A large number
implies that maxnumanz is too small as well as an inefficient usage of
MOSEK.

MSK_TIINF_SOL_INT_PROSTA

Problem status of the integer solution. Updated after each optimiza-
tion.

MSK_TIINF_SIM _NETWORK_DUAL DEG_ITER

The number of dual network degenerate iterations.
MSK_TIINF_SOL_INT_SOLSTA

Solution status of the integer solution. Updated after each optimiza-
tion.

MSK_IINF_CACHE SIZE L1

L1 cache size used.

MSK_IINF_CACHE_SIZE L2

L2 cache size used.

MSK_IINF_RD_NUMVAR

Number of variables read.

MSK_TINF_SIM _PRIMAL DUAL DEG_ITER

The number of degenerate major iterations taken by the primal dual
simplex algorithm.

MSK_TIINF_ANA_PRO_NUM_VAR_LO

Number of variables with a lower bound and an infinite upper bound.
MSK_TINF MIO_TOTAL _NUM_LIFT_CUTS

Number of lift cuts.

continued on next page

L17. INTEGER INFORMATION ITEMS. 311

continued from previous page

89

75

44

68

74

84

26

96

29

34

42

41

28

85

18

13

MSK_IINF_SOL_BAS_PROSTA

Problem status of the basic solution. Updated after each optimiza-
tion.

MSK_IINF_SIM_NETWORK_PRIMAL_ITER

Number of primal network simplex iterations during the last opti-
mization.

MSK_TINF_ANA_PRO_NUM_CON_LO

Number of constraints with a lower bound and an infinite upper
bound.

MSK_TIINF_MIO_TOTAL_NUM_GUB_COVER_CUTS

Number of GUB cover cuts.
MSK_IINF_SIM_NETWORK_DUAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used
by the dual network simplex algorithm.

MSK_TINF_SIM _NETWORK_PRIMAL_INF_ITER

The number of iterations taken with primal infeasibility in the net-
work optimizer.

MSK_IINF_SIM _PRIMAL HOTSTART

If 1 then the primal simplex algorithm is solving from an advanced
basis.

MSK_TINF_MIO_NUM_BRANCH

Number of branches performed during the optimization.
MSK_TINF_STO_NUM_A_REALLOC

Number of times the storage for storing A has been changed. A large
value may indicates that memory fragmentation may occur.
MSK_IINF_MIO_NUM_RELAX

Number of relaxations solved during the optimization.
MSK_IINF_MIO_TOTAL_NUM_BRANCH

Number of branches performed during the optimization.
MSK_TINF_MIO_TOTAL_NUM_GCD_CUTS

Number of ged cuts.

MSK_TINF_MIO_TOTAL_NUM_FLOW_COVER_CUTS

Number of flow cover cuts.

MSK_IINF_MIO_NUM_INT_SOLUTIONS

Number of integer feasible solutions that has been found.
MSK_IINF_SIM_PRIMAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used
by the primal simplex algorithm.

MSK_TINF_CPU_TYPE

The type of cpu detected.

MSK_IINF_ANA_PRO_NUM_CON_EQ

Number of equality constraints.

MSK_TINF_ANA_PRO_NUM_VAR_RA

Number of variables with finite lower and upper bounds.

continued on next page

312

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

86

99

56

10

25

50

7

73

87

62

24

21

63

14

70

17

ol

43

72

MSK_IINF_SIM_PRIMAL_INF_ITER

The number of iterations taken with primal infeasibility.
MSK_IINF_RD_NUMCON

Number of constraints read.

MSK_IINF_RD_NUMCONE

Number of conic constraints read.

MSK_IINF_ANA_PRO_NUM_VAR_FR

Number of free variables.

MSK_IINF_MIO_NUM_ACTIVE_NODES

Number of active nodes in the branch and bound tree.
MSK_TINF_MIO_TOTAL _NUM_RELAX

Number of relaxations solved during the optimization.
MSK_IINF_ANA_PRO_NUM_VAR_BIN

Number of binary (0-1) variables.

MSK_TINF_SIM _NETWORK_PRIMAL HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used
by the primal network simplex algorithm.

MSK_IINF_SIM _PRIMAL_ITER

Number of primal simplex iterations during the last optimization.
MSK_IINF_SIM_DUAL_HOTSTART

If 1 then the dual simplex algorithm is solving from an advanced basis.
MSK_TINF MIO_INITIAL_SOLUTION

Is non-zero if an initial integer solution is specified.
MSK_IINF_INTPNT_NUM_THREADS

Number of threads that the interior-point optimizer is using.
MSK_IINF_SIM DUAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used
by the dual simplex algorithm.

MSK_IINF_ANA_PRO_NUM_VAR_UP

Number of variables with an upper bound and an infinite lower bound.
This value is set by

MSK_TINF_SIM _NETWORK_DUAL_ITER

Number of dual network simplex iterations during the last optimiza-
tion.

MSK_TIINF_ANA_PRO_NUM_VAR_EQ

Number of fixed variables.
MSK_IINF_CONCURRENT_FASTEST OPTIMIZER

The type of the optimizer that finished first in a concurrent optimiza-
tion.

MSK_IINF_MIO_USER_0BJ_CUT

If it is non-zero, then the objective cut is used.

MSK_TINF _MIO_TOTAL_NUM_GOMORY_CUTS

Number of Gomory cuts.

MSK_IINF_SIM_NETWORK_PRIMAL_HOTSTART

continued on next page

L19. INPUT/OUTPUT MODES

continued from previous page

40

37

82

39

92

78

If 1 then the primal network simplex algorithm is solving from an
advanced basis.

MSK_TIINF_MIO_TOTAL_NUM_DISAGG_CUTS

Number of diasagg cuts.

MSK_TINF_MIO_TOTAL_NUM_COEF_REDC_CUTS

Number of coef. redc. cuts.

MSK_TINF_SIM _PRIMAL DUAL_INF_ITER

The number of master iterations with dual infeasibility taken by the
primal dual simplex algorithm.

MSK_IINF_ANA_PRO_NUM_CON_RA

Number of constraints with finite lower and upper bounds.
MSK_IINF_MIO_TOTAL_NUM_CUTS

Total number of cuts generated by the mixed-integer optimizer.
MSK_IINF_OPT_NUMCON

Number of constraints in the problem solved when the optimizer is
called.

MSK_TIINF_SIM PRIMAL DEG_ITER

The number of primal degenerate iterations.

I[.18 Information item types

Value

Name
Description

MSK_INF_DOU_TYPE

Is a double information type.
MSK_INF_LINT_TYPE

Is a long integer.
MSK_INF_INT_TYPE

Is an integer.

I1.19 Input/output modes

Value

Name
Description

MSK_IOMODE_READ

The file is read-only.

MSK_IOMODE _WRITE

The file is write-only. If the file exists then it is truncated when it is
opened. Otherwise it is created when it is opened.

MSK_IOMODE _READWRITE

The file is to read and written.

313

314 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

1.20 Integer parameters

Value Name
Description
175 MSK_TPAR_SIM_STABILITY PRIORITY
Controls how high priority the numerical stability should be given.
125 MSK_IPAR_READ_ADD_CONE
Additional number of conic constraints that is made room for in the
problem.
166 MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
An exprimental feature.
204 MSK_TIPAR_WRITE_MPS_STRICT
Controls whether the written MPS file satisfies the MPS format
strictly or not.
25 MSK_IPAR_INFEAS REPORT_AUTO
Controls whether an infeasibility report is automatically produced
after the optimization if the problem is primal or dual infeasible.
93 MSK_IPAR_MIO_NODE_OPTIMIZER
Controls which optimizer is employed at the non-root nodes in the
mixed-integer optimizer.
118 MSK_IPAR_PRESOLVE_LEVEL
Currently not used.
127 MSK_TPAR_READ_ADD_VAR
Additional number of variables that is made room for in the problem.
121 MSK_IPAR_PRESOLVE_USE
Controls whether the presolve is applied to a problem before it is
optimized.
70 MSK_TIPAR_LOG_SENSITIVITY_OPT
Controls the amount of logging from the optimizers employed during
the sensitivity analysis. 0 means no logging information is produced.
109 MSK_IPAR OPF_WRITE_SOL_ITG
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an integer solution
is defined, write the integer solution in OPF files.
186 MSK_IPAR WRITE_BAS_HEAD
Controls whether the header section is written to the basic solution

file.

79 MSK_TIPAR_MIO_BRANCH PRIORITIES USE
Controls whether branching priorities are used by the mixed-integer
optimizer.

83 MSK_TIPAR_MIO_CUT_LEVEL_TREE

Controls the cut level employed by the mixed-integer optimizer at
the tree. See MSK_IPAR MIO_CUT_LEVEL ROOT for an explanation of
the parameter values.

188 MSK_IPAR_WRITE_DATA_COMPRESSED

continued on next page

1.20. INTEGER PARAMETERS

continued from previous page

140

106

129

196

123

36

110

69

143

99

168

194

199

148

153

Controls whether the data file is compressed while it is written. 0
means no compression while higher values mean more compression.
MSK_TIPAR_READ_MPS_RELAX

If this option is turned on, then mixed integer constraints are ignored
when a problem is read.

MSK_IPAR OPF_WRITE PARAMETERS

Write a parameter section in an OPF file.

MSK_TIPAR_READ_CON

Expected maximum number of constraints to be read. The option is
only used by fast MPS and LP file readers.

MSK_TPAR WRITE_INT_VARIABLES

Controls whether the variables section is written to the integer solu-
tion file.

MSK_TPAR_READ_ADD_ANZ

Additional number of non-zeros in A that is made room for in the
problem.

MSK_IPAR_INTPNT_ORDER_METHOD

Controls the ordering strategy used by the interior-point optimizer
when factorizing the Newton equation system.
MSK_TPAR_OPF_WRITE_SOL_ITR

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an interior solution
is defined, write the interior solution in OPF files.
MSK_TIPAR_LOG_SENSITIVITY

Controls the amount of logging during the sensitivity analysis. O:
Means no logging information is produced. 1: Timing information is
printed. 2: Sensitivity results are printed.

MSK_TPAR READ_QNZ

Expected maximum number of () non-zeros to be read. The option
is used only by MPS and LP file readers.

MSK_TIPAR_LOG_INFEAS_ANA

Controls amount of output printed by the infeasibility analyzer pro-
cedures. A higher level implies that more information is logged.
MSK_TPAR_SIM _PRIMAL SELECTION

Controls the choice of the incoming variable, known as the selection
strategy, in the primal simplex optimizer.
MSK_IPAR_WRITE_INT_CONSTRAINTS

Controls whether the constraint section is written to the integer so-
lution file.

MSK_IPAR WRITE_LP_STRICT_FORMAT

Controls whether LP output files satisfy the LP format strictly.
MSK_IPAR_SENSITIVITY_TYPE

Controls which type of sensitivity analysis is to be performed.
MSK_TPAR_SIM DUAL_RESTRICT_SELECTION

continued on next page

315

316 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
The dual simplex optimizer can use a so-called restricted selec-
tion/pricing strategy to chooses the outgoing variable. Hence, if
restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some
time it will choose the outgoing variable only among the subset. From
time to time the subset is redefined.
A larger value of this parameter implies that the optimizer will be
more aggressive in its restriction strategy, i.e. a value of 0 implies
that the restriction strategy is not applied at all.

62 MSK_TPAR_LOG_MIO_FREQ
Controls how frequent the mixed-integer optimizer prints the log line.
It will print line every time MSK_IPAR_LOG_MIO_FREQ relaxations have
been solved.

108 MSK_IPAR_OPF_WRITE_SOL_BAS
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and a basic solution is
defined, include the basic solution in OPF files.

14 MSK_TIPAR_CHECK_TASK DATA
If this feature is turned on, then the task data is checked for bad
values i.e. NaNs. before an optimization is performed.

99 MSK_TPAR_MIO_ROOT_OPTIMIZER
Controls which optimizer is employed at the root node in the mixed-
integer optimizer.

191 MSK_IPAR WRITE_FREE_CON
Controls whether the free constraints are written to the data file.

115 MSK_IPAR_PRESOLVE_ELIM_FILL
Controls the maximum amount of fill-in that can be created dur-
ing the elimination phase of the presolve. This parameter times
(numcon+numvar) denotes the amount of fill-in.

101 MSK_TIPAR_NONCONVEX_MAX_ITERATIONS
Maximum number of iterations that can be used by the nonconvex
optimizer.

88 MSK_TPAR MIO_LOCAL_BRANCH _NUMBER
Controls the size of the local search space when doing local branching.

192 MSK_IPAR WRITE_GENERIC_NAMES
Controls whether the generic names or user-defined names are used
in the data file.

184 MSK_TPAR_WARNING_LEVEL
Warning level.

51 MSK_IPAR_LOG_BI_FREQ
Controls how frequent the optimizer outputs information about the
basis identification and how frequent the user-defined call-back func-
tion is called.

16 MSK_TPAR_CONCURRENT_PRIORITY DUAL_SIMPLEX

continued on next page

1.20. INTEGER PARAMETERS

continued from previous page

67

126

206

35

128

92

134

71

41

182

173

72

63

22

Priority of the dual simplex algorithm when selecting solvers for con-
current optimization.

MSK_TIPAR_LOG_PRESOLVE

Controls amount of output printed by the presolve procedure. A
higher level implies that more information is logged.
MSK_TPAR_READ_ADD_QNZ

Additional number of non-zeros in the) matrices that is made room
for in the problem.

MSK_TIPAR_WRITE_SOL_CONSTRAINTS

Controls whether the constraint section is written to the solution file.
MSK_TIPAR_INTPNT_OFF_COL_TRH

Controls how many offending columns are detected in the Jacobian
of the constraint matrix.

1 means aggressive detection, higher values mean less aggressive de-
tection.

0 means no detection.

MSK_TPAR_READ_ANZ

Expected maximum number of A non-zeros to be read. The option
is used only by fast MPS and LP file readers.

MSK_TIPAR_MIO_MODE

Controls whether the optimizer includes the integer restrictions when
solving a (mixed) integer optimization problem.
MSK_TIPAR_READ_LP_DROP_NEW_VARS_IN_BOU

If this option is turned on, MOSEK will drop variables that are de-
fined for the first time in the bounds section.

MSK_IPAR _LOG_SIM

Controls amount of output printed by the simplex optimizer. A higher
level implies that more information is logged.
MSK_TIPAR_LIC_TRH_EXPIRY_WRN

If a license feature expires in a numbers days less than the value of
this parameter then a warning will be issued.
MSK_TPAR_SOLUTION_CALLBACK

Indicates whether solution call-backs will be performed during the
optimization.

MSK_IPAR_SIM_SCALING_METHOD

Controls how the problem is scaled before a simplex optimizer is used.
MSK_TPAR_LOG_SIM_FREQ

Controls how frequent the simplex optimizer outputs information
about the optimization and how frequent the user-defined call-back
function is called.

MSK_TIPAR_LOG_NONCONVEX

Controls amount of output printed by the nonconvex optimizer.
MSK_IPAR FEASREPAIR OPTIMIZE

Controls which type of feasibility analysis is to be performed.

continued on next page

317

318 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

198 MSK_TPAR WRITE_LP_QUOTED_NAMES
If this option is turned on, then MOSEK will quote invalid LP names
when writing an LP file.

55 MSK_TPAR_LOG_FACTOR
If turned on, then the factor log lines are added to the log.
4 MSK_TIPAR_AUTO_UPDATE_SOL_INFO

Controls whether the solution information items are automatically
updated after an optimization is performed.

203 MSK_TIPAR_WRITE_MPS_QUOTED_NAMES
If a name contains spaces (blanks) when writing an MPS file, then
the quotes will be removed.

141 MSK_IPAR_READ _MPS_WIDTH
Controls the maximal number of characters allowed in one line of the
MPS file.

183 MSK_IPAR_TIMING_LEVEL
Controls the a amount of timing performed inside MOSEK.

65 MSK_IPAR_LOG_ORDER
If turned on, then factor lines are added to the log.
82 MSK_TIPAR_MIO_CUT_LEVEL_ROQOT

Controls the cut level employed by the mixed-integer optimizer at the
root node. A negative value means a default value determined by the
mixed-integer optimizer is used. By adding the appropriate values
from the following table the employed cut types can be controlled.

GUB cover +2
Flow cover +4
Lifting +8
Plant location +16
Disaggregation +32
Knapsack cover +64
Lattice +128
Gomory +256
Coefficient reduction +512
GCD +1024
Obj. integrality 42048
5 MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

If a slack variable is in the basis, then the corresponding column in
the basis is a unit vector with -1 in the right position. However, if
this parameter is set to MSK_ON, -1 is replaced by 1.

8 MSK_IPAR BI_IGNORE_NUM_ERROR
If the parameter MSK IPAR INTPNT BASIS has the value
MSK_BI NO_ERROR and the interior-point optimizer has termi-
nated due to a numerical problem, then basis identification is
performed if this parameter has the value MSK_ON.

94 MSK_TPAR MIO_NODE_SELECTION

continued on next page

1.20. INTEGER PARAMETERS

continued from previous page

181

120

33

124

53

73

159

31

20

50

32

197

180

Controls the node selection strategy employed by the mixed-integer
optimizer.

MSK_TPAR_ANA_SOL_PRINT_VIOLATED

Controls whether a list of violated constraints is printed.
MSK_TPAR_SOL_READ _WIDTH

Controls the maximal acceptable width of line in the solutions when
read by MOSEK.

MSK_IPAR_PRESOLVE_LINDEP_WORK_LIM

Is used to limit the amount of work that can done to locate linear
dependencies. In general the higher value this parameter is given the
less work can be used. However, a value of 0 means no limit on the
amount work that can be used.
MSK_TIPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

Maximum number of steps to be used by the iterative refinement
of the search direction. A negative value implies that the optimizer
Chooses the maximum number of iterative refinement steps.
MSK_TPAR_READ_ADD_CON

Additional number of constraints that is made room for in the prob-
lem.

MSK_TPAR_LOG_CONCURRENT

Controls amount of output printed by the concurrent optimizer.
MSK_IPAR_LOG_SIM_MINOR

Currently not in use.

MSK_IPAR_SIM_MAX_ITERATIONS

Maximum number of iterations that can be used by a simplex opti-
mizer.

MSK_TPAR_INTPNT MAX_ITERATIONS

Controls the maximum number of iterations allowed in the interior-
point optimizer.

MSK_IPAR_CPU_TYPE

Specifies the CPU type. By default MOSEK tries to auto detect the
CPU type. Therefore, we recommend to change this parameter only
if the auto detection does not work properly.

MSK_TPAR_LOG_BI

Controls the amount of output printed by the basis identification
procedure. A higher level implies that more information is logged.
MSK_TPAR_INTPNT_MAX NUM_COR

Controls the maximum number of correctors allowed by the multiple
corrector procedure. A negative value means that MOSEK is making
the choice.

MSK_TIPAR_WRITE_LP_LINE_WIDTH

Maximum width of line in an LP file written by MOSEK.
MSK_TPAR_SOL_READ_NAME WIDTH

continued on next page

319

320 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
When a solution is read by MOSEK and some constraint, variable or
cone names contain blanks, then a maximum name width much be
specified. A negative value implies that no name contain blanks.

45 MSK_TIPAR_LICENSE_DEBUG
This option is used to turn on debugging of the incense manager.
48 MSK_IPAR_LICENSE WAIT

If all licenses are in use MOSEK returns with an error code. How-
ever, by turning on this parameter MOSEK will wait for an available
license.

1 MSK_TPAR_ANA_SOL_BASIS
Controls whether the basis matrix is analyzed in solaution analyzer.

116 MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
Control the maximum number of times the eliminator is tried.

193 MSK_TIPAR_WRITE_GENERIC_NAMES_IO
Index origin used in generic names.

15 MSK_TIPAR_CONCURRENT_NUM_OPTIMIZERS
The maximum number of simultaneous optimizations that will be
started by the concurrent optimizer.

169 MSK_TIPAR_SIM_REFACTOR_FREQ
Controls how frequent the basis is refactorized. The value 0 means
that the optimizer determines the best point of refactorization.
It is strongly recommended NOT to change this parameter.

154 MSK_TIPAR_SIM DUAL_SELECTION
Controls the choice of the incoming variable, known as the selection
strategy, in the dual simplex optimizer.

174 MSK_IPAR_SIM_SOLVE_FORM
Controls whether the primal or the dual problem is solved by the
primal-/dual- simplex optimizer.

13 MSK_IPAR_CHECK_CONVEXITY
Specify the level of convexity check on quadratic problems

122 MSK_TPAR_QO_SEPARABLE REFORMULATION
Determine if Quadratic programing problems should be reformulated
to separable form.

76 MSK_IPAR_LP WRITE_IGNORE_INCOMPATIBLE_ITEMS
Controls the result of writing a problem containing incompatible
items to an LP file.

144 MSK_TPAR READ_TASK_IGNORE_PARAM
Controls whether MOSEK should ignore the parameter setting de-
fined in the task file and use the default parameter setting instead.

95 MSK_TIPAR_MIO_OPTIMIZER_MODE
An exprimental feature.
60 MSK_TIPAR_LOG_INTPNT

Controls amount of output printed printed by the interior-point op-
timizer. A higher level implies that more information is logged.

continued on next page

1.20. INTEGER PARAMETERS

continued from previous page

61

156

66

189

155

78

29

179

46

96

209

43

157

111

162

MSK_TPAR_LOG_MIO

Controls the log level for the mixed-integer optimizer. A higher level
implies that more information is logged.

MSK_TIPAR_SIM_HOTSTART

Controls the type of hot-start that the simplex optimizer perform.
MSK_IPAR_LOG_PARAM

Controls the amount of information printed out about parameter
changes.

MSK_IPAR_WRITE_DATA_FORMAT

Controls the file format when writing task data to a file.

MSK_IPAR_SIM_EXPLOIT_DUPVEC

Controls if the simplex optimizers are allowed to exploit duplicated
columns.

MSK_TPAR MIO_BRANCH DIR

Controls whether the mixed-integer optimizer is branching up or down
by default.

MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL

Controls factorization debug level.

MSK_TPAR_SOL_QUOTED_NAMES

If this options is turned on, then MOSEK will quote names that
contains blanks while writing the solution file. Moreover when reading
leading and trailing quotes will be stripped of.
MSK_IPAR_LICENSE_PAUSE_TIME

If MSK_IPAR_LICENSE _WAIT=MSK_ON and no license is available, then
MOSEK sleeps a number of milliseconds between each check of
whether a license has become free.
MSK_IPAR_MIO_PRESOLVE_AGGREGATE

Controls whether the presolve used by the mixed-integer optimizer
tries to aggregate the constraints.

MSK_IPAR WRITE_TASK_INC_SOL

Controls whether the solutions are stored in the task file too.
MSK_TIPAR LICENSE_CACHE_TIME

Setting this parameter no longer has any effect. Please see
MSK_TIPAR_CACHE_LICENSE for an alternative.
MSK_TPAR_BI_MAX_ITERATIONS

Controls the maximum number of simplex iterations allowed to opti-
mize a basis after the basis identification.

MSK_TIPAR_SIM _HOTSTART_LU

Determines if the simplex optimizer should exploit the initial factor-
ization.

MSK_IPAR OPF_WRITE_SOLUTIONS

Enable inclusion of solutions in the OPF files.
MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART

continued on next page

321

322 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
This parameter controls has large the network component in “rela-
tive” terms has to be before it is exploited in a simplex hot-start. The
network component should be equal or larger than

max (MSK_IPAR_SIM_NETWORK_DETECT,MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART)

before it is exploited. If this value is larger than 100 the network flow
component is never detected or exploited.
119 MSK_TIPAR_PRESOLVE_LINDEP_USE
Controls whether the linear constraints are checked for linear depen-
dencies.
114 MSK_TIPAR_PARAM_READ_IGN_ERROR
If turned on, then errors in paramter settings is ignored.
104 MSK_TPAR OPF_WRITE_HEADER
Write a text header with date and MOSEK version in an OPF file.
81 MSK_TPAR_MIO_CONT_SOL
Controls the meaning of the interior-point and basic solutions in
mixed integer problems.
102 MSK_TPAR_OBJECTIVE_SENSE
If the objective sense for the task is undefined, then the value of this
parameter is used as the default objective sense.
195 MSK_IPAR WRITE_INT_HEAD
Controls whether the header section is written to the integer solution

file.
40 MSK_TPAR_INTPNT_STARTING_POINT

Starting point used by the interior-point optimizer.
49 MSK_IPAR_LOG

Controls the amount of log information. The value 0 implies that
all log information is suppressed. A higher level implies that more
information is logged.
Please note that if a task is employed to solve a sequence of optimiza-
tion problems the value of this parameter is reduced by the value
of MSK_IPAR_LOG_CUT_SECOND_OPT for the second and any subsequent
optimizations.

19 MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX
Priority of the primal simplex algorithm when selecting solvers for
concurrent optimization.

138 MSK_IPAR_READ_MPS_0BJ_SENSE
If turned on, the MPS reader uses the objective sense section. Oth-
erwise the MPS reader ignores it.

10 MSK_IPAR_CACHE_LICENSE

continued on next page

1.20. INTEGER PARAMETERS

continued from previous page

74

28

172

200

146

178

56

39

103

205

149

Specifies if the license is kept checked out for the lifetime of the mosek
environment (on) or returned to the server immediately after the
optimization (off).

Check-in and check-out of licenses have an overhead. Frequent com-
munication with the license server should be avoided.
MSK_IPAR_LOG_SIM _NETWORK_FREQ

Controls how frequent the network simplex optimizer outputs in-
formation about the optimization and how frequent the user-
defined call-back function is called. The network optimizer will
use a logging frequency equal to MSK_IPAR_LOG_SIM FREQ times
MSK_TPAR _LOG_SIM _NETWORK_FREQ.

MSK_IPAR_INTPNT _DIFF_STEP

Controls whether different step sizes are allowed in the primal and
dual space.

MSK_IPAR_SIM_SCALING

Controls how much effort is used in scaling the problem before a
simplex optimizer is used.

MSK_IPAR WRITE_LP_TERMS_PER_LINE

Maximum number of terms on a single line in an LP file written by
MOSEK. 0 means unlimited.

MSK_TPAR SENSITIVITY_ALL

Not applicable.

MSK_TIPAR_SOL_FILTER_KEEP_RANGED

If turned on, then ranged constraints and variables are written to the
solution file independent of the filter setting.

MSK_TIPAR BI_IGNORE_MAX ITER

If the parameter MSK_IPAR_INTPNT BASIS has the value
MSK_BI_NO_ERROR and the interior-point optimizer has terminated
due to maximum number of iterations, then basis identification is
performed if this parameter has the value MSK_ON.
MSK_IPAR_LOG_FEASREPAIR

Controls the amount of output printed when performing feasibility
repair.

MSK_IPAR_INTPNT_SOLVE_FORM

Controls whether the primal or the dual problem is solved.
MSK_TIPAR_OPF_MAX_TERMS PER_LINE

The maximum number of terms (linear and quadratic) per line when
an OPF file is written.

MSK_IPAR_WRITE_PRECISION

Controls the precision with which double numbers are printed in the
MPS data file. In general it is not worthwhile to use a value higher
than 15.

MSK_IPAR_SIM BASIS FACTOR_USE

continued on next page

323

324 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
Controls whether a (LU) factorization of the basis is used in a hot-
start. Forcing a refactorization sometimes improves the stability of
the simplex optimizers, but in most cases there is a performance
penanlty.

210 MSK_TPAR WRITE_XML_MODE
Controls if linear coefficients should be written by row or column
when writing in the XML file format.

37 MSK_IPAR_INTPNT_REGULARIZATION_USE

Controls whether regularization is allowed.
6 MSK_TPAR BI_CLEAN_OPTIMIZER

Controls which simplex optimizer is used in the clean-up phase.
97 MSK_IPAR_MIO_PRESOLVE_PROBING

Controls whether the mixed-integer presolve performs probing. Prob-
ing can be very time consuming.

42 MSK_TPAR_LICENSE_ALLOW_OVERUSE
Controls if license overuse is allowed when caching licenses
24 MSK_TPAR_INFEAS PREFER_PRIMAL

If both certificates of primal and dual infeasibility are supplied then
only the primal is used when this option is turned on.

187 MSK_IPAR_WRITE_BAS_VARIABLES
Controls whether the variables section is written to the basic solution
file.

75 MSK_TPAR_LOG_STORAGE
When turned on, MOSEK prints messages regarding the storage usage
and allocation.

98 MSK_TIPAR MIO_PRESOLVE_USE
Controls whether presolve is performed by the mixed-integer opti-
mizer.

135 MSK_TIPAR_READ_LP_QUOTED_NAMES
If a name is in quotes when reading an LP file, the quotes will be

removed.

27 MSK_IPAR_INTPNT_BASIS
Controls whether the interior-point optimizer also computes an opti-
mal basis.

54 MSK_TIPAR_LOG_CUT_SECOND_OPT

If a task is employed to solve a sequence of optimization problems,
then the value of the log levels is reduced by the value of this param-
eter. E.g MSK_IPAR LOG and MSK_IPAR LOG_SIM are reduced by the
value of this parameter for the second and any subsequent optimiza-
tions.

137 MSK_IPAR_READ_MPS_KEEP_INT
Controls whether MOSEK should keep the integer restrictions on the
variables while reading the MPS file.

91 MSK_TPAR_MIO_MAX_NUM_SOLUTIONS

continued on next page

1.20. INTEGER PARAMETERS

continued from previous page

44

208

147

201

160

21

17

133

57

18

164

190

150

The mixed-integer optimizer can be terminated after a certain number
of different feasible solutions has been located. If this parameter has
the value n and n is strictly positive, then the mixed-integer optimizer
will be terminated when n feasible solutions have been located.
MSK_TPAR LICENSE_CHECK_TIME

The parameter specifies the number of seconds between the checks
of all the active licenses in the MOSEK environment license cache.
These checks are performed to determine if the licenses should be
returned to the server.

MSK_IPAR WRITE_SOL_VARIABLES

Controls whether the variables section is written to the solution file.
MSK_IPAR_SENSITIVITY_OPTIMIZER

Controls which optimizer is used for optimal partition sensitivity anal-
ysis.

MSK_IPAR WRITE MPS_INT

Controls if marker records are written to the MPS file to indicate
whether variables are integer restricted.
MSK_TIPAR_SIM_MAX_NUM_SETBACKS

Controls how many set-backs are allowed within a simplex optimizer.
A set-back is an event where the optimizer moves in the wrong direc-
tion. This is impossible in theory but may happen due to numerical
problems.

MSK_IPAR DATA_CHECK

If this option is turned on, then extensive data checking is enabled.
It will slow down MOSEK but on the other hand help locating bugs.
MSK_TIPAR_CONCURRENT_PRIORITY FREE_SIMPLEX

Priority of the free simplex optimizer when selecting solvers for con-
current optimization.

MSK_IPAR_READ_KEEP_FREE_CON

Controls whether the free constraints are included in the problem.
MSK_IPAR LOG_FILE

If turned on, then some log info is printed when a file is written or
read.

MSK_TIPAR_CONCURRENT_PRIORITY_INTPNT

Priority of the interior-point algorithm when selecting solvers for con-
current optimization.

MSK_TPAR_SIM_NON_SINGULAR

Controls if the simplex optimizer ensures a non-singular basis, if pos-
sible.

MSK_TPAR_WRITE_DATA_PARAM

If this option is turned on the parameter settings are written to the
data file as parameters.

MSK_IPAR_SIM DEGEN

Controls how aggressively degeneration is handled.

continued on next page

325

326 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

105 MSK_IPAR_OPF_WRITE_HINTS
Write a hint section with problem dimensions in the beginning of an
OPF file.

117 MSK_IPAR_PRESOLVE_ELIMINATOR_USE
Controls whether free or implied free variables are eliminated from
the problem.

0 MSK_TPAR_ALLOC_ADD_QNZ
Additional number of () non-zeros that are allocated space for when
numanz exceeds maxnumgnz during addition of new @ entries.

86 MSK_TIPAR_MIOQ_HOTSTART
Controls whether the integer optimizer is hot-started.

136 MSK_IPAR_READ_MPS_FORMAT
Controls how strictly the MPS file reader interprets the MPS format.

113 MSK_IPAR_PARAM_READ_CASE_NAME
If turned on, then names in the parameter file are case sensitive.

139 MSK_TPAR_READ _MPS_QUOTED_NAMES
If a name is in quotes when reading an MPS file, then the quotes will
be removed.

64 MSK_TIPAR_LOG_OPTIMIZER
Controls the amount of general optimizer information that is logged.

202 MSK_TIPAR WRITE MPS_0BJ_SENSE
If turned off, the objective sense section is not written to the MPS
file.

34 MSK_IPAR_INTPNT_NUM_THREADS
Controls the number of threads employed by the interior-point opti-
mizer. If set to a positive number MOSEK will use this number of
threads. If zero the number of threads used will equal the number of
cores detected on the machine.

89 MSK_TIPAR_MIO_MAX_NUM_BRANCHES
Maximum number of branches allowed during the branch and bound
search. A negative value means infinite.

165 MSK_TPAR_SIM _PRIMAL_CRASH
Controls whether crashing is performed in the primal simplex opti-
mizer.
In general, if a basis consists of more than (100-this parameter
value)% fixed variables, then a crash will be performed.

80 MSK_TPAR MIO_CONSTRUCT_SOL
If set to MSK_ON and all integer variables have been given a value for
which a feasible mixed integer solution exists, then MOSEK generates
an initial solution to the mixed integer problem by fixing all integer
values and solving the remaining problem.

3 MSK_TPAR_AUTO_SORT_A BEFORE_OPT

continued on next page

1.20. INTEGER PARAMETERS

continued from previous page

100

152

158

167

130

112

7

47

207

185

84

23

Controls whether the elements in each column of A are sorted before
an optimization is performed. This is not required but makes the
optimization more deterministic.

MSK_IPAR_MIO_STRONG_BRANCH

The value specifies the depth from the root in which strong branching
is used. A negative value means that the optimizer chooses a default
value automatically.

MSK_TIPAR_SIM_DUAL_PHASEONE_METHOD

An exprimental feature.

MSK_TPAR_SIM_INTEGER

An exprimental feature.

MSK_IPAR_SIM _PRIMAL RESTRICT_SELECTION

The primal simplex optimizer can use a so-called restricted selec-
tion/pricing strategy to chooses the outgoing variable. Hence, if re-
stricted selection is applied, then the primal simplex optimizer first
choose a subset of all the potential incoming variables. Next, for some
time it will choose the incoming variable only among the subset. From
time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be
more aggressive in its restriction strategy, i.e. a value of 0 implies
that the restriction strategy is not applied at all.

MSK_IPAR READ_CONE

Expected maximum number of conic constraints to be read. The
option is used only by fast MPS and LP file readers.
MSK_IPAR_OPTIMIZER

The paramter controls which optimizer is used to optimize the task.
MSK_TPAR_MAX_NUM_WARNINGS

Waning level. A higher value results in more warnings.
MSK_TIPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Controls whether license features expire warnings are suppressed.
MSK_IPAR WRITE_SOL_HEAD

Controls whether the header section is written to the solution file.
MSK_IPAR WRITE BAS_CONSTRAINTS

Controls whether the constraint section is written to the basic solution
file.

MSK_TIPAR_MIO_FEASPUMP_LEVEL

Feasibility pump is a heuristic designed to compute an initial feasible
solution. A wvalue of 0 implies that the feasibility pump heuristic
is not used. A value of -1 implies that the mixed-integer optimizer
decides how the feasibility pump heuristic is used. A larger value than
1 implies that the feasibility pump is employed more aggressively.
Normally a value beyond 3 is not worthwhile.
MSK_IPAR_INFEAS_GENERIC_NAMES

continued on next page

327

328 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
Controls whether generic names are used when an infeasible subprob-
lem is created.

161 MSK_TIPAR_SIM_NETWORK_DETECT
The simplex optimizer is capable of exploiting a network flow com-
ponent in a problem. However it is only worthwhile to exploit the
network flow component if it is sufficiently large. This parameter
controls how large the network component has to be in “relative”
terms before it is exploited. For instance a value of 20 means at least
20% of the model should be a network before it is exploited. If this
value is larger than 100 the network flow component is never detected
or exploited.

68 MSK_IPAR_LOG_RESPONSE
Controls amount of output printed when response codes are reported.
A higher level implies that more information is logged.

26 MSK_IPAR_INFEAS REPORT_LEVEL
Controls the amount of information presented in an infeasibility re-
port. Higher values imply more information.

11 MSK_IPAR_CACHE_SIZE L1
Specifies the size of the cache of the computer. This parameter is
potentially very important for the efficiency on computers if MOSEK
cannot determine the cache size automatically. If the cache size is
negative, then MOSEK tries to determine the value automatically.

12 MSK_TIPAR_CACHE _SIZE L2
Specifies the size of the cache of the computer. This parameter is
potentially very important for the efficiency on computers where MO-
SEK cannot determine the cache size automatically. If the cache size
is negative, then MOSEK tries to determine the value automatically.

176 MSK_TIPAR_SIM_SWITCH OPTIMIZER
The simplex optimizer sometimes chooses to solve the dual problem
instead of the primal problem. This implies that if you have chosen
to use the dual simplex optimizer and the problem is dualized, then
it actually makes sense to use the primal simplex optimizer instead.
If this parameter is on and the problem is dualized and furthermore
the simplex optimizer is chosen to be the primal (dual) one, then it
is switched to the dual (primal).

131 MSK_TPAR_READ_DATA_COMPRESSED
If this option is turned on,it is assumed that the data file is com-
pressed.

142 MSK_TIPAR_READ_Q_MODE
Controls how the QQ matrices are read from the MPS file.

107 MSK_IPAR_OPF_WRITE_PROBLEM
Write objective, constraints, bounds etc. to an OPF file.

52 MSK_TPAR_LOG_CHECK_CONVEXITY

continued on next page

1.20. INTEGER PARAMETERS

continued from previous page

132

151

163

145

98

170

171

30

90

177

85

87

Controls logging in convexity check on quadratic problems. Set to a
positive value to turn logging on.

If a quadratic coefficient matrix is found to violate the requirement of
PSD (NSD) then a list of negative (positive) pivot elements is printed.
The absolute value of the pivot elements is also shown.
MSK_TPAR READ DATA _FORMAT

Format of the data file to be read.

MSK_TIPAR_SIM_DUAL_CRASH

Controls whether crashing is performed in the dual simplex optimizer.
In general if a basis consists of more than (100-this parameter value)%
fixed variables, then a crash will be performed.

MSK_TIPAR_SIM _NETWORK_DETECT_METHOD

Controls which type of detection method the network extraction
should use.

MSK_TIPAR READ_VAR

Expected maximum number of variable to be read. The option is
used only by MPS and LP file readers.

MSK_TIPAR_LOG_HEAD

If turned on, then a header line is added to the log.
MSK_TIPAR_SIM_REFORMULATION

Controls if the simplex optimizers are allowed to reformulate the prob-
lem.

MSK_TIPAR_SIM_SAVE_LU

Controls if the LU factorization stored should be replaced with the
LU factorization corresponding to the initial basis.
MSK_TIPAR_INTPNT_FACTOR_METHOD

Controls the method used to factor the Newton equation system.
MSK_IPAR MIO_MAX_NUM_RELAXS

Maximum number of relaxations allowed during the branch and
bound search. A negative value means infinite.
MSK_IPAR_SOL_FILTER KEEP BASIC

If turned on, then basic and super basic constraints and variables are
written to the solution file independent of the filter setting.
MSK_IPAR MIO_HEURISTIC_LEVEL

Controls the heuristic employed by the mixed-integer optimizer to lo-
cate an initial good integer feasible solution. A value of zero means
the heuristic is not used at all. A larger value than 0 means that
a gradually more sophisticated heuristic is used which is computa-
tionally more expensive. A negative value implies that the optimizer
chooses the heuristic. Normally a value around 3 to 5 should be
optimal.

MSK_TPAR_MIO_KEEP_BASIS

Controls whether the integer presolve keeps bases in memory. This
speeds on the solution process at cost of bigger memory consumption.

continued on next page

329

330 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

38 MSK_TIPAR_INTPNT_SCALING
Controls how the problem is scaled before the interior-point optimizer
is used.

1.21 Language selection constants

Value Name

Description
1 MSK_LANG_DAN

Danish language selection
0 MSK_LANG_ENG

English language selection

1.22 Long integer information items.

Value Name
Description

6 MSK_LIINF_BI_CLEAN_PRIMAL _ITER
Number of primal clean iterations performed in the basis identifica-
tion.

9 MSK_LIINF_INTPNT_FACTOR_NUM_NZ
Number of non-zeros in factorization.

10 MSK_LIINF_MIO_INTPNT_ITER
Number of interior-point iterations performed by the mixed-integer
optimizer.

4 MSK_LIINF_BI_CLEAN_PRIMAL DUAL_ITER
Number of primal-dual clean iterations performed in the basis iden-
tification.

3 MSK_LIINF_BI_CLEAN_PRIMAL DUAL DEG_ITER
Number of primal-dual degenerate clean iterations performed in the
basis identification.

2 MSK_LIINF_BI_CLEAN_PRIMAL DEG_ITER
Number of primal degenerate clean iterations performed in the basis
identification.
1 MSK_LIINF_BI_CLEAN DUAL_ITER
Number of dual clean iterations performed in the basis identification.
13 MSK_LIINF_RD_NUMQNZ
Number of Q non-zeros.
12 MSK_LIINF_RD_NUMANZ
Number of non-zeros in A that is read.
8 MSK_LIINF_BI_PRIMAL_ITER

continued on next page

1.24. CONTINUOUS MIXED-INTEGER SOLUTION TYPE 331

continued from previous page

Number of primal pivots performed in the basis identification.

7 MSK_LIINF_BI_DUAL_ITER
Number of dual pivots performed in the basis identification.

0 MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER
Number of dual degenerate clean iterations performed in the basis
identification.

11 MSK_LIINF_MIO_SIMPLEX_ITER
Number of simplex iterations performed by the mixed-integer opti-
mizer.

) MSK_LIINF_BI_CLEAN_PRIMAL DUAL_SUB_ITER
Number of primal-dual subproblem clean iterations performed in the
basis identification.

1.23 Mark

Value Name
Description

0 MSK_MARK_LO
The lower bound is selected for sensitivity analysis.

1 MSK_MARK_UP

The upper bound is selected for sensitivity analysis.

I.24 Continuous mixed-integer solution type

Value

Name
Description

MSK_MIO_CONT_SOL_ITG

The reported interior-point and basic solutions are a solution to the
problem with all integer variables fixed at the value they have in the
integer solution. A solution is only reported in case the problem has
a primal feasible solution.

MSK_MIO_CONT_SOL_NONE

No interior-point or basic solution are reported when the mixed-
integer optimizer is used.

MSK_MIO_CONT_SOL_ROOT

The reported interior-point and basic solutions are a solution to the
root node problem when mixed-integer optimizer is used.
MSK_MIO_CONT_SOL_ITG_REL

continued on next page

332

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

In case the problem is primal feasible then the reported interior-point
and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. If the
problem is primal infeasible, then the solution to the root node prob-
lem is reported.

1.25 Integer restrictions

Value

Name
Description

MSK_MIO_MODE_IGNORED

The integer constraints are ignored and the problem is solved as a
continuous problem.

MSK_MIO_MODE_LAZY

Integer restrictions should be satisfied if an optimizer is available for
the problem.

MSK_MIO_MODE_SATISFIED

Integer restrictions should be satisfied.

1.26 Mixed-integer node selection types

Value

Name
Description

MSK_MIO_NODE_SELECTION_PSEUDO

The optimizer employs selects the node based on a pseudo cost esti-
mate.

MSK_MIO_NODE_SELECTION_HYBRID

The optimizer employs a hybrid strategy.
MSK_MIO_NODE_SELECTION_FREE

The optimizer decides the node selection strategy.
MSK_MIO_NODE_SELECTION_WORST

The optimizer employs a worst bound node selection strategy.
MSK_MIO_NODE_SELECTION_BEST

The optimizer employs a best bound node selection strategy.
MSK_MIO_NODE_SELECTION_FIRST

The optimizer employs a depth first node selection strategy.

1.27 MPS file format type

1.30. OBJECTIVE SENSE TYPES 333

Value

Name
Description

MSK_MPS_FORMAT_STRICT

It is assumed that the input file satisfies the MPS format strictly.
MSK_MPS_FORMAT_RELAXED

It is assumed that the input file satisfies a slightly relaxed version of
the MPS format.

MSK_MPS_FORMAT_FREE

It is assumed that the input file satisfies the free MPS format. This
implies that spaces are not allowed in names. Otherwise the format
is free.

1.28 Message keys

Value Name
Description

1000 MSK_MSG_READING_FILE
None

1001 MSK_MSG_WRITING_FILE
None

1100 MSK_MSG_MPS_SELECTED
None

1.29 Network detection method

Value

Name
Description

MSK_NETWORK_DETECT_SIMPLE

The network detection should use a very simple heuristic.
MSK_NETWORK_DETECT_ADVANCED

The network detection should use a more advanced heuristic.
MSK_NETWORK_DETECT_FREE

The network detection is free.

I.30 Objective sense types

Value

Name
Description

MSK_OBJECTIVE_SENSE_MINIMIZE
The problem should be minimized.

continued on next page

334 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

0 MSK_OBJECTIVE_SENSE_UNDEFINED
The objective sense is undefined.
2 MSK_OBJECTIVE_SENSE_MAXIMIZE

The problem should be maximized.

.31 On/off
Value Name
Description
1 MSK_ON
Switch the option on.
0 MSK_OFF

Switch the option off.

1.32 Optimizer types

Value Name

Description
1 MSK_OPTIMIZER_INTPNT
The interior-point optimizer is used.
10 MSK_OPTIMIZER_CONCURRENT
The optimizer for nonconvex nonlinear problems.
8 MSK_OPTIMIZER MIXED_INT
The mixed-integer optimizer.
5 MSK_OPTIMIZER DUAL_SIMPLEX
The dual simplex optimizer is used.
0 MSK_OPTIMIZER_FREE
The optimizer is chosen automatically.
6 MSK_OPTIMIZER PRIMAL DUAL_SIMPLEX
The primal dual simplex optimizer is used.
2 MSK_OPTIMIZER CONIC
The optimizer for problems having conic constraints.
9 MSK_OPTIMIZER_NONCONVEX
The optimizer for nonconvex nonlinear problems.
3 MSK_OPTIMIZER _QCONE
For internal use only.
4 MSK_OPTIMIZER PRIMAL_SIMPLEX
The primal simplex optimizer is used.
7 MSK_OPTIMIZER_FREE_SIMPLEX

One of the simplex optimizers is used.

1.35. PRESOLVE METHOD. 335

1.33 Ordering strategies

Value Name

Description
5 MSK_ORDER_METHOD_NONE

No ordering is used.
2 MSK_ORDER_METHOD_APPMINLOC2

A variant of the approximate minimum local-fill-in ordering is used.
1 MSK_ORDER_METHOD_APPMINLOC1

Approximate minimum local-fill-in ordering is used.
4 MSK_ORDER_METHOD_GRAPHPAR2

An alternative graph partitioning based ordering.
0 MSK_ORDER_METHOD_FREE

The ordering method is chosen automatically.
3 MSK_ORDER_METHOD_GRAPHPAR1

Graph partitioning based ordering.

1.34 Parameter type

Value Name

Description
0 MSK_PAR_INVALID_TYPE

Not a valid parameter.
3 MSK_PAR_STR_TYPE

Is a string parameter.
1 MSK_PAR_DOU_TYPE

Is a double parameter.
2 MSK_PAR_INT_TYPE

Is an integer parameter.

1.35 Presolve method.

Value Name

Description
1 MSK_PRESOLVE_MODE_ON

The problem is presolved before it is optimized.
0 MSK_PRESOLVE_MODE_OFF

The problem is not presolved before it is optimized.
2 MSK_PRESOLVE_MODE_FREE

It is decided automatically whether to presolve before the problem is
optimized.

336 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

1.36 Problem data items

Value Name

Description
0 MSK_PI_VAR
Item is a variable.
2 MSK_PI_CONE
Item is a cone.
1 MSK_PI_CON

Item is a constraint.

1.37 Problem types

Value Name

Description
2 MSK_PROBTYPE_QCQO
The problem is a quadratically constrained optimization problem.
0 MSK_PROBTYPE_LO
The problem is a linear optimization problem.
4 MSK_PROBTYPE_CONIC
A conic optimization.
3 MSK_PROBTYPE_GECO
General convex optimization.
) MSK_PROBTYPE_MIXED

General nonlinear constraints and conic constraints. This combina-
tion can not be solved by MOSEK.

1 MSK_PROBTYPE_QO
The problem is a quadratic optimization problem.

1.38 Problem status keys

Value Name

Description
6 MSK_PRO_STA_PRIM_AND DUAL_INFEAS

The problem is primal and dual infeasible.
4 MSK_PRO_STA_PRIM_INFEAS

The problem is primal infeasible.
7 MSK_PRO_STA_ILL_POSED

The problem is ill-posed. For example, it may be primal and dual
feasible but have a positive duality gap.
0 MSK_PRO_STA_UNKNOWN

continued on next page

1.40. RESPONSE CODES 337

continued from previous page

2

8

10

11

Unknown problem status.

MSK_PRO_STA_PRIM_FEAS

The problem is primal feasible.
MSK_PRO_STA_NEAR_PRIM_AND_DUAL_FEAS

The problem is at least nearly primal and dual feasible.
MSK_PRO_STA_NEAR DUAL_FEAS

The problem is at least nearly dual feasible.
MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED

The problem is either primal infeasible or unbounded. This may occur
for mixed-integer problems.

MSK_PRO_STA_PRIM_AND DUAL_FEAS

The problem is primal and dual feasible.
MSK_PRO_STA_DUAL_INFEAS

The problem is dual infeasible.
MSK_PRO_STA_NEAR_PRIM _FEAS

The problem is at least nearly primal feasible.
MSK_PRO_STA DUAL_FEAS

The problem is dual feasible.

.39 Interpretation of quadratic terms in MPS files

Value

Name
Description

MSK_Q_READ_ADD

All elements in a Q matrix are assumed to belong to the lower trian-
gular part. Duplicate elements in a Q matrix are added together.
MSK_Q-READ_DROP_LOWER

All elements in the strict lower triangular part of the QQ matrices are
dropped.

MSK_Q_READ_DROP_UPPER

All elements in the strict upper triangular part of the (Q matrices are
dropped.

I.40 Response codes

Value

Name
Description

352

1218

MSK_RES_WRN_SOL_FILE_IGNORED_VAR

One or more lines in the variable section were ignored when reading
a solution file.

MSK_RES_ERR_PARAM_TYPE

continued on next page

338

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

1203

2501

803

1500

1268

1551

4009

4004

2001

1254

1170

1114

1063

1265

The parameter type is invalid.

MSK_RES_ERR_INDEX_IS_TOO_SMALL

An index in an argument is too small.

MSK_RES_ERR_INV_MARKI

Invalid value in marki.

MSK_RES_WRN_PRESOLVE_BAD_PRECISION

The presolve estimates that the model is specified with insufficient
precision.

MSK_RES_ERR_INV_PROBLEM

Invalid problem type. Probably a nonconvex problem has been spec-
ified.

MSK_RES_ERR_INV_SKX

Invalid value in skx.

MSK_RES_ERR_MIO_NO_OPTIMIZER

No optimizer is available for the current class of integer optimization
problems.

MSK_RES_TRM_MIO_NUM_BRANCHES

The mixed-integer optimizer terminated as to the maximum number
of branches was reached.

MSK_RES_TRM_MIO_NEAR_ABS_GAP

The mixed-integer optimizer terminated because the near optimal
absolute gap tolerance was satisfied.
MSK_RES_ERR_NO_DUAL_INFEAS_CER

A certificate of infeasibility is not available.
MSK_RES_ERR_MUL_A_ELEMENT

An element in A is defined multiple times.

MSK_RES_ERR_INVALID NAME_IN_SOL_FILE

An invalid name occurred in a solution file.
MSK_RES_ERR_MPS_MUL_QOBJ

The Q term in the objective is specified multiple times in the MPS
data file.

MSK_RES_ERR_NO_INIT_ENV

env is not initialized.

MSK_RES_ERR_UNDEF_SOLUTION

continued on next page

1.40. RESPONSE CODES

continued from previous page

1288

1001

3055

1274

1295

1234

903

1008

1235

1350

2800

1267

MOSEK has the following solution types:
e an interior-point solution,
e an basic solution,
e and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default
a successful optimization with the interior-point optimizer defines the
interior-point solution, and, for linear problems, also the basic solu-
tion. This error occurs when asking for a solution or for information
about a solution that is not defined.

MSK_RES_ERR_LASTJ

Invalid lastj.

MSK_RES_ERR_LICENSE_EXPIRED

The license has expired.

MSK_RES_ERR_SEN_INDEX_INVALID

Invalid range given in the sensitivity file.

MSK_RES_ERR_INV_SKN

Invalid value in skn.

MSK_RES_ERR_0BJ_Q_NOT_PSD

The quadratic coefficient matrix in the objective is not positive semi-
definite as expected for a minimization problem.
MSK_RES_ERR_INF_LINT _NAME

A long integer information name is invalid.
MSK_RES_WRN_ANA_CLOSE_BOUNDS

This warning is issued by problem analyzer, if ranged constraints
or variables with very close upper and lower bounds are detected.
One should consider treating such constraints as equalities and such
variables as constants.

MSK_RES_ERR_MISSING_LICENSE_FILE

MOSEK cannot find the license file or license server. Usually this
happens if the operating system variable MOSEKLM_LICENSE FILE is
not set up appropriately. Please see the MOSEK installation manual
for details.

MSK_RES_ERR_INDEX

An index is out of range.

MSK_RES_ERR_SOL_FILE_INVALID_NUMBER

An invalid number is specified in a solution file.
MSK_RES_ERR_LU_MAX NUM_TRIES

Could not compute the LU factors of the matrix within the maximum
number of allowed tries.

MSK_RES_ERR_INV_SKC

Invalid value in skec.

continued on next page

339

340

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

201

3000

1610

1204

1154

2950

1590

1150

1501

1700

1207

3057

1225

4008

405

1081

1205

1106

200

505

MSK_RES_WRN_DROPPED_NZ_QOBJ

One or more non-zero elements were dropped in the Q matrix in the
objective.

MSK_RES_ERR_INTERNAL

An internal error occurred. Please report this problem.
MSK_RES_ERR_BASIS_FACTOR

The factorization of the basis is invalid.
MSK_RES_ERR_INDEX_IS_TOO_LARGE

An index in an argument is too large.
MSK_RES_ERR_LP_INVALID VAR _NAME

A variable name is invalid when used in an LP formatted file.
MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL

No dual information is available for the integer solution.
MSK_RES_ERR_OVERFLOW

A computation produced an overflow i.e. a very large number.
MSK_RES_ERR_LP_INCOMPATIBLE

The problem cannot be written to an LP formatted file.
MSK_RES_ERR_MIXED_PROBLEM

The problem contains both conic and nonlinear constraints.
MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX

An optimization problem cannot be relaxed. This is the case e.g. for
general nonlinear optimization problems.

MSK_RES_ERR_PARAM _NAME_INT

The parameter name is not correct for an integer parameter.
MSK_RES_ERR_SEN_SOLUTION_STATUS

No optimal solution found to the original problem given for sensitivity
analysis.

MSK_RES_ERR_INF_LINT_INDEX

A long integer information index is out of range for the specified type.
MSK_RES_TRM_MIO_NUM_RELAXS

The mixed-integer optimizer terminated as the maximum number of
relaxations was reached.

MSK_RES_WRN_TOO_MANY _BASIS_VARS

A basis with too many variables has been specified.
MSK_RES_ERR_SPACE_NO_INFO

No available information about the space usage.
MSK_RES_ERR_PARAM_NAME

The parameter name is not correct.
MSK_RES_ERR_MPS_UNDEF_VAR_NAME

An undefined variable name occurred in an MPS file.
MSK_RES_WRN_NZ_IN_UPR_TRI

Non-zero elements specified in the upper triangle of a matrix were
ignored.

MSK_RES_WRN_LICENSE _FEATURE_EXPIRE

continued on next page

1.40. RESPONSE CODES 341

continued from previous page

1263

1404

1406

705

1198

1017

2901

1059

3102

1462

1290

1055

1210

1285

1000

1299

85

1287

1432

The license expires.

MSK_RES_ERR_NEGATIVE_SURPLUS

Negative surplus.

MSK_RES_ERR_INV_QCON_SUBK

Invalid value in gcsubk.

MSK_RES_ERR_INV_QCON_SUBJ

Invalid value in qcsubj.

MSK_RES_WRN_ZEROS_IN_SPARSE_ROW

One or more (near) zero elements are specified in a sparse row of
a matrix. It is redundant to specify zero elements. Hence it may
indicate an error.

MSK_RES_ERR_ARGUMENT _TYPE

Incorrect argument type.

MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON

The MOSEKLM license manager daemon is not up and running.
MSK_RES_ERR_INVALID WCHAR

An invalid wchar string is encountered.

MSK_RES_ERR_END_OF FILE

End of file reached.

MSK_RES_ERR_AD_INVALID_CODELIST

The code list data was invalid.

MSK_RES_ERR_NAN_IN_BUC

u contains an invalid floating point value, i.e. a NaN.
MSK_RES_ERR_NONLINEAR_EQUALITY

The model contains a nonlinear equality which defines a nonconvex
set.

MSK_RES_ERR DATA FILE EXT

The data file format cannot be determined from the file name.
MSK_RES_ERR_PARAM_INDEX

Parameter index is out of range.

MSK_RES_ERR_FIRSTI

Invalid firsti.

MSK_RES_ERR_LICENSE

Invalid license.

MSK_RES_ERR_ARGUMENT_PERM_ARRAY

An invalid permutation array is specified.
MSK_RES_WRN_LP_DROP_VARIABLE

Ignored a variable because the variable was not previously defined.
Usually this implies that a variable appears in the bound section but
not in the objective or the constraints.

MSK_RES_ERR_FIRSTJ

Invalid firstj.

MSK_RES_ERR_USER_NLO_FUNC

The user-defined nonlinear function reported an error.

continued on next page

342

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

1219

1286

1431

3900

1199

1293

63

2504

1650

3201

1216

1163

1002

1240

1050

1162

2503

1292

1047

1100

MSK_RES_ERR_INF _DOU_INDEX

A double information index is out of range for the specified type.
MSK_RES_ERR_LASTI

Invalid lasti.

MSK_RES_ERR_USER_FUNC_RET_DATA

An user function returned invalid data.

MSK_RES_ERR_SIZE _LICENSE_NUMCORES

The computer contains more cpu cores than the license allows for.
MSK_RES_ERR_NR_ARGUMENTS

Incorrect number of function arguments.
MSK_RES_ERR_CON_Q_NOT_PSD

The quadratic constraint matrix is not positive semi-definite as ex-
pected for a constraint with finite upper bound. This results in a
nonconvex problem.

MSK_RES_WRN_ZERO_ATIJ

One or more zero elements are specified in A.
MSK_RES_ERR_INV_NUMJ

Invalid numj.

MSK_RES_ERR_FACTOR

An error occurred while factorizing a matrix.
MSK_RES_ERR_INVALID BRANCH PRIORITY

An invalid branching priority is specified. It should be nonnegative.
MSK_RES_ERR_PARAM_IS TOO_SMALL

The parameter value is too small.
MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM

The problem contains cones that cannot be written to an LP format-
ted file.

MSK_RES_ERR_LICENSE_VERSION

The license is valid for another version of MOSEK.
MSK_RES_ERR_MAXNUMCON

The maximum number of constraints specified is smaller than the
number of constraints in the task.

MSK_RES_ERR_UNKNOWN

Unknown error.

MSK_RES_ERR_READ_LP_NONEXISTING_NAME

A variable never occurred in objective or constraints.
MSK_RES_ERR_INV_NUMI

Invalid numi.

MSK_RES_ERR_NONLINEAR_RANGED

The model contains a nonlinear ranged constraint which by definition
defines a nonconvex set.

MSK_RES_ERR_THREAD_MUTEX_UNLOCK

Could not unlock a mutex.

MSK_RES_ERR_MPS_FILE

continued on next page

1.40. RESPONSE CODES 343

continued from previous page

1156

1152

2000

1158

1461

3058

3052

1027

66

3050

1407

1206

1172

1300

1470

An error occurred while reading an MPS file.
MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME

Empty variable names cannot be written to OPF files.
MSK_RES_ERR_LP_DUP_SLACK_NAME

The name of the slack variable added to a ranged constraint already
exists.

MSK_RES_ERR_NO_PRIMAL_INFEAS_CER

A certificate of primal infeasibility is not available.
MSK_RES_ERR_WRITE_LP_FORMAT

Problem cannot be written as an LP file.

MSK_RES_ERR_NAN_IN BLC

¢ contains an invalid floating point value, i.e. a NaN.
MSK_RES_ERR_SEN_NUMERICAL

Numerical difficulties encountered performing the sensitivity analysis.
MSK_RES_ERR_SEN_INDEX _RANGE

Index out of range in the sensitivity analysis file.
MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT

The license server does not support the requested feature. Possible
reasons for this error include:

e The feature has expired.
e The feature’s start date is later than today’s date.

e The version requested is higher than feature’s the highest sup-
ported version.

e A corrupted license file.

Try restarting the license and inspect the license server debug file,
usually called 1mgrd.log.

MSK_RES_WRN_SPAR MAX LEN

A value for a string parameter is longer than the buffer that is sup-
posed to hold it.

MSK_RES_ERR_SEN_FORMAT

Syntax error in sensitivity analysis file.

MSK_RES_ERR_INV_QCON_VAL

Invalid value in gcval.

MSK_RES_ERR_PARAM_NAME _DOU

The parameter name is not correct for a double parameter.
MSK_RES_ERR_OPF_PREMATURE_EQF

Premature end of file in an OPF file.

MSK_RES_ERR_CONE_INDEX

An index of a non-existing cone has been specified.
MSK_RES_ERR_NAN_IN_C

¢ contains an invalid floating point value, i.e. a NaN.

continued on next page

344 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
1066 MSK_RES_ERR_LIVING_TASKS
All tasks associated with an enviroment must be deleted before the
environment is deleted. There are still some undeleted tasks.
1304 MSK_RES_ERR_MAXNUMCONE
The value specified for maxnumcone is too small.
1103 MSK_RES_ERR_MPS_NULL_CON_NAME
An empty constraint name is used in an MPS file.
1417 MSK_RES_ERR_QCON_UPPER_TRIANGLE
An element in the upper triangle of a Q is specified. Only elements
in the lower triangle should be specified.
1171 MSK_RES_ERR_LP_INVALID_CON_NAME
A constraint name is invalid when used in an LP formatted file.
1125 MSK_RES_ERR_MPS_TAB_IN_FIELD2
A tab char occurred in field 2.
270 MSK_RES_WRN_MIO_INFEASIBLE_FINAL
The final mixed-integer problem with all the integer variables fixed
at their optimal values is infeasible.
710 MSK_RES_WRN_ZEROS_IN_SPARSE_COL
One or more (near) zero elements are specified in a sparse column of
a matrix. It is redundant to specify zero elements. Hence, it may
indicate an error.
1433 MSK_RES_ERR_USER_NLO_EVAL
The user-defined nonlinear function reported an error.
1232 MSK_RES_ERR_INF_TYPE
The information type is invalid.
800 MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK
The linear dependency check(s) was not completed and therefore the
A matrix may contain linear dependencies.
503 MSK_RES_WRN_USING_GENERIC_NAMES
The file writer reverts to generic names because a name is blank.
1127 MSK_RES_ERR_MPS_TAB_IN_FIELD5
A tab char occurred in field 5.
1056 MSK_RES_ERR_INVALID FILE _NAME
An invalid file name has been specified.
804 MSK_RES_WRN_WRITE_DISCARDED _CFIX
The fixed objective term could not be converted to a variable and was
discarded in the output file.
1415 MSK_RES_ERR_QOBJ_UPPER_TRIANGLE
An element in the upper triangle of Q° is specified. Only elements in
the lower triangle should be specified.
1054 MSK_RES_ERR_FILE WRITE
File write error.
1048 MSK_RES_ERR_THREAD_CREATE

continued on next page

1.40. RESPONSE CODES 345

continued from previous page

1243

2506

1600

1131

1303

1075

1052

250

1296

1064

1065

3059

3005

1550

1310

62

1208

Could not create a thread. This error may occur if a large number of
environments are created and not deleted again. In any case it is a
good practice to minimize the number of environments created.
MSK_RES_ERR_MAXNUMQNZ

The maximum number of non-zeros specified for the () matrices is
smaller than the number of non-zeros in the current) matrices.
MSK_RES_ERR_CANNOT_HANDLE_NL

A function cannot handle a task with nonlinear function call-backs.
MSK_RES_ERR_NO_BASIS_SOL

No basic solution is defined.

MSK_RES_ERR_ORD_INVALID

Invalid content in branch ordering file.

MSK_RES_ERR_CONE_REP_VAR

A variable is included multiple times in the cone.
MSK_RES_ERR_INVALID 0BJ_NAME

An invalid objective name is specified.

MSK_RES_ERR_FILE _OPEN

Error while opening a file.

MSK_RES_WRN_IGNORE_INTEGER

Ignored integer constraints.

MSK_RES_ERR_0BJ_Q_NOT_NSD

The quadratic coefficient matrix in the objective is not negative semi-
definite as expected for a maximization problem.
MSK_RES_ERR_INVALID_TASK

The task is invalid.

MSK_RES_ERR_NULL_POINTER

An argument to a function is unexpectedly a NULL pointer.
MSK_RES_ERR_CONCURRENT_OPTIMIZER

An unsupported optimizer was chosen for use with the concurrent
optimizer.

MSK_RES_ERR_API FATAL_ERROR

An internal error occurred in the API. Please report this problem.
MSK_RES_ERR_INV_OPTIMIZER

An invalid optimizer has been chosen for the problem. This means
that the simplex or the conic optimizer is chosen to optimize a non-
linear problem.

MSK_RES_ERR_REMOVE_CONE_VARIABLE

A variable cannot be removed because it will make a cone invalid.
MSK_RES_WRN_LARGE_AIJ

A numerically large value is specified for an a; ; element in A. The pa-
rameter MSK_DPAR_DATA_TOL_ATJ_LARGE controls when an a; ; is con-
sidered large.

MSK_RES_ERR_PARAM_NAME_STR

The parameter name is not correct for a string parameter.

continued on next page

346

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

1018

251

1040

1701

1221

1259

1220

1053

1440

1441

300

4030

1110

1403

1400

1030

3001

1046

1262

1151

MSK_RES_ERR_LICENSE_FEATURE

A requested feature is not available in the license file(s). Most likely
due to an incorrect license system setup.
MSK_RES_WRN_NO_GLOBAL_OPTIMIZER

No global optimizer is available.

MSK_RES_ERR_LINK FILE DLL

A file cannot be linked to a stream in the DLL version.
MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED

The relaxed problem could not be solved to optimality. Please consult
the log file for further details.
MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL

An index in an array argument is too small.
MSK_RES_ERR_SOLVER_PROBTYPE

Problem type does not match the chosen optimizer.
MSK_RES_ERR_INF_INT_INDEX

An integer information index is out of range for the specified type.
MSK_RES_ERR_FILE READ

File read error.

MSK_RES_ERR_USER_NLO_EVAL_HESSUBI

The user-defined nonlinear function reported an invalid subscript in
the Hessian.

MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ

The user-defined nonlinear function reported an invalid subscript in
the Hessian.

MSK_RES_WRN_SOL_FILTER

Invalid solution filter is specified.

MSK_RES_TRM_INTERNAL

The optimizer terminated due to some internal reason. Please contact
MOSEK support.

MSK_RES_ERR_MPS_NO_OBJECTIVE

No objective is defined in an MPS file.

MSK_RES_ERR_INV_QOBJ_VAL

Invalid value in qoval.

MSK_RES_ERR_INFINITE_BOUND

A numerically huge bound value is specified.

MSK_RES_ERR_OPEN_DL

A dynamic link library could not be opened.
MSK_RES_ERR_APT_ARRAY TOO_SMALL

An input array was too short.

MSK_RES_ERR_THREAD_MUTEX_LOCK

Could not lock a mutex.

MSK_RES_ERR_LAST

Invalid index last. A given index was out of expected range.
MSK_RES_ERR_LP_EMPTY

continued on next page

1.40. RESPONSE CODES 347

continued from previous page

1011

1062

2505

2520

1250

2550

1104

72

1026

1025

1045

o4

1280

3106

53

3910

901

1112

The problem cannot be written to an LP formatted file.
MSK_RES_ERR_SIZE_LICENSE_VAR

The problem has too many variables to be solved with the available
license.

MSK_RES_ERR_INVALID_STREAM

An invalid stream is referenced.

MSK_RES_ERR_CANNOT_CLONE_NL

A task with a nonlinear function call-back cannot be cloned.
MSK_RES_ERR_INVALID_ACCMODE

An invalid access mode is specified.

MSK_RES_ERR_NUMCONLIM

Maximum number of constraints limit is exceeded.
MSK_RES_ERR_MBT_INCOMPATIBLE

The MBT file is incompatible with this platform. This results from
reading a file on a 32 bit platform generated on a 64 bit platform.
MSK_RES_ERR_MPS_NULL_VAR_NAME

An empty variable name is used in an MPS file.
MSK_RES_WRN_MPS_SPLIT BOU_VECTOR

A BOUNDS vector is split into several nonadjacent parts in an MPS
file.

MSK_RES_ERR_LICENSE_SERVER_VERSION

The version specified in the checkout request is greater than the high-
est version number the daemon supports.
MSK_RES_ERR_LICENSE_INVALID_HOSTID

The host ID specified in the license file does not match the host ID
of the computer.

MSK_RES_ERR_THREAD MUTEX_INIT

Could not initialize a mutex.

MSK_RES_WRN_LARGE_CON_FX

An equality constraint is fixed to a numerically large value. This can
cause numerical problems.

MSK_RES_ERR_INV_NAME_ITEM

An invalid name item code is used.
MSK_RES_ERR_AD_MISSING_RETURN

The code list data was invalid. Missing return operation in function.
MSK_RES_WRN_LARGE_UP_BOUND

A numerically large upper bound value is specified.
MSK_RES_ERR_INFEAS_UNDEFINED

The requested value is not defined for this solution type.
MSK_RES_WRN_ANA_C_ZERO

This warning is issued by the problem analyzer, if the coefficients in
the linear part of the objective are all zero.
MSK_RES_ERR_MPS_MUL_CON_NAME

A constraint name was specified multiple times in the ROWS section.

continued on next page

348

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

1801

1115

1016

4007

805

1058

1294

3600

1231

1107

1425

4025

3056

52

3999

70

3053

1702

1449

MSK_RES_ERR_INVALID_IOMODE

Invalid io mode.

MSK_RES_ERR_MPS_INV_SEC_ORDER

The sections in the MPS data file are not in the correct order.
MSK_RES_ERR_LICENSE_MAX

Maximum number of licenses is reached.
MSK_RES_TRM_USER_CALLBACK

The optimizer terminated due to the return of the user-defined call-
back function.

MSK_RES_WRN_CONSTRUCT_SOLUTION_INFEAS

After fixing the integer variables at the suggested values then the
problem is infeasible.

MSK_RES_ERR_INVALID_MBT_FILE

A MOSEK binary task file is invalid.

MSK_RES_ERR_CON_Q_NOT_NSD

The quadratic constraint matrix is not negative semi-definite as ex-
pected for a constraint with finite lower bound. This results in a
nonconvex problem.

MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE

The problem type is not supported by the XML format.
MSK_RES_ERR_INF_INT_NAME

An integer information name is invalid.
MSK_RES_ERR_MPS_INV_CON_KEY

An invalid constraint key occurred in an MPS file.
MSK_RES_ERR_FIXED_BOUND_VALUES

A fixed constraint/variable has been specified using the bound keys
but the numerical value of the lower and upper bound is different.
MSK_RES_TRM_NUMERICAL_PROBLEM

The optimizer terminated due to numerical problems.
MSK_RES_ERR_SEN_INVALID_REGEXP

Syntax error in regexp or regexp longer than 1024.
MSK_RES_WRN_LARGE_LO_BOUND

A numerically large lower bound value is specified.
MSK_RES_ERR_API_INTERNAL

An internal fatal error occurred in an interface function.
MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR

An RHS vector is split into several nonadjacent parts in an MPS file.
MSK_RES_ERR_SEN_BOUND_INVALID_UP

Analysis of upper bound requested for an index, where no upper
bound exists.

MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND

The upper bound is less than the lower bound for a variable or a
constraint. Please correct this before running the feasibility repair.
MSK_RES_ERR_Y_IS_UNDEFINED

continued on next page

1.40. RESPONSE CODES

continued from previous page

3200

1430

1750

1305

4005

1256

4020

4015

3101

1020

904

1402

1302

807

1401

1153

1553

1061

The solution item y is undefined.
MSK_RES_ERR_INVALID_BRANCH_DIRECTION

An invalid branching direction is specified.
MSK_RES_ERR_USER_FUNC_RET

An user function reported an error.

MSK_RES_ERR_NAME MAX _LEN

A name is longer than the buffer that is supposed to hold it.
MSK_RES_ERR_CONE_TYPE

Invalid cone type specified.

MSK_RES_TRM_USER_BREAK

Not in use.

MSK_RES_ERR_INV_BKC

Invalid bound key is specified for a constraint.
MSK_RES_TRM_MAX_NUM_SETBACKS

The optimizer terminated as the maximum number of set-backs was
reached. This indicates numerical problems and a possibly badly
formulated problem.

MSK_RES_TRM_NUM_MAX _NUM_INT_SOLUTIONS

The mixed-integer optimizer terminated as the maximum number of
feasible solutions was reached.

MSK_RES_ERR_IDENTICAL_TASKS

Some tasks related to this function call were identical. Unique tasks
were expected.

MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE

The license system cannot allocate the memory required.
MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS

This warning is issued by the problem analyzer if a constraint is bound
nearly integral.

MSK_RES_ERR_INV_QOBJ_SUBJ

Invalid value in qosubj.

MSK_RES_ERR_CONE_OVERLAP

A new cone which variables overlap with an existing cone has been
specified.

MSK_RES_WRN_CONSTRUCT_INVALID _SOL_ITG

The intial value for one or more of the integer variables is not feasible.
MSK_RES_ERR_INV_QOBJ_SUBI

Invalid value in qosubi.

MSK_RES_ERR_WRITE MPS_INVALID NAME

An invalid name is created while writing an MPS file. Usually this
will make the MPS file unreadable.

MSK_RES_ERR_MIO_NOT_LOADED

The mixed-integer optimizer is not loaded.

MSK_RES_ERR_NULL_TASK

task is a NULL pointer.

continued on next page

349

350

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

1070

1252

1197

500

1200

1051

1241

1800

1101

1060

3500

501

1122

1168

900

1071

1116

ol

50

1291

MSK_RES_ERR_BLANK_NAME

An all blank name has been specified.
MSK_RES_ERR_TOO_SMALL_MAXNUMANZ

The maximum number of non-zeros specified for A is smaller than
the number of non-zeros in the current A.
MSK_RES_ERR_ARGUMENT _LENNEQ

Incorrect length of arguments.

MSK_RES_WRN_LICENSE_EXPIRE

The license expires.

MSK_RES_ERR_IN_ARGUMENT

A function argument is incorrect.

MSK_RES_ERR_SPACE

Out of space.

MSK_RES_ERR_MAXNUMVAR

The maximum number of variables specified is smaller than the num-
ber of variables in the task.

MSK_RES_ERR_INVALID_COMPRESSION

Invalid compression type.

MSK_RES_ERR_MPS_INV_FIELD

A field in the MPS file is invalid. Probably it is too wide.
MSK_RES_ERR_NULL_ENV

env is a NULL pointer.

MSK_RES_ERR_INTERNAL_TEST FAILED

An internal unit test function failed.

MSK_RES_WRN_LICENSE_SERVER

The license server is not responding.
MSK_RES_ERR_MPS_INVALID_OBJSENSE

An invalid objective sense is specified.

MSK_RES_ERR_OPF_FORMAT

Syntax error in an OPF file

MSK_RES_WRN_ANA_LARGE_BOUNDS

This warning is issued by the problem analyzer, if one or more con-
straint or variable bounds are very large. One should consider omit-
ting these bounds entirely by setting them to +inf or -inf.
MSK_RES_ERR_DUP_NAME

The same name was used multiple times for the same problem item
type.

MSK_RES_ERR_MPS_MUL_CSEC

Multiple CSECTIONs are given the same name.
MSK_RES_WRN_LARGE_BOUND

A numerically large bound value is specified.
MSK_RES_WRN_OPEN_PARAM FILE

The parameter file could not be opened.

MSK_RES_ERR_NONCONVEX

continued on next page

1.40. RESPONSE CODES 351

continued from previous page

3100

1615

1155

1445

3002

1253

1013

1007

1160

1237

1010

1118

1090

1408

4006

The optimization problem is nonconvex.
MSK_RES_ERR_UNB_STEP_SIZE

A step size in an optimizer was unexpectedly unbounded. For in-
stance, if the step-size becomes unbounded in phase 1 of the simplex
algorithm then an error occurs. Normally this will happen only if the
problem is badly formulated. Please contact MOSEK support if this
€ITOr OCCUrS.

MSK_RES_ERR_BASIS_SINGULAR

The basis is singular and hence cannot be factored.
MSK_RES_ERR_LP_FREE_CONSTRAINT

Free constraints cannot be written in LP file format.
MSK_RES_ERR_INVALID_OBJECTIVE_SENSE

An invalid objective sense is specified.

MSK_RES_OK

No error occurred.

MSK_RES_ERR_API_CB_CONNECT

Failed to connect a callback object.

MSK_RES_ERR_INV_APTRE

aptrel[j] is strictly smaller than aptrb[j] for some j.
MSK_RES_ERR_OPTIMIZER_LICENSE

The optimizer required is not licensed.

MSK_RES_ERR_FILE _LICENSE

Invalid license file.

MSK_RES_ERR_LP_FORMAT

Syntax error in an LP file.

MSK_RES_ERR_SOLITEM

The solution item number solitem is invalid. Please note that
MSK_SOL_ITEM_SNX is invalid for the basic solution.
MSK_RES_ERR_SIZE_LICENSE_CON

The problem has too many constraints to be solved with the available
license.

MSK_RES_ERR_MPS_CONE_OVERLAP

A variable is specified to be a member of several cones.
MSK_RES_ERR_READ_FORMAT

The specified format cannot be read.
MSK_RES_ERR_QCON_SUBI_TOO_SMALL

Invalid value in qcsubi.

MSK_RES_TRM_STALL

continued on next page

352 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
The optimizer terminated due to slow progress. Normally there are
three possible reasons for this: Either a bug in MOSEK, the problem
is badly formulated, or, for nonlinear problems, the nonlinear call-
back functions are incorrect.
The solution returned may or may not be of acceptable quality.
Therefore, the solution status should be examined to determine the
status of the solution.
In particular, if a linear optimization problem is solved with the
interior-point optimizer with basis identification turned on, the re-
turned solution may be of acceptable quality, even in the optimizer
stalled.
1580 MSK_RES_ERR_POSTSOLVE
An error occurred during the postsolve. Please contact MOSEK sup-
port.
1215 MSK_RES_ERR_PARAM_IS _TOO_LARGE
The parameter value is too large.
1164 MSK_RES_ERR_LP_WRITE_GECO_PROBLEM
The problem contains general convex terms that cannot be written
to an LP formatted file.
1281 MSK_RES_ERR_PRO_ITEM
An invalid problem is used.
1057 MSK_RES_ERR_INVALID SOL_FILE NAME
An invalid file name has been specified.
1271 MSK_RES_ERR_INV_CONE_TYPE_STR
Invalid cone type string encountered.
1283 MSK_RES_ERR_INVALID FORMAT_TYPE
Invalid format type.
57 MSK_RES_WRN_LARGE_CJ
A numerically large value is specified for one c;.
1035 MSK_RES_ERR_OLDER_DLL
The dynamic link library is older than the specified version.
1019 MSK_RES_ERR_PLATFORM_NOT_LICENSED
A requested license feature is not available for the required platform.
1119 MSK_RES_ERR_MPS_CONE_REPEAT
A variable is repeated within the CSECTION.
3051 MSK_RES_ERR_SEN_UNDEF_NAME
An undefined name was encountered in the sensitivity analysis file.
1380 MSK_RES_ERR_HUGE_ATJ
A numerically huge value is specified for an a; ; element in A. The
parameter MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an a; ; is con-
sidered huge.
71 MSK_RES_WRN_MPS_SPLIT RAN_VECTOR
A RANGE vector is split into several nonadjacent parts in an MPS
file.

continued on next page

1.40. RESPONSE CODES 353

continued from previous page

3054

3105

1111

1080

1201

1159

4001

810

3700

1260

1238

1471

1236

801

1049

1269

1036

1251

1113

502

MSK_RES_ERR_SEN_BOUND_INVALID_LO

Analysis of lower bound requested for an index, where no lower bound
exists.

MSK_RES_ERR_AD_MISSING_OPERAND

The code list data was invalid. Missing operand for operator.
MSK_RES_ERR_MPS_SPLITTED_VAR

All elements in a column of the A matrix must be specified consecu-
tively. Hence, it is illegal to specify non-zero elements in A for variable
1, then for variable 2 and then variable 1 again.
MSK_RES_ERR_SPACE_LEAKING

MOSEK is leaking memory. This can be due to either an incorrect
use of MOSEK or a bug.

MSK_RES_ERR_ARGUMENT_DIMENSION

A function argument is of incorrect dimension.
MSK_RES_ERR_READ_LP MISSING_END_TAG

Missing End tag in LP file.

MSK_RES_TRM_MAX TIME

The optimizer terminated at the maximum amount of time.
MSK_RES_WRN_CONSTRUCT_NO_SOL_ITG

The construct solution requires an integer solution.
MSK_RES_ERR_INVALID_AMPL_STUB

Invalid AMPL stub.

MSK_RES_ERR_OBJECTIVE_RANGE

Empty objective range.

MSK_RES_ERR_WHICHITEM_NOT_ALLOWED

whichitem is unacceptable.

MSK_RES_ERR_NAN_IN BLX

[* contains an invalid floating point value, i.e. a NaN.
MSK_RES_ERR_WHICHSOL

The solution defined by compwhichsol does not exists.
MSK_RES_WRN_ELIMINATOR_SPACE

The eliminator is skipped at least once due to lack of space.
MSK_RES_ERR_THREAD_COND_INIT

Could not initialize a condition.

MSK_RES_ERR_INV_SK_STR

Invalid status key string encountered.

MSK_RES_ERR_NEWER_DLL

The dynamic link library is newer than the specified version.
MSK_RES_ERR_NUMVARLIM

Maximum number of variables limit is exceeded.
MSK_RES_ERR_MPS_MUL_QSEC

Multiple QSECTIONs are specified for a constraint in the MPS data
file.

MSK_RES_WRN_EMPTY_NAME

continued on next page

354

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

4003

80

1272

1102

1230

1264

1270

1006

3104

1015

400

1161

1108

1472

1450

1109

1266

1257

351

A variable or constraint name is empty. The output file may be
invalid.

MSK_RES_TRM_MIO_NEAR_REL_GAP

The mixed-integer optimizer terminated because the near optimal
relative gap tolerance was satisfied.
MSK_RES_WRN_LP_OLD_QUAD_FORMAT

Missing ’/2’ after quadratic expressions in bound or objective.
MSK_RES_ERR_INV_CONE_TYPE

Invalid cone type code is encountered.

MSK_RES_ERR_MPS_INV_MARKER

An invalid marker has been specified in the MPS file.
MSK_RES_ERR_INF_DOU_NAME

A double information name is invalid.
MSK_RES_ERR_NEGATIVE_APPEND

Cannot append a negative number.

MSK_RES_ERR_INV_SK

Invalid status key code.

MSK_RES_ERR_PROB_LICENSE

The software is not licensed to solve the problem.
MSK_RES_ERR_AD_INVALID_OPERAND

The code list data was invalid. An unknown operand was used.
MSK_RES_ERR_LICENSE_SERVER

The license server is not responding.
MSK_RES_WRN_TOO_FEW_BASIS_VARS

An incomplete basis has been specified. Too few basis variables are
specified.

MSK_RES_ERR_WRITE_LP _NON_UNIQUE_NAME

An auto-generated name is not unique.
MSK_RES_ERR_MPS_INV_BOUND_KEY

An invalid bound key occurred in an MPS file.
MSK_RES_ERR_NAN_IN_BUX

u” contains an invalid floating point value, i.e. a NaNl.
MSK_RES_ERR_NAN_IN DOUBLE_DATA

An invalid floating point value was used in some double data.
MSK_RES_ERR_MPS_INV_SEC_NAME

An invalid section name occurred in an MPS file.
MSK_RES_ERR_BASIS

An invalid basis is specified. Either too many or too few basis vari-
ables are specified.

MSK_RES_ERR_INV_BKX

An invalid bound key is specified for a variable.
MSK_RES_WRN_SOL_FILE_IGNORED_CON

One or more lines in the constraint section were ignored when reading
a solution file.

continued on next page

1.40. RESPONSE CODES 355

continued from previous page

902

1128

1217

1222

1306

1405

1760

1258

1157

1021

4002

1126

350

1255

1169

1014

1275

65

1301

1261

MSK_RES_WRN_ANA_EMPTY_COLS

This warning is issued by the problem analyzer, if columns, in which
all coefficients are zero, are found.
MSK_RES_ERR_MPS_INVALID_OBJ_NAME

An invalid objective name is specified.

MSK_RES_ERR_PARAM _VALUE_STR

The parameter value string is incorrect.
MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE

An index in an array argument is too large.
MSK_RES_ERR_CONE_TYPE_STR

Invalid cone type specified.

MSK_RES_ERR_INV_QCON_SUBI

Invalid value in qcsubi.

MSK_RES_ERR_NAME_IS_NULL

The name buffer is a NULL pointer.
MSK_RES_ERR_INV_VAR_TYPE

An invalid variable type is specified for a variable.
MSK_RES_ERR_LP_FILE FORMAT

Syntax error in an LP file.
MSK_RES_ERR_LICENSE_CANNOT_CONNECT

MOSEK cannot connect to the license server. Most likely the license
server is not up and running.

MSK_RES_TRM_OBJECTIVE_RANGE

The optimizer terminated on the bound of the objective range.
MSK_RES_ERR_MPS_TAB_IN_FIELD3

A tab char occurred in field 3.
MSK_RES_WRN_UNDEF_SOL_FILE _NAME

Undefined name occurred in a solution.

MSK_RES_ERR_INV_BK

Invalid bound key.

MSK_RES_ERR_OPF_NEW_VARIABLE

Introducing new variables is now allowed. When a [variables] sec-
tion is present, it is not allowed to introduce new variables later in
the problem.

MSK_RES_ERR_FLEXLM

The FLEXIm license manager reported an error.
MSK_RES_ERR_INVALID_SURPLUS

Invalid surplus.

MSK_RES_WRN_NAME _MAX_LEN

A name is longer than the buffer that is supposed to hold it.
MSK_RES_ERR_CONE_SIZE

A cone with too few members is specified.

MSK_RES_ERR_FIRST

Invalid first.

continued on next page

356

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

1473

4031

1117

1005

1409

1375

1446

4000

802

1130

3103

1166

2502

2500

2900

1105

1012

3800

1552

MSK_RES_ERR_NAN_IN_AIJ

a;; contains an invalid floating point value, i.e. a NaN.
MSK_RES_TRM_INTERNAL_STOP

The optimizer terminated for internal reasons. Please contact MO-
SEK support.

MSK_RES_ERR_MPS_CONE_TYPE

Invalid cone type specified in a CSECTION.
MSK_RES_ERR_SIZE_LICENSE

The problem is bigger than the license.
MSK_RES_ERR_QCON_SUBI_TOO_LARGE

Invalid value in qcsubi.

MSK_RES_ERR_HUGE_C

A huge value in absolute size is specified for one c;.
MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE

The objective sense has not been specified before the optimization.
MSK_RES_TRM_MAX_ITERATIONS

The optimizer terminated at the maximum number of iterations.
MSK_RES_WRN_PRESOLVE_QUTOFSPACE

The presolve is incomplete due to lack of space.
MSK_RES_ERR_ORD_INVALID_BRANCH_DIR

An invalid branch direction key is specified.
MSK_RES_ERR_AD_INVALID OPERATOR

The code list data was invalid. An unknown operator was used.
MSK_RES_ERR_WRITING_FILE

An error occurred while writing file

MSK_RES_ERR_INV_MARKJ

Invalid value in markj.

MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK

The required solution is not available.
MSK_RES_ERR_INVALID_UTF8

An invalid UTFS string is encountered.
MSK_RES_ERR_MPS_UNDEF_CON_NAME

An undefined constraint name occurred in an MPS file.
MSK_RES_ERR_SIZE LICENSE_INTVAR

The problem contains too many integer variables to be solved with
the available license.

MSK_RES_ERR_INT64_TO_INT32_CAST

An 32 bit integer could not cast to a 64 bit integer.
MSK_RES_ERR_NO_OPTIMIZER VAR _TYPE

No optimizer is available for this class of optimization problems.

1.41 Response code type

I.44. SENSITIVITY TYPES 357

Value Name

Description
1 MSK_RESPONSE_WRN
The response code is a warning.
2 MSK_RESPONSE_TRM
The response code is an optimizer termination status.
4 MSK_RESPONSE_UNK
The response code does not belong to any class.
0 MSK_RESPONSE_OK
The response code is OK.
3 MSK_RESPONSE_ERR

The response code is an error.

1.42 Scaling type

Value Name

Description
0 MSK_SCALING_METHOD_POW2

Scales only with power of 2 leaving the mantissa untouched.
1 MSK_SCALING_METHOD_FREE

The optimizer chooses the scaling heuristic.

1.43 Scaling type

Value Name

Description
1 MSK_SCALING_NONE
No scaling is performed.
2 MSK_SCALING_MODERATE
A conservative scaling is performed.
3 MSK_SCALING_AGGRESSIVE
A very aggressive scaling is performed.
0 MSK_SCALING_FREE

The optimizer chooses the scaling heuristic.

1.44 Sensitivity types

Value Name
Description
1 MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION

continued on next page

358 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

Optimal partition sensitivity analysis is performed.
0 MSK_SENSITIVITY_TYPE_ BASIS

Basis sensitivity analysis is performed.

1.45 Degeneracy strategies

Value Name

Description
0 MSK_SIM DEGEN_NONE

The simplex optimizer should use no degeneration strategy.
3 MSK_SIM_DEGEN_MODERATE

The simplex optimizer should use a moderate degeneration strategy.
4 MSK_SIM_DEGEN_MINIMUM

The simplex optimizer should use a minimum degeneration strategy.
2 MSK_SIM DEGEN_AGGRESSIVE

The simplex optimizer should use an aggressive degeneration strategy.
1 MSK_SIM_DEGEN_FREE

The simplex optimizer chooses the degeneration strategy.

1.46 Exploit duplicate columns.

Value Name

Description
1 MSK_SIM_EXPLOIT _DUPVEC_ON

Allow the simplex optimizer to exploit duplicated columns.
0 MSK_SIM_EXPLOIT_DUPVEC_OFF

Disallow the simplex optimizer to exploit duplicated columns.
2 MSK_SIM _EXPLOIT DUPVEC_FREE

The simplex optimizer can choose freely.

1.47 Hot-start type employed by the simplex optimizer

Value Name

Description
0 MSK_SIM_HOTSTART_NONE

The simplex optimizer performs a coldstart.
2 MSK_SIM HOTSTART_STATUS_KEYS

Only the status keys of the constraints and variables are used to
choose the type of hot-start.

continued on next page

1.50. SOLUTION ITEMS

continued from previous page

1

MSK_SIM HOTSTART _FREE
The simplex optimize chooses the hot-start type.

1.48 Problem reformulation.

Value

Name
Description

MSK_SIM_REFORMULATION_ON

Allow the simplex optimizer to reformulate the problem.

MSK_SIM REFORMULATION_AGGRESSIVE

The simplex optimizer should use an aggressive reformulation strat-
egy.

MSK_SIM_REFORMULATION_OFF

Disallow the simplex optimizer to reformulate the problem.

MSK_SIM _REFORMULATION_FREE

The simplex optimizer can choose freely.

1.49 Simplex selection strategy

Value

Name
Description

MSK_SIM_SELECTION_FULL

The optimizer uses full pricing.

MSK_SIM SELECTION_PARTIAL

The optimizer uses a partial selection approach. The approach is
usually beneficial if the number of variables is much larger than the
number of constraints.

MSK_SIM_SELECTION_FREE

The optimizer chooses the pricing strategy.

MSK_SIM _SELECTION_ASE

The optimizer uses approximate steepest-edge pricing.
MSK_SIM_SELECTION_DEVEX

The optimizer uses devex steepest-edge pricing (or if it is not available
an approximate steep-edge selection).

MSK_SIM_SELECTION_SE

The optimizer uses steepest-edge selection (or if it is not available an
approximate steep-edge selection).

1.50 Solution items

359

360 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

Value Name

Description
4 MSK_SOL_ITEM_SUC
Lagrange multipliers for upper bounds on the constraints.
0 MSK_SOL_ITEM_XC
Solution for the constraints.
1 MSK_SOL_ITEM XX
Variable solution.
2 MSK_SOL_ITEM.Y
Lagrange multipliers for equations.
) MSK_SOL_ITEM_SLX
Lagrange multipliers for lower bounds on the variables.
6 MSK_SOL_ITEM_SUX
Lagrange multipliers for upper bounds on the variables.
7 MSK_SOL_ITEM_SNX
Lagrange multipliers corresponding to the conic constraints on the
variables.
3 MSK_SOL_ITEM_SLC

Lagrange multipliers for lower bounds on the constraints.

I.51 Solution status keys

Value Name

Description
6 MSK_SOL_STA_DUAL_INFEAS_CER
The solution is a certificate of dual infeasibility.
5 MSK_SOL_STA_PRIM_INFEAS_CER
The solution is a certificate of primal infeasibility.
0 MSK_SOL_STA_UNKNOWN
Status of the solution is unknown.
8 MSK_SOL_STA_NEAR_OPTIMAL
The solution is nearly optimal.
12 MSK_SOL_STA_NEAR_PRIM_INFEAS_CER
The solution is almost a certificate of primal infeasibility.
2 MSK_SOL_STA_PRIM_FEAS
The solution is primal feasible.
15 MSK_SOL_STA_NEAR_INTEGER_OPTIMAL
The primal solution is near integer optimal.
10 MSK_SOL_STA_NEAR_DUAL_FEAS
The solution is nearly dual feasible.
14 MSK_SOL_STA_INTEGER_OPTIMAL
The primal solution is integer optimal.
13 MSK_SOL_STA_NEAR_DUAL_INFEAS_CER

The solution is almost a certificate of dual infeasibility.
continued on next page

1.54. STRING PARAMETER TYPES

continued from previous page

11

MSK_SOL_STA_NEAR_PRIM_AND _DUAL_FEAS

The solution is nearly both primal and dual feasible.
MSK_SOL_STA_OPTIMAL

The solution is optimal.

MSK_SOL_STA_PRIM_AND DUAL_FEAS

The solution is both primal and dual feasible.
MSK_SOL_STA_NEAR_PRIM_FEAS

The solution is nearly primal feasible.
MSK_SOL_STA_DUAL_FEAS

The solution is dual feasible.

1.52 Solution types

Value Name

Description
2 MSK_SOL_ITG

The integer solution.
0 MSK_SOL_ITR

The interior solution.
1 MSK_SOL_BAS

The basic solution.

.53 Solve primal or dual form

Value

Name
Description

MSK_SOLVE_PRIMAL

The optimizer should solve the primal problem.

MSK_SOLVE_DUAL

The optimizer should solve the dual problem.

MSK_SOLVE_FREE

The optimizer is free to solve either the primal or the dual problem.

1.54 String parameter types

Value

Name
Description

8

MSK_SPAR_PARAM_COMMENT_SIGN

continued on next page

361

362 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page
Only the first character in this string is used. It is considered as
a start of comment sign in the MOSEK parameter file. Spaces are
ignored in the string.

3 MSK_SPAR_FEASREPAIR_NAME_PREFIX
Not applicable.

0 MSK_SPAR_BAS_SOL_FILE_NAME
Name of the bas solution file.
12 MSK_SPAR_READ_MPS_OBJ_NAME

Name of the free constraint used as objective function. An empty
name means that the first constraint is used as objective function.

5 MSK_SPAR_FEASREPAIR NAME _WSUMVIOL
The constraint and variable associated with the total weighted sum
of violations are each given the name of this parameter postfixed with
CON and VAR respectively.

4 MSK_SPAR_FEASREPAIR _NAME_SEPARATOR
Not applicable.

10 MSK_SPAR_PARAM_WRITE_FILE_NAME

The parameter database is written to this file.
6 MSK_SPAR_INT_SOL_FILE NAME

Name of the int solution file.
14 MSK_SPAR_READ_MPS_RHS_NAME

Name of the RHS used. An empty name means that the first RHS
vector is used.

21 MSK_SPAR_STAT_FILE_NAME
Statistics file name.
24 MSK_SPAR_WRITE_LP_GEN_VAR_NAME

Sometimes when an LP file is written additional variables must be
inserted. They will have the prefix denoted by this parameter.

1 MSK_SPAR_DATA_FILE_NAME
Data are read and written to this file.
13 MSK_SPAR_READ_MPS_RAN_NAME

Name of the RANGE vector used. An empty name means that the
first RANGE vector is used.

17 MSK_SPAR_SOL_FILTER_XC_LOW
A filter used to determine which constraints should be listed in the
solution file. A value of “0.5” means that all constraints having
xc[1]1>0.5 should be listed, whereas “+0.5” means that all con-
straints having xc [1]1>=b1lc[i]+0.5 should be listed. An empty filter
means that no filter is applied.

18 MSK_SPAR_SOL_FILTER_XC_UPR

continued on next page

1.55. STATUS KEYS

continued from previous page

11

20

23

15

22

16

19

A filter used to determine which constraints should be listed in the
solution file. A value of “0.5” means that all constraints having
xc [1]1<0.5 should be listed, whereas “-0.5” means all constraints hav-
ing xc[i]<=buc[i]-0.5 should be listed. An empty filter means that
no filter is applied.

MSK_SPAR_READ_MPS_BOU_NAME

Name of the BOUNDS vector used. An empty name means that the
first BOUNDS vector is used.

MSK_SPAR_SOL_FILTER_XX_UPR

A filter used to determine which variables should be listed in the
solution file. A value of “0.5” means that all constraints having
xx[j1<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]1<=bux[j]-0.5 should be listed. An empty filter means
no filter is applied.

MSK_SPAR_STAT_NAME

Name used when writing the statistics file.
MSK_SPAR_PARAM_READ_FILE_NAME

Modifications to the parameter database is read from this file.
MSK_SPAR_ITR_SOL_FILE_NAME

Name of the itr solution file.

MSK_SPAR_SENSITIVITY_FILE_NAME

Not applicable.

MSK_SPAR_DEBUG_FILE_NAME

MOSEK debug file.

MSK_SPAR_STAT _KEY

Key used when writing the summary file.
MSK_SPAR_SENSITIVITY RES FILE NAME
Not applicable.

MSK_SPAR_SOL_FILTER XX _LOW

A filter used to determine which variables should be listed in the
solution file. A value of “0.5” means that all constraints having
xx[j]1>=0.5 should be listed, whereas “40.5” means that all con-
straints having xx[j1>=blx[j]1+0.5 should be listed. An empty filter
means no filter is applied.

1.55 Status keys

Value

Name
Description

MSK_SK_SUPBAS
The constraint or variable is super basic.

continued on next page

363

364

APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

continued from previous page

1

MSK_SK_BAS

The constraint or variable is in the basis.
MSK_SK_FIX

The constraint or variable is fixed.

MSK_SK_LOW

The constraint or variable is at its lower bound.
MSK_SK_INF

The constraint or variable is infeasible in the bounds.
MSK_SK_UNK

The status for the constraint or variable is unknown.
MSK_SK_UPR

The constraint or variable is at its upper bound.

[.56 Starting point types

Value

Name
Description

MSK_STARTING_POINT_GUESS

The optimizer guesses a starting point.
MSK_STARTING_POINT_SATISFY_BOUNDS

The starting point is choosen to satisfy all the simple bounds on non-
linear variables. If this starting point is employed, then more care
than usual should employed when choosing the bounds on the non-
linear variables. In particular very tight bounds should be avoided.
MSK_STARTING_POINT_CONSTANT

The optimizer constructs a starting point by assigning a constant
value to all primal and dual variables. This starting point is normally
robust.

MSK_STARTING_POINT_FREE

The starting point is chosen automatically.

1.57 Stream types

Value

Name
Description

MSK_STREAM_MSG

Message stream. Log information relating to performance and
progress of the optimization is written to this stream.
MSK_STREAM_WRN

Warning stream. Warning messages are written to this stream.
MSK_STREAM_LOG

continued on next page

1.60. XML WRITER OUTPUT MODE 365

continued from previous page
Log stream. Contains the aggregated contents of all other streams.
This means that a message written to any other stream will also be
written to this stream.

2 MSK_STREAM_ERR
Error stream. Error messages are written to this stream.

1.58 Integer values

Value Name

Description
1024 MSK_MAX_STR_LEN

Maximum string length allowed in MOSEK.
20 MSK_LICENSE_BUFFER_LENGTH

The length of a license key buffer.

1.59 Variable types

Value Name

Description
1 MSK_VAR_TYPE_INT

Is an integer variable.
0 MSK_VAR_TYPE_CONT

Is a continuous variable.

1.60 XML writer output mode

Value Name

Description

1 MSK_WRITE_XML_MODE_COL
Write in column order.

0 MSK_WRITE_XML_MODE_ROW

Write in row order.

366 APPENDIX I. SYMBOLIC CONSTANTS REFERENCE

Appendix J

Problem analyzer examples

This appendix presents a few examples of the output produced by the problem analyzer described in
Section 12.1. The first two problems are taken from the MIPLIB 2003 collection, http://miplib.
zib.de/.

J.1 air04

Analyzing the problem

Constraints Bounds Variables
fixed : all ranged : all bin : all

Objective, min cx

range: min |c|: 31.0000 max |c|: 2258.00
distrib: Icl vars
[31, 100) 176
[100, 1e+03) 8084
[1e+03, 2.26e+03] 644

Constraint matrix A has
823 rows (constraints)
8904 columns (variables)
72965 (0.995703%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min A_i: 2 (0.0224618%) max A_i: 368 (4.13297})

distrib: Ai rows rows’ acch
2 2 0.24 0.24

[3, 71 4 0.49 0.73

[8, 15] 19 2.31 3.04

[16, 31] 80 9.72 12.76

[32, 63] 236 28.68 41.43

[64, 127] 289 35.12 76.55

[128, 255] 186 22.60 99.15

367

http://miplib.zib.de/
http://miplib.zib.de/

368

APPENDIX J. PROBLEM ANALYZER EXAMPLES

[256, 368] 7 0.85 100.00
Column nonzeros, Alj
range: min Alj: 2 (0.243013%) max Alj: 15 (1.8226%)
distrib: Alj cols cols, accl
2 118 1.33 1.33
[3, 71 2853 32.04 33.37
[8, 15] 5933 66.63 100.00
A nonzeros, A(ij)
range: all |[A(ij)| = 1.00000
Constraint bounds, 1lb <= Ax <= ub
distrib: bl 1bs ubs
[1, 10] 823 823
Variable bounds, 1b <= x <= ub
distrib: ol 1bs ubs
0 8904
[1, 10] 8904
J.2 arkiO01
Analyzing the problem
Constraints Bounds Variables
lower bd: 82 lower bd: 38 cont: 850
upper bd: 946 fixed 353 bin : 415
fixed : 20 free 1 int : 123
ranged 996
Objective, min cx
range: all |c| in {0.00000, 1.00000}
distrib: lcl vars
0 1387
1 1

Constraint matrix A has
1048 rows (constraints)
1388 columns (variables)

20439 (1.40511%) nonzero entries (coefficients)

Row nonzeros, A_i

range: min A_i: 1 (0.0720461%)
distrib: A_i rows
1 29

2 476

(3, 71 49

[8, 15] 56

max A_i:
rows’
2.77
45.42
4.68
5.34

1046 (75.3602%)

acch
2.77
48.19
52.86
58.21

J.3. PROBLEM WITH BOTH LINEAR AND QUADRATIC CONSTRAINTS 369

[16, 31] 64 6.11 64.31
[32, 63] 373 35.59 99.90
[1024, 1046] 1 0.10 100.00

Column nonzeros, Alj
range: min Alj: 1 (0.0954198%) max Alj: 29 (2.76718%)

distrib: Alj cols cols, acc
1 381 27.45 27.45

2 19 1.37 28.82

[3, 71 38 2.74 31.56

[8, 15] 233 16.79 48.34

[16, 29] 717 51.66 100.00

A nonzeros, A(ij)

range: min |A(ij)|: 0.000200000 max |A(ij)|: 2.33067e+07
distrib: A(Lj) coeffs
[0.0002, 0.001) 167
[0.001, 0.01) 1049
[0.01, 0.1) 4553
[0.1, 1) 8840
[1, 10) 3822
[10, 100) 630
[100, 1e+03) 267
[1e+03, 1le+04) 699
[1e+04, 1e+05) 291
[1e+05, 1e+06) 83
[1e+06, 1e+07) 19
[1e+07, 2.33e+07] 19

Constraint bounds, 1b <= Ax <= ub

distrib: bl 1bs ubs
[0.1, 1) 386

[1, 10) 74

[10, 100) 101 456

[100, 1000) 34

[1000, 10000) 15
[100000, 1e+06] 1 1

Variable bounds, 1b <= x <= ub

distrib: bl 1bs ubs
0 974 323

[0.001, 0.01) 19

[0.1, 1) 370 57

[1, 10) a1 704

[10, 100] 2 246

J.3 Problem with both linear and quadratic constraints

Analyzing the problem

Constraints Bounds Variables
lower bd: 40 upper bd: 1 cont: all
upper bd: 121 fixed : 204

370 APPENDIX J. PROBLEM ANALYZER EXAMPLES

fixed : 5480 free : 5600
ranged : 161 ranged : 40

Objective, maximize cx
range: all |cl| in {0.00000, 15.4737}

distrib: lcl vars
0 5844
15.4737 1

Constraint matrix A has
5802 rows (constraints)
5845 columns (variables)
6480 (0.0191079%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min A_i: O (0%) max A_i: 3 (0.0513259%)

distrib: A_i rows rowsY acclh
0 80 1.38 1.38
1 5003 86.23 87.61
2 680 11.72 99.33
3 39 0.67 100.00

0/80 empty rows have quadratic terms

Column nonzeros, Alj
range: min Alj: O (0%) max Alj: 15 (0.258532%)

distrib: Alj cols cols, acc,
0 204 3.49 3.49

1 5521 94.46 97.95

2 40 0.68 98.63

[3, 71 40 0.68 99.32

[8, 15] 40 0.68 100.00

0/204 empty columns correspond to variables used in conic
and/or quadratic expressions only

A nonzeros, A(ij)

range: min |[A(ij)|: 2.02410e-05 max |A(ij)|: 35.8400
distrib: A(Lj) coeffs
[2.02e-05, 0.0001) 40
[0.0001, 0.001) 118
[0.001, 0.01) 305
[0.01, 0.1) 176
0.1, 1 40
[1, 10) 5721
[10, 35.8] 80

Constraint bounds, 1lb <= Ax <= ub

distrib: bl 1lbs ubs
0 5481 5600

[1000, 10000) 1
[10000, 100000) 2 1
[1e+06, 1e+07) 78 40

[1e+08, 1e+09] 120 120

J.4. PROBLEM WITH BOTH LINEAR AND CONIC CONSTRAINTS

Variable bounds, 1lb <= x <= ub

distrib: bl 1bs ubs
0 243 203
[0.1, 1) 1 1

[1e+06, 1e+07)
[1e+11, 1le+12]

40

Quadratic constraints: 121

Gradient nonzeros, Qx
range: min Qx: 1 (0.0171086%)

distrib: Qx cons
1 40

[64, 127] 80

[2048, 2720] 1

max Qx: 2720 (46.5355%)

cons’, accl
33.06 33.06
66.12 99.17
0.83 100.00

J.4 Problem with both linear and conic constraints

Analyzing the problem

Constraints Bounds
upper bd: 3600 fixed
fixed : 21760 free

Variables
3601 cont: all
28802

Objective, minimize cx

range: all |c| in {0.00000, 1.00000}

distrib: lcl vars
0 32402
1 1

Constraint matrix A has
25360 rows (constraints)
32403 columns (variables)

93339 (0.0113587%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min A_i: 1 (0.00308613%)

distrib: A_i rows
1 3600

2 10803

[3, 71 3995

8 6962

Column nonzeros, Alj

max A_i: 8 (0.0246891%)

rows% acc,
14.20 14.20
42.60 56.79
15.75 72.55
27.45 100.00

range: min Alj: 0 (0%) max Alj: 61 (0.240536%)

distrib: Alj cols
0 3602

cols’ accl
11.12 11.12

371

372 APPENDIX J. PROBLEM ANALYZER EXAMPLES

1 10800 33.33 44.45

2 7200 22.22 66.67

[3, 71 7279 22.46 89.13
[8, 15] 3521 10.87 100.00
[32, 61] 1 0.00 100.00

3600/3602 empty columns correspond to variables used in conic
and/or quadratic constraints only

A nonzeros, A(ij)

range: min |A(ij)|: 0.00833333 max |A(ij)|: 1.00000
distrib: A(ij) coeffs
[0.00833, 0.01) 57280
[0.01, 0.1) 59
[0.1, 1] 36000

Constraint bounds, 1lb <= Ax <= ub

distrib: bl 1bs ubs
0 21760 21760
[0.1, 1] 3600

Variable bounds, 1b <= x <= ub
distrib: bl 1bs ubs
[1, 10] 3601 3601

Rotated quadratic cones: 3600
dim RQCs
4 3600

Bibliography

1]

Richard C. Grinold abd Ronald N. Kahn. Active portfolio management. McGraw-Hill, New York,
2 edition, 2000.

F. Alizadeh and D. Goldfarb. Second-order cone programming. Math. Programming, 95(1):3-51,
2003.

E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221-245, 1995.

E. D. Andersen, J. Gondzio, Cs. Mészéaros, and X. Xu. Implementation of interior point methods
for large scale linear programming. In T. Terlaky, editor, Interior-point methods of mathematical
programming, pages 189-252. Kluwer Academic Publishers, 1996.

E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method
for conic quadratic optimization. Math. Programming, 95(2), February 2003.

E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management Sci.,
42(12):1719-1731, December 1996.

E. D. Andersen and Y. Ye. A computational study of the homogeneous algorithm for large-scale
convex optimization. Computational Optimization and Applications, 10:243-269, 1998.

E. D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complementarity
problem. Math. Programming, 84(2):375-399, February 1999.

Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear optimization.
Technical Report TR-~1-2009, MOSEK ApS, 2009. http://www.mosek.com/fileadmin/reports/
tech/homolo.pdf.

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: Theory and algorithms.
John Wiley and Sons, New York, 2 edition, 1993.

A. Ben-Tal and A Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications. MPS/SIAM Series on Optimization. STAM, 2001.

V. Chvatal. Linear programming. W.H. Freeman and Company, 1983.

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL. A modeling language for mathematical
programming. Thomson, 2nd edition, 2003.

373

http://www.mosek.com/fileadmin/reports/tech/homolo.pdf
http://www.mosek.com/fileadmin/reports/tech/homolo.pdf

374

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

BIBLIOGRAPHY
N. Gould and P. L. Toint. Preprocessing for quadratic programming. Math. Programming,
100(1):95-132, 2004.

J. L. Kenningon and K. R. Lewis. Generalized networks: The theory of preprocessing and an
emperical analysis. INFORMS Journal on Computing, 16(2):162-173, 2004.

M. S. Lobo, L. Vanderberghe, S. Boyd, and H. Lebret. Applications of second-order cone pro-
gramming. Linear Algebra Appl., 284:193-228, November 1998.

M. S. Lobo and M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction
costs. Technical report, CDS, California Institute of Technology, 2005. To appear in Annals of
Operations Research. http://www.cds.caltech.edu/ maryam/portfolio.html.

J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York, 1987.

C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an interior
point approach. John Wiley and Sons, New York, 1997.

Bernd Scherer. Portfolio construction and risk budgeting. Risk Books, 2 edition, 2004.

S. W. Wallace. Decision making under uncertainty: Is sensitivity of any use. Oper. Res., 48(1):20—
25, January 2000.

H. P. Williams. Model building in mathematical programming. John Wiley and Sons, 3 edition,
1993.

L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

http://www.cds.caltech.edu/~maryam/portfolio.html

Index

absolute value, 54 concurrent_priority free simplex (parameter), 218
alloc_add_gqnz (parameter), 213 concurrent_priority_intpnt (parameter), 218
AMPL concurrent_priority_primal_simplex (parameter), 218

outlev, 23

wantsol, 23
ana_sol_basis (parameter), 213
ana_sol_infeas_tol (parameter), 182
ana sol_print_violated (parameter), 213
arguments

command line tool, 109
auto_sort_a before_opt (parameter), 214
auto_update_sol_info (parameter), 214

bas_sol_file name (parameter), 277
basis identification, 65
basis_rel_tol_s (parameter), 182

basis_solve_use_plus_one (parameter), 214

basis_tol_s (parameter), 183
basis_tol_x (parameter), 183
bi_clean_optimizer (parameter), 215
bi_ignore max_iter (parameter), 215
bi_ignore num_error (parameter), 215
bi_max_iterations (parameter), 216
bounds, infinite, 38

cache_license (parameter), 216
cache_size_11 (parameter), 216
cache_size 12 (parameter), 217
callback_freq (parameter), 183
certificate

dual, 40

primal, 39

check_convexity (parameter), 217
check_convexity rel tol (parameter), 183
check_task_data (parameter), 217
command line tool, 11, 109
complementarity conditions, 39

concurrent optimization, 71

concurrent solution, 71

conic
optimization, 42
problem, 42
conic modelling, 44
minimizing norms, example, 45
pitfalls, 50
quadratic objective, example, 44
risk and market impact, example
Markowitz model, example, 55
constraint
matrix, 37, 52, 113
quadratic, 40, 41
constraints
lower limit, 37, 52, 113
upper limit, 37, 52, 113
continuous relaxation, 77
cpu_type (parameter), 219

data_check (parameter), 219
data_file name (parameter), 277
data_tol_aij (parameter), 184
data_tol_aij_huge (parameter), 184
data_tol_aij-large (parameter), 184
data_tol_bound_inf (parameter), 185
data_tol_bound wrn (parameter), 185
data_tol_c_huge (parameter), 185
data_tol_cj_large (parameter), 185
data_tol_qij (parameter), 186
data_tol_x (parameter), 186
debug_file name (parameter), 278
dual certificate, 40

dual infeasible, 38, 40

duality gap (linear problem), 39
dualizer, 61

concurrent_num_optimizers (parameter), 218 eliminator, 60
concurrent_priority_dual simplex (parameter), 218 Embedded network flow problems, 68

375

376

feasible, primal, 38

feasrepair name prefix (parameter), 278
feasrepair name_separator (parameter), 278
feasrepair name wsumviol (parameter), 278
feasrepair_optimize (parameter), 220
feasrepair_tol (parameter), 186

help desk, 9
hot-start, 66

infeas_generic_names (parameter), 220
infeas_prefer_primal (parameter), 220
infeas report_auto (parameter), 220
infeas_report_level (parameter), 221
infeasible, 87

dual, 40

primal, 39
infeasible problems, 87
infeasible, dual, 38
infeasible, primal, 38
infinite bounds, 38
int_sol_file name (parameter), 279
integer optimization, 77

relaxation, 77
interior-point optimizer, 62, 69
interior-point or simplex optimizer, 67
intpnt_basis (parameter), 221
intpnt_co_tol_dfeas (parameter), 186
intpnt_co_tol_infeas (parameter), 187
intpnt_co_tol mu red (parameter), 187
intpnt_co_tol near_rel (parameter), 187
intpnt_co_tol_pfeas (parameter), 188
intpnt_co_tol_rel gap (parameter), 188
intpnt_diff_step (parameter), 222
intpnt_factor_debug lvl (parameter), 222
intpnt_factor method (parameter), 222
intpnt max_iterations (parameter), 222
intpnt_max num_cor (parameter), 223

intpnt max num refinement_steps (parameter), 223

intpnt nl merit_bal (parameter), 188
intpnt_nl_tol dfeas (parameter), 188
intpnt nl tol mu red (parameter), 189
intpnt nl_tol near _rel (parameter), 189
intpnt_nl_tol_pfeas (parameter), 189
intpnt nl tol rel _gap (parameter), 189
intpnt nl_tol_rel_step (parameter), 190
intpnt_num_threads (parameter), 223
intpnt_off_col_trh (parameter), 223
intpnt_order method (parameter), 224
intpnt_regularization_use (parameter), 224
intpnt_scaling (parameter), 224

intpnt_solve_form (parameter), 225
intpnt_starting point (parameter), 225
intpnt_tol_dfeas (parameter), 190
intpnt_tol_dsafe (parameter), 190
intpnt_tol_infeas (parameter), 190
intpnt_tol mu.red (parameter), 191
intpnt_tol_path (parameter), 191
intpnt_tol _pfeas (parameter), 191
intpnt_tol_psafe (parameter), 191
intpnt_tol_rel_gap (parameter), 192
intpnt_tol_rel_step (parameter), 192
intpnt_tol_step_size (parameter), 192
itr_sol_file name (parameter), 279

lic_trh_expiry wrn (parameter), 225
license_allow_overuse (parameter), 226
license_cache_time (parameter), 226
license_check time (parameter), 226
license_debug (parameter), 226
license_pause_time (parameter), 227

license_suppress_expire wrns (parameter), 227

license_wait (parameter), 227
linear dependency check, 60

linear problem, 37

linearity interval, 100

log (parameter), 228

log bi (parameter), 228

log bi_freq (parameter), 228
log_check_convexity (parameter), 228
log_concurrent (parameter), 229
log_cut_second_opt (parameter), 229
log_factor (parameter), 229
log_feasrepair (parameter), 230
log_file (parameter), 230

log head (parameter), 230
log_infeas_ana (parameter), 230
log-intpnt (parameter), 231

log mio (parameter), 231

log mio_freq (parameter), 231

log nonconvex (parameter), 231
log_optimizer (parameter), 232
log_order (parameter), 232
log_param (parameter), 232
log_presolve (parameter), 232
log_response (parameter), 233
log_sensitivity (parameter), 233
log_sensitivity_opt (parameter), 233
log_sim (parameter), 233
log_sim_freq (parameter), 234
log_simminor (parameter), 234

INDEX

log-sim network freq (parameter), 234
log_storage (parameter), 235
lower_obj_cut (parameter), 193
lower_obj_cut_finite_trh (parameter), 193
LP format, 125

lp_write_ignore_incompatible_items (parameter), 235

max_num_warnings (parameter), 235
mio_branch dir (parameter), 235
mio_branch priorities_use (parameter), 236
mio_construct_sol (parameter), 236
mio_cont_sol (parameter), 236
mio_cut_level root (parameter), 237
mio_cut_level_tree (parameter), 237
mio_disable_term time (parameter), 193
mio_feaspump_level (parameter), 237
mio_heuristic_level (parameter), 238
mio_heuristic_time (parameter), 194
mio_hotstart (parameter), 238
mio_keep_basis (parameter), 238
mio_local branch number (parameter), 239
mio_max num branches (parameter), 239
mio_max num relaxs (parameter), 239
mio_max_num_solutions (parameter), 240
mio_max_time (parameter), 194
mio max_time_aprx_opt (parameter), 194
mio_mode (parameter), 240
mio near_tol_abs_gap (parameter), 195
mio near_tol_rel_gap (parameter), 195
mio_node_optimizer (parameter), 240
mio_node_selection (parameter), 241
mio_optimizer mode (parameter), 241
mio_presolve_aggregate (parameter), 242
mio_presolve_probing (parameter), 242
mio_presolve_use (parameter), 242
mio_rel_add cut_limited (parameter), 195
mio_rel_gap_const (parameter), 195
mio_root_optimizer (parameter), 242
mio_strong branch (parameter), 243
mio_tol_abs_gap (parameter), 196
mio_tol_abs_relax_int (parameter), 196
mio_tol_feas (parameter), 196
mio_tol_rel_gap (parameter), 197
mio_tol_rel relax_int (parameter), 197
mio_tol_x (parameter), 197
mixed-integer optimization, 77
modelling

absolute value, 54

in cones, 44

market impact term, 56

377

Markowitz portfolio optimization, 56
minimizing a sum of norms, 45
portfolio optimization, 55
transaction costs, 56
MPS format, 113
BOUNDS, 119
COLUMNS, 116
free, 123
NAME, 115
OBJNAME, 115
OBJSENSE, 115
QSECTION, 118
RANGES, 117
RHS, 117
ROWS, 116

Network flow problems

embedded, 68

optimizing, 68
nonconvex max-iterations (parameter), 243
nonconvex_tol_feas (parameter), 197
nonconvex_tol_opt (parameter), 197

objective

quadratic, 40

vector, 37
objective vector, 52
objective_sense (parameter), 243
OPF format, 133
opf_max_terms_per_line (parameter), 244
opf_write_header (parameter), 244
opf_write_hints (parameter), 244
opf_write_parameters (parameter), 244
opf_write_problem (parameter), 245
opf_write_sol_bas (parameter), 245
opf_write_sol_itg (parameter), 245
opf_write_sol_itr (parameter), 246
opf_write_solutions (parameter), 246
optimal solution, 39
optimization

conic, 42

integer, 77

mixed-integer, 77
optimizer (parameter), 246
optimizer max_time (parameter), 198
optimizers

concurrent, 71

conic interior-point, 69

convex interior-point, 69

linear interior-point, 62

parallel, 71

378

simplex, 66
Optimizing

network flow problems, 68
ORD format, 149

parallel extensions, 71
parallel interior-point, 61
parallel optimizers

interior point, 61
parallel solution, 71
param_comment_sign (parameter), 279
param read_case name (parameter), 247
param read_file_name (parameter), 279
param_read_ign_error (parameter), 247
param write file name (parameter), 280
parameter file, 111
parameters, 151
presolve, 59

eliminator, 60

linear dependency check, 60
presolve_elim fill (parameter), 247
presolve_eliminator max num_tries (parameter), 248
presolve_eliminator_use (parameter), 248
presolve_level (parameter), 248
presolve_lindep_use (parameter), 248
presolve_lindep_work_lim (parameter), 249
presolve_tol_aij (parameter), 198
presolve_tol_lin_dep (parameter), 198
presolve_tol_s (parameter), 198
presolve_tol_x (parameter), 199
presolve_use (parameter), 249
primal feasible, 38
primal certificate, 39
primal infeasible, 38, 39
primal-dual solution, 38

gcqo_reformulate_rel_drop_tol (parameter), 199
qo_separable reformulation (parameter), 249
quadratic constraint, 40, 41

quadratic objective, 40

quadratic optimization, 40

read_add_anz (parameter), 249
read_add_con (parameter), 250
read_add_cone (parameter), 250
read_add_qnz (parameter), 250
read_add._var (parameter), 250
read_anz (parameter), 251
read_con (parameter), 251
read_cone (parameter), 251
read_data_compressed (parameter), 251

INDEX

read_data_format (parameter), 252

read keep_free_con (parameter), 252
read_lp_drop new_vars_in bou (parameter), 252
read_lp_quoted names (parameter), 253
read mps_bou_name (parameter), 280

read mps_format (parameter), 253

read mps_keep_int (parameter), 253

read mps_obj_name (parameter), 280

read mps_obj_sense (parameter), 254
read mps_quoted names (parameter), 254
read mps_ran_name (parameter), 280

read mps_relax (parameter), 254

read mps_rhs_name (parameter), 281

read mps_width (parameter), 255
read_g-mode (parameter), 255

read_gnz (parameter), 255
read_task_ignore_param (parameter), 255
read_var (parameter), 256

relaxation, continuous, 77

scaling, 61
sensitivity analysis, 99

basis type, 101

optimal partition type, 101
sensitivity_all (parameter), 256
sensitivity file name (parameter), 281
sensitivity_ optimizer (parameter), 256
sensitivity res_file name (parameter), 281
sensitivity_type (parameter), 257
shadow price, 100
sim basis_factor_use (parameter), 257
sim degen (parameter), 257
sim_dual_crash (parameter), 258
sim_dual_phaseone method (parameter), 258
sim_dual restrict_selection (parameter), 258
sim_dual_selection (parameter), 259
sim_exploit_dupvec (parameter), 259
sim hotstart (parameter), 259
sim hotstart_lu (parameter), 260
sim_integer (parameter), 260
sim lu_tol rel piv (parameter), 199
sim max_iterations (parameter), 260
sim max_num setbacks (parameter), 261
sim network_detect (parameter), 261
sim network_detect_hotstart (parameter), 261
sim network_detect_method (parameter), 262
sim_non_singular (parameter), 262
sim primal_crash (parameter), 262
sim_primal_phaseone method (parameter), 262
sim primal restrict_selection (parameter), 263

INDEX

sim primal_selection (parameter), 263
sim_refactor_freq (parameter), 264
sim _reformulation (parameter), 264
sim_save_lu (parameter), 264
sim_scaling (parameter), 265
sim_scaling method (parameter), 265
sim_solve_form (parameter), 265
sim_stability priority (parameter), 265
sim_switch optimizer (parameter), 266
simplex optimizer, 66
simplex_abs_tol_piv (parameter), 200
sol_filter keep_basic (parameter), 266
sol_filter keep_ranged (parameter), 266
sol_filter_xc_low (parameter), 281
sol_filter_xc_upr (parameter), 282
sol_filter xx_low (parameter), 282
sol_filter_xx_upr (parameter), 282
sol_quoted_names (parameter), 267
sol_read name_width (parameter), 267
sol_read width (parameter), 267
solution, optimal, 39
solution, primal-dual, 38
solution_callback (parameter), 267
stat_file name (parameter), 283
stat_key (parameter), 283
stat_name (parameter), 283
symbolic constants

MSK_ACC_CON, 285

MSK_ACC_VAR, 285

MSK_ADOP_ADD, 285

MSK_ADOP_DIV, 285

MSK_ADOP_EXP, 285

MSK_ADOP_LOG, 285

MSK_ADOP_MUL, 285

MSK_ADOP_POW, 285

MSK_ADOP_RET, 285

MSK_ADOP_SUB, 285

MSK_ADOPTYPE_CONSTANT, 286

MSK_ADOPTYPE_NONE, 286

MSK_ADOPTYPE_REFERENCE, 286

MSK_ADOPTYPE_VARIABLE, 286

MSK_BI_ALWAYS, 286

MSK_BI_IF FEASIBLE, 286

MSK_BI_NEVER, 286

MSK_BI_NO_ERROR, 286

MSK_BI_OTHER, 286

MSK_BK_FR, 287

MSK_BK_FX, 286

MSK_BK_LO, 287

MSK_BK_RA, 287

379

MSK_BK_UP, 287

MSK_BRANCH_DIR_DOWN, 287
MSK_BRANCH_DIR_FREE, 287

MSK_BRANCH_DIR_UP, 287
MSK_CALLBACK_BEGIN_BI, 294
MSK_CALLBACK_BEGIN_CONCURRENT, 289
MSK_CALLBACK_BEGIN_CONIC, 289
MSK_CALLBACK_BEGIN_DUAL_BI, 288
MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY, 288
MSK_CALLBACK_BEGIN_DUAL_SETUP_BI, 290
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX, 292
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI, 293
MSK_CALLBACK_BEGIN_FULL_CONVEXITY_CHECK, 288
MSK_CALLBACK_BEGIN_INFEAS_ANA, 293
MSK_CALLBACK_BEGIN_INTPNT, 293
MSK_CALLBACK_BEGIN_LICENSE_WAIT, 289
MSK_CALLBACK_BEGIN_MIO, 294
MSK_CALLBACK_BEGIN_NETWORK_DUAL_SIMPLEX, 288
MSK_CALLBACK_BEGIN_NETWORK_PRIMAL_SIMPLEX, 295
MSK_CALLBACK_BEGIN_NETWORK_SIMPLEX, 289
MSK_CALLBACK_BEGIN_NONCONVEX, 291
MSK_CALLBACK_BEGIN_OPTIMIZER, 292
MSK_CALLBACK_BEGIN_PRESOLVE, 2941
MSK_CALLBACK_BEGIN_PRIMAL BI, 288
MSK_CALLBACK_BEGIN_PRIMAL_DUAL_SIMPLEX, 293
MSK_CALLBACK_BEGIN_PRIMAL_DUAL_SIMPLEX_BI, 287
MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY, 293
MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI, 292
MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX, 292
MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX BI, 291
MSK_CALLBACK_BEGIN_QCQO_REFORMULATE, 290
MSK_CALLBACK_BEGIN_READ, 292
MSK_CALLBACK_BEGIN_SIMPLEX, 293
MSK_CALLBACK_BEGIN_SIMPLEX_BI, 293
MSK_CALLBACK_BEGIN_SIMPLEX_NETWORK_DETECT, 291
MSK_CALLBACK_BEGIN_WRITE, 292
MSK_CALLBACK_CONIC, 289
MSK_CALLBACK_DUAL_SIMPLEX, 291
MSK_CALLBACK_END_BI, 292
MSK_CALLBACK_END_CONCURRENT, 288
MSK_CALLBACK_END_CONIC, 290
MSK_CALLBACK_END_DUAL_BI, 291
MSK_CALLBACK_END_DUAL_SENSITIVITY, 290
MSK_CALLBACK_END_DUAL_SETUP_BI, 292
MSK_CALLBACK_END_DUAL_SIMPLEX, 293
MSK_CALLBACK_END_DUAL_SIMPLEX_BI, 290
MSK_CALLBACK_END_FULL_CONVEXITY_CHECK, 294
MSK_CALLBACK_END_INFEAS_ANA, 290
MSK_CALLBACK_END_INTPNT, 287
MSK_CALLBACK_END_LICENSE_WAIT, 290

380

MSK_CALLBACK_END_MIO, 288
MSK_CALLBACK_END_NETWORK_DUAL_SIMPLEX, 288
MSK_CALLBACK_END_NETWORK_PRIMAL_SIMPLEX, 287
MSK_CALLBACK_END_NETWORK_SIMPLEX, 289
MSK_CALLBACK_END_NONCONVEX, 292
MSK_CALLBACK_END_OPTIMIZER, 289
MSK_CALLBACK_END_PRESOLVE, 293
MSK_CALLBACK_END_PRIMAL_BI, 294
MSK_CALLBACK_END_PRIMAL DUAL_SIMPLEX, 294
MSK_CALLBACK_END_PRIMAL_DUAL_SIMPLEX BI, 292
MSK_CALLBACK_END_PRIMAL_SENSITIVITY, 293
MSK_CALLBACK_END_PRIMAL_SETUP_BI, 292
MSK_CALLBACK_END_PRIMAL_SIMPLEX, 292
MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI, 290
MSK_CALLBACK_END_QCQO_REFORMULATE, 293
MSK_CALLBACK_END_READ, 291
MSK_CALLBACK_END_SIMPLEX, 294
MSK_CALLBACK_END_SIMPLEX_BI, 293
MSK_CALLBACK_END_SIMPLEX_NETWORK_DETECT, 288
MSK_CALLBACK_END_WRITE, 293
MSK_CALLBACK_IM_BI, 292
MSK_CALLBACK_IM_CONIC, 294
MSK_CALLBACK_IM_DUAL_BI, 288
MSK_CALLBACK_IM_DUAL_SENSIVITY, 293
MSK_CALLBACK_IM_DUAL_SIMPLEX, 289
MSK_CALLBACK_IM_FULL_CONVEXITY_CHECK, 291
MSK_CALLBACK_IM_INTPNT, 288
MSK_CALLBACK_IM_LICENSE_WAIT, 289
MSK_CALLBACK_IM_LU, 290
MSK_CALLBACK_IM_MIO, 294
MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX, 294
MSK_CALLBACK_IM_MIO_INTPNT, 294
MSK_CALLBACK_IM_MIO_PRESOLVE, 294
MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX, 288
MSK_CALLBACK_IM_NETWORK_DUAL_SIMPLEX, 292
MSK_CALLBACK_IM_NETWORK_PRIMAL_SIMPLEX, 289
MSK_CALLBACK_IM_NONCONVEX, 292
MSK_CALLBACK_IM_ORDER, 294
MSK_CALLBACK_IM_PRESOLVE, 290
MSK_CALLBACK_IM_PRIMAL_BI, 294
MSK_CALLBACK_IM_PRIMAL_DUAL_SIMPLEX, 291
MSK_CALLBACK_IM_PRIMAL_SENSIVITY, 293
MSK_CALLBACK_IM_PRIMAL_SIMPLEX, 288
MSK_CALLBACK_IM_QO_REFORMULATE, 289
MSK_CALLBACK_IM_SIMPLEX, 289
MSK_CALLBACK_IM_SIMPLEX_BI, 291
MSK_CALLBACK_INTPNT, 290
MSK_CALLBACK_NEW_INT_MIO, 288
MSK_CALLBACK_NONCOVEX, 290
MSK_CALLBACK_PRIMAL_SIMPLEX, 291

INDEX

MSK_CALLBACK_QCONE, 293
MSK_CALLBACK_READ_ADD_ANZ, 291
MSK_CALLBACK_READ_ADD_CONES, 291
MSK_CALLBACK_READ_ADD_CONS, 287
MSK_CALLBACK_READ_ADD_QNZ, 289
MSK_CALLBACK_READ_ADD_VARS, 290
MSK_CALLBACK_READ_OPF, 289
MSK_CALLBACK_READ_OPF_SECTION, 290
MSK_CALLBACK_UPDATE_DUAL_BI, 289
MSK_CALLBACK_UPDATE_DUAL_SIMPLEX, 294
MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI, 289
MSK_CALLBACK_UPDATE_NETWORK_DUAL_SIMPLEX, 290
MSK_CALLBACK_UPDATE_NETWORK_PRIMAL_SIMPLEX, 294
MSK_CALLBACK_UPDATE_NONCONVEX, 291
MSK_CALLBACK_UPDATE_PRESOLVE, 289
MSK_CALLBACK_UPDATE_PRIMAL_BI, 290
MSK_CALLBACK_UPDATE_PRIMAL_DUAL_SIMPLEX, 293
MSK_CALLBACK_UPDATE_PRIMAL_DUAL_SIMPLEX_BI, 290
MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX, 291
MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX BI, 287
MSK_CALLBACK_WRITE_OPF, 294
MSK_CHECK_CONVEXITY_FULL, 295
MSK_CHECK_CONVEXITY_NONE, 295
MSK_CHECK_CONVEXITY_SIMPLE, 295
MSK_COMPRESS_FREE, 295

MSK_COMPRESS_GZIP, 295

MSK_COMPRESS_NONE, 295

MSK_CPU_AMD_ATHLON, 296
MSK_CPU_AMD_OPTERON, 296

MSK_CPU_GENERIC, 296

MSK_CPU_HP_PARISC20, 296
MSK_CPU_INTEL_CORE2, 296
MSK_CPU_INTEL_ITANIUM2, 296
MSK_CPU_INTEL_P3, 296

MSK_CPU_INTEL_P4, 296

MSK_CPU_INTEL_PM, 296

MSK_CPU_POWERPC_G5, 296

MSK_CPU_UNKNOWN, 296

MSK_CT_QUAD, 295

MSK_CT_RQUAD, 295
MSK_DATA_FORMAT_EXTENSION, 296
MSK_DATA_FORMAT_FREE_MPS, 296
MSK_DATA_FORMAT_LP, 296
MSK_DATA_FORMAT_MBT, 296
MSK_DATA_FORMAT _MPS, 296
MSK_DATA_FORMAT_OP, 296
MSK_DATA_FORMAT_XML, 296
MSK_DINF_BI_CLEAN_DUAL_TIME, 300
MSK_DINF_BI_CLEAN_PRIMAL_DUAL_TIME, 300
MSK_DINF_BI_CLEAN_PRIMAL_TIME, 301

INDEX

MSK_DINF_BI_CLEAN_TIME, 299
MSK_DINF_BI_DUAL_TIME, 297
MSK_DINF_BI_PRIMAL_TIME, 300
MSK_DINF_BI_TIME, 300
MSK_DINF_CONCURRENT_TIME, 299
MSK_DINF_INTPNT_DUAL_FEAS, 299
MSK_DINF_INTPNT_DUAL_OBJ, 298
MSK_DINF_INTPNT_FACTOR_NUM_FLOPS, 297
MSK_DINF_INTPNT_KAP_DIV_TAU, 299
MSK_DINF_INTPNT_ORDER_TIME, 300
MSK_DINF_INTPNT_PRIMAL_FEAS, 297
MSK_DINF_INTPNT_PRIMAL_0BJ, 300
MSK_DINF_INTPNT_TIME, 298

MSK_DINF_MIO_CONSTRUCT_SOLUTION_0BJ, 298

MSK_DINF_MIO_HEURISTIC_TIME, 298
MSK_DINF_MIO_0BJ_ABS_GAP, 300
MSK_DINF_MIO_0BJ_BOUND, 300
MSK_DINF_MIO_O0BJ_INT, 299
MSK_DINF_MIO_0BJ_REL_GAP, 297
MSK_DINF_MIO_OPTIMIZER_TIME, 297
MSK_DINF_MIO_ROOT_OPTIMIZER_TIME, 301
MSK_DINF_MIO_ROOT_PRESOLVE_TIME, 298
MSK_DINF_MIO_TIME, 297
MSK_DINF_MIO_USER_0BJ_CUT, 300
MSK_DINF_OPTIMIZER_TIME, 298
MSK_DINF_PRESOLVE_ELI_TIME, 297
MSK_DINF_PRESOLVE_LINDEP_TIME, 297
MSK_DINF_PRESOLVE_TIME, 297
MSK_DINF_QCQO_REFORMULATE_TIME, 299
MSK_DINF_RD_TIME, 297
MSK_DINF_SIM_DUAL_TIME, 297
MSK_DINF_SIM_FEAS, 298
MSK_DINF_SIM_NETWORK_DUAL_TIME, 299
MSK_DINF_SIM_NETWORK_PRIMAL_TIME, 299
MSK_DINF_SIM_NETWORK_TIME, 297
MSK_DINF_SIM_0BJ, 297
MSK_DINF_SIM_PRIMAL DUAL_TIME, 301
MSK_DINF_SIM_PRIMAL_TIME, 298
MSK_DINF_SIM_TIME, 298
MSK_DINF_SOL_BAS_DUAL_0BJ, 300
MSK_DINF_SOL_BAS_MAX_DBI, 300
MSK_DINF_SOL_BAS_MAX_DEQI, 301
MSK_DINF_SOL_BAS_MAX_PBI, 298
MSK_DINF_SOL_BAS_MAX_PEQI, 300
MSK_DINF_SOL_BAS_MAX_PINTI, 299
MSK_DINF_SOL_BAS_PRIMAL_0BJ, 298
MSK_DINF_SOL_INT_MAX_PBI, 299
MSK_DINF_SOL_INT_MAX_PEQI, 299
MSK_DINF_SOL_INT_MAX_PINTI, 299
MSK_DINF_SOL_INT_PRIMAL_0BJ, 300

MSK_DINF_SOL_ITR_DUAL_0BJ, 299
MSK_DINF_SOL_ITR_MAX_DBI, 301
MSK_DINF_SOL_ITR_MAX_DCNI, 298
MSK_DINF_SOL_ITR_MAX_DEQI, 298
MSK_DINF_SOL_ITR_MAX_PBI, 298
MSK_DINF_SOL_ITR_MAX PCNI, 297
MSK_DINF_SOL_ITR_MAX_PEQI, 301
MSK_DINF_SOL_ITR_MAX_PINTI, 297
MSK_DINF_SOL_ITR_PRIMAL_0BJ, 299
MSK_DPAR_ANA_SOL_INFEAS_TOL, 303
MSK_DPAR_BASIS_REL_TOL_S, 305
MSK_DPAR_BASIS_TOL.S, 301
MSK_DPAR_BASIS_TOL_X, 305
MSK_DPAR_CALLBACK_FREQ, 306
MSK_DPAR_CHECK_CONVEXITY_REL_TOL, 302
MSK_DPAR_DATA_TOL_AIJ, 303
MSK_DPAR_DATA_TOL_AIJ_HUGE, 306
MSK_DPAR_DATA_TOL_AIJ_LARGE, 302
MSK_DPAR_DATA_TOL_BOUND_INF, 306
MSK_DPAR_DATA_TOL_BOUND_WRN, 306
MSK_DPAR_DATA_TOL_C_HUGE, 304
MSK_DPAR_DATA_TOL_CJ_LARGE, 305
MSK_DPAR_DATA_TOL_QIJ, 307
MSK_DPAR_DATA_TOL_X, 303
MSK_DPAR_FEASREPAIR_TOL, 303
MSK_DPAR_INTPNT_CO_TOL_DFEAS, 302
MSK_DPAR_INTPNT_CO_TOL_INFEAS, 305
MSK_DPAR_INTPNT_CO_TOL_MU_RED, 304
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 306
MSK_DPAR_INTPNT_CO_TOL_PFEAS, 307
MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 304
MSK_DPAR_INTPNT_NL_MERIT_BAL, 305
MSK_DPAR_INTPNT_NL_TOL_DFEAS, 306
MSK_DPAR_INTPNT_NL_TOL_MU_RED, 303
MSK_DPAR_INTPNT_NL_TOL_NEAR_REL, 303
MSK_DPAR_INTPNT_NL_TOL_PFEAS, 306
MSK_DPAR_INTPNT_NL_TOL_REL_GAP, 307
MSK_DPAR_INTPNT_NL_TOL_REL_STEP, 305
MSK_DPAR_INTPNT_TOL_DFEAS, 306
MSK_DPAR_INTPNT_TOL_DSAFE, 303
MSK_DPAR_INTPNT_TOL_INFEAS, 303
MSK_DPAR_INTPNT_TOL_MU_RED, 304
MSK_DPAR_INTPNT_TOL_PATH, 305
MSK_DPAR_INTPNT_TOL_PFEAS, 305
MSK_DPAR_INTPNT_TOL_PSAFE, 306
MSK_DPAR_INTPNT_TOL_REL_GAP, 306
MSK_DPAR_INTPNT_TOL_REL_STEP, 304
MSK_DPAR_INTPNT_TOL_STEP_SIZE, 305
MSK_DPAR_LOWER_OBJ_CUT, 304

MSK_DPAR_LOWER_0BJ_CUT_FINITE_TRH, 301

381

382

MSK_DPAR_MIO_DISABLE_TERM_TIME, 304
MSK_DPAR_MIO_HEURISTIC_TIME, 302
MSK_DPAR_MIO_MAX_TIME, 301
MSK_DPAR_MIO_MAX_TIME_APRX_OPT, 305
MSK_DPAR_MIO_NEAR_TOL_ABS_GAP, 306
MSK_DPAR_MIO_NEAR_TOL_REL_GAP, 303
MSK_DPAR_MIO_REL_ADD_CUT_LIMITED, 303
MSK_DPAR_MIO_REL_GAP_CONST, 305
MSK_DPAR_MIO_TOL_ABS_GAP, 302
MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 302
MSK_DPAR_MIO_TOL_FEAS, 303
MSK_DPAR_MIO_TOL_REL_GAP, 306
MSK_DPAR_MIO_TOL_REL_RELAX_INT, 306
MSK_DPAR_MIO_TOL_X, 304
MSK_DPAR_NONCONVEX_TOL_FEAS, 302
MSK_DPAR_NONCONVEX_TOL_OPT, 302
MSK_DPAR_OPTIMIZER_MAX_TIME, 303
MSK_DPAR_PRESOLVE_TOL_AIJ, 305
MSK_DPAR_PRESOLVE_TOL_LIN_DEP, 304
MSK_DPAR_PRESOLVE_TOL_S, 301
MSK_DPAR_PRESOLVE_TOL_X, 302
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL, 307
MSK_DPAR_SIM_LU_TOL_REL_PIV, 304
MSK_DPAR_SIMPLEX_ABS_TOL_PIV, 302
MSK_DPAR_UPPER_OBJ_CUT, 301

MSK_DPAR _UPPER_0BJ_CUT_FINITE_TRH, 302
MSK_FEASREPAIR_OPTIMIZE_COMBINED, 307
MSK_FEASREPAIR_OPTIMIZE_NONE, 307
MSK_FEASREPAIR_OPTIMIZE_PENALTY, 307
MSK_FEATURE_PTOM, 307
MSK_FEATURE_PTON, 307
MSK_FEATURE_PTOX, 307
MSK_FEATURE_PTS, 307
MSK_IINF_ANA_PRO_NUM_CON, 308
MSK_IINF_ANA_PRO_NUM_CON_EQ, 311
MSK_IINF_ANA_PRO_NUM_CON_FR, 309
MSK_IINF_ANA_PRO_NUM_CON_LO, 311
MSK_IINF_ANA_PRO_NUM_CON_RA, 313
MSK_IINF_ANA_PRO_NUM_CON_UP, 309
MSK_IINF_ANA_PRO_NUM_VAR, 310
MSK_IINF_ANA_PRO_NUM_VAR_BIN, 312
MSK_IINF_ANA_PRO_NUM_VAR_CONT, 308
MSK_IINF_ANA_PRO_NUM_VAR_EQ, 312
MSK_IINF_ANA_PRO_NUM_VAR_FR, 312
MSK_IINF_ANA_PRO_NUM_VAR_INT, 308
MSK_IINF_ANA_PRO_NUM_VAR_LO, 310
MSK_IINF_ANA_PRO_NUM_VAR_RA, 311
MSK_IINF_ANA_PRO_NUM_VAR_UP, 312
MSK_IINF_CACHE_SIZE_L1, 310
MSK_IINF_CACHE_SIZE_ L2, 310

INDEX

MSK_IINF_CONCURRENT_FASTEST_OPTIMIZER, 312
MSK_IINF_CPU_TYPE, 311
MSK_IINF_INTPNT_FACTOR_NUM_OFFCOL, 308
MSK_IINF_INTPNT_ITER, 309
MSK_IINF_INTPNT_NUM_THREADS, 312
MSK_IINF_INTPNT_SOLVE_DUAL, 309
MSK_IINF_MIO_CONSTRUCT_SOLUTION, 310
MSK_IINF_MIO_INITIAL_SOLUTION, 312
MSK_IINF_MIO_NUM_ACTIVE_NODES, 312
MSK_IINF_MIO_NUM_BRANCH, 311
MSK_IINF_MIO_NUM_CUTS, 310
MSK_IINF_MIO_NUM_INT_SOLUTIONS, 311
MSK_IINF_MIO_NUM_RELAX, 311
MSK_IINF_MIO_NUMCON, 308
MSK_IINF_MIO_NUMINT, 309
MSK_IINF_MIO_NUMVAR, 310
MSK_IINF_MIO_TOTAL_NUM_BASIS_CUTS, 309
MSK_IINF_MIO_TOTAL_NUM_BRANCH, 311
MSK_IINF_MIO_TOTAL_NUM_CARDGUB_CUTS, 310
MSK_IINF_MIO_TOTAL_NUM_CLIQUE_CUTS, 309
MSK_IINF_MIO_TOTAL_NUM_COEF_REDC_CUTS, 313
MSK_IINF_MIO_TOTAL_NUM_CONTRA_CUTS, 310
MSK_IINF_MIO_TOTAL_NUM_CUTS, 313
MSK_IINF_MIO_TOTAL_NUM_DISAGG_CUTS, 313
MSK_IINF_MIO_TOTAL_NUM_FLOW_COVER_CUTS, 311
MSK_IINF_MIO_TOTAL_NUM_GCD_CUTS, 311
MSK_IINF_MIO_TOTAL_NUM_GOMORY_CUTS, 312
MSK_IINF_MIO_TOTAL_NUM_GUB_COVER_CUTS, 311
MSK_IINF_MIO_TOTAL_NUM_KNAPSUR_COVER_CUTS, 309
MSK_IINF_MIO_TOTAL_NUM_LATTICE_CUTS, 308
MSK_IINF_MIO_TOTAL_NUM_LIFT_CUTS, 310
MSK_IINF_MIO_TOTAL_NUM_OBJ_CUTS, 308
MSK_IINF_MIO_TOTAL_NUM_PLAN_LOC_CUTS, 310
MSK_IINF_MIO_TOTAL_NUM_RELAX, 312
MSK_IINF_MIO_USER_OBJ_CUT, 312
MSK_IINF_OPT_NUMCON, 313
MSK_IINF_OPT_NUMVAR, 308
MSK_IINF_OPTIMIZE_RESPONSE, 309
MSK_IINF_RD_NUMCON, 312
MSK_IINF_RD_NUMCONE, 312
MSK_IINF_RD_NUMINTVAR, 308
MSK_IINF_RD_NUMQ, 308
MSK_IINF_RD_NUMVAR, 310
MSK_IINF_RD_PROTYPE, 309
MSK_IINF_SIM_DUAL_DEG_ITER, 308
MSK_IINF_SIM_DUAL_HOTSTART, 312
MSK_IINF_SIM_DUAL _HOTSTART_LU, 312
MSK_IINF_SIM_DUAL_INF_ITER, 310
MSK_IINF_SIM_DUAL_ITER, 308
MSK_IINF_SIM_NETWORK_DUAL_DEG_ITER, 310

INDEX

MSK_IINF_SIM_NETWORK_DUAL_HOTSTART, 309
MSK_IINF_SIM_NETWORK_DUAL_HOTSTART_LU, 311
MSK_IINF_SIM_NETWORK_DUAL_INF_ITER, 308
MSK_IINF_SIM_NETWORK_DUAL_ITER, 312
MSK_IINF_SIM_NETWORK_PRIMAL DEG_ITER, 308
MSK_IINF_SIM_NETWORK_PRIMAL HOTSTART, 312
MSK_IINF_SIM_NETWORK_PRIMAL_HOTSTART_LU, 312
MSK_IINF_SIM_NETWORK_PRIMAL_INF_ITER, 311
MSK_IINF_SIM_NETWORK_PRIMAL_ITER, 311
MSK_IINF_SIM_NUMCON, 309
MSK_IINF_SIM_NUMVAR, 308
MSK_IINF_SIM_PRIMAL_DEG_ITER, 313
MSK_IINF_SIM_PRIMAL DUAL_DEG_ITER, 310
MSK_IINF_SIM_PRIMAL_DUAL_HOTSTART, 309
MSK_IINF_SIM_PRIMAL_DUAL_HOTSTART_LU, 309
MSK_IINF_SIM_PRIMAL DUAL_INF_ITER, 313
MSK_IINF_SIM_PRIMAL_DUAL_ITER, 309
MSK_IINF_SIM_PRIMAL_HOTSTART, 311
MSK_IINF_SIM PRIMAL_HOTSTART_LU, 311
MSK_IINF_SIM_PRIMAL_INF_ITER, 312
MSK_IINF_SIM_PRIMAL_ITER, 312
MSK_IINF_SIM_SOLVE_DUAL, 308
MSK_IINF_SOL_BAS_PROSTA, 311
MSK_IINF_SOL_BAS_SOLSTA, 308
MSK_IINF_SOL_INT_PROSTA, 310
MSK_IINF_SOL_INT_SOLSTA, 310
MSK_IINF_SOL_ITR_PROSTA, 309
MSK_IINF_SOL_ITR_SOLSTA, 309
MSK_IINF_STO_NUM_A_CACHE_FLUSHES, 310
MSK_IINF_STO_NUM_A_REALLOC, 311
MSK_IINF_STO_NUM_A_TRANSPOSES, 308
MSK_INF_DOU_TYPE, 313

MSK_INF_INT_TYPE, 313

MSK_INF_LINT_TYPE, 313

MSK_IOMODE_READ, 313
MSK_IOMODE_READWRITE, 313
MSK_IOMODE_WRITE, 313
MSK_IPAR_ALLOC_ADD_QNZ, 326
MSK_IPAR_ANA_SOL_BASIS, 320
MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 319
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 326
MSK_IPAR_AUTO_UPDATE_SOL_INFO, 318
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 318
MSK_IPAR_BI_CLEAN_OPTIMIZER, 324
MSK_IPAR_BI_IGNORE_MAX_ITER, 323
MSK_IPAR_BI_IGNORE_NUM_ERROR, 318
MSK_IPAR_BI_MAX_ITERATIONS, 321
MSK_IPAR_CACHE_LICENSE, 322
MSK_IPAR_CACHE_SIZE_L1, 328
MSK_IPAR_CACHE_SIZE_ L2, 328

383

MSK_IPAR_CHECK_CONVEXITY, 320
MSK_IPAR_CHECK_TASK_DATA, 316
MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS, 320
MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX, 316
MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX, 325
MSK_IPAR_CONCURRENT_PRIORITY_INTPNT, 325
MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX,
322
MSK_IPAR_CPU_TYPE, 319
MSK_IPAR_DATA_CHECK, 325
MSK_IPAR FEASREPAIR OPTIMIZE, 317
MSK_IPAR_INFEAS_GENERIC_NAMES, 327
MSK_IPAR_INFEAS_PREFER_PRIMAL, 324
MSK_IPAR_INFEAS_REPORT_AUTO, 314
MSK_IPAR_INFEAS REPORT_LEVEL, 328
MSK_IPAR_INTPNT_BASIS, 324
MSK_IPAR_INTPNT_DIFF_STEP, 323
MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL, 321
MSK_IPAR_INTPNT_FACTOR_METHOD, 329
MSK_IPAR_INTPNT_MAX_ITERATIONS, 319
MSK_IPAR_INTPNT_MAX_NUM_COR, 319
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS, 319
MSK_IPAR_INTPNT_NUM_THREADS, 326
MSK_IPAR_INTPNT_OFF_COL_TRH, 317
MSK_IPAR_INTPNT_ORDER_METHOD, 315
MSK_IPAR_INTPNT _REGULARIZATION_USE, 324
MSK_IPAR_INTPNT_SCALING, 330
MSK_IPAR_INTPNT_SOLVE_FORM, 323
MSK_IPAR_INTPNT_STARTING_POINT, 322
MSK_IPAR_LIC_TRH_EXPIRY_WRN, 317
MSK_IPAR_LICENSE_ALLOW_OVERUSE, 324
MSK_IPAR_LICENSE_CACHE_TIME, 321
MSK_IPAR_LICENSE_CHECK_TIME, 325
MSK_IPAR_LICENSE_DEBUG, 320
MSK_IPAR_LICENSE_PAUSE_TIME, 321
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 327
MSK_IPAR_LICENSE WAIT, 320
MSK_IPAR_LOG, 322
MSK_IPAR_LOG_BI, 319
MSK_IPAR_LOG_BI_FREQ, 316
MSK_IPAR_LOG_CHECK_CONVEXITY, 328
MSK_IPAR_LOG_CONCURRENT, 319
MSK_IPAR_LOG_CUT_SECOND_OPT, 324
MSK_IPAR_LOG_FACTOR, 318
MSK_IPAR_LOG_FEASREPAIR, 323
MSK_IPAR_LOG_FILE, 325
MSK_IPAR_LOG_HEAD, 329
MSK_IPAR_LOG_INFEAS_ANA, 315
MSK_IPAR_LOG_INTPNT, 320
MSK_IPAR_LOG_MIO, 321

384

MSK_IPAR_LOG_MIO_FREQ, 316
MSK_IPAR_LOG_NONCONVEX, 317
MSK_IPAR_LOG_OPTIMIZER, 326
MSK_IPAR_LOG_ORDER, 318
MSK_IPAR_LOG_PARAM, 321
MSK_IPAR_LOG_PRESOLVE, 317
MSK_IPAR_LOG_RESPONSE, 328
MSK_IPAR_LOG_SENSITIVITY, 315
MSK_IPAR_LOG_SENSITIVITY_OPT, 314
MSK_IPAR_LOG_SIM, 317
MSK_IPAR_LOG_SIM_FREQ, 317
MSK_IPAR_LOG_SIM_MINOR, 319
MSK_IPAR_LOG_SIM_NETWORK_FREQ, 323
MSK_IPAR_LOG_STORAGE, 324

MSK_IPAR_LP WRITE_IGNORE_INCOMPATIBLE_ITEMS,

320
MSK_IPAR_MAX_NUM_WARNINGS, 327
MSK_IPAR_MIO_BRANCH DIR, 321
MSK_IPAR_MIO_BRANCH_PRIORITIES_USE, 314
MSK_IPAR_MIO_CONSTRUCT_SOL, 326
MSK_IPAR_MIO_CONT_SOL, 322
MSK_IPAR_MIO_CUT_LEVEL_ROOT, 318
MSK_IPAR_MIO_CUT_LEVEL_TREE, 314
MSK_IPAR_MIO_FEASPUMP_LEVEL, 327
MSK_IPAR_MIO_HEURISTIC_LEVEL, 329
MSK_IPAR_MIO_HOTSTART, 326
MSK_IPAR_MIO_KEEP_BASIS, 329
MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER, 316
MSK_IPAR_MIO_MAX_NUM_BRANCHES, 326
MSK_IPAR_MIO_MAX_NUM_RELAXS, 329
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 324
MSK_IPAR_MIO_MODE, 317
MSK_IPAR_MIO_NODE_OPTIMIZER, 314
MSK_IPAR_MIO_NODE_SELECTION, 318
MSK_IPAR_MIO_OPTIMIZER_MODE, 320
MSK_IPAR_MIO_PRESOLVE_AGGREGATE, 321
MSK_IPAR_MIO_PRESOLVE_PROBING, 324
MSK_IPAR_MIO_PRESOLVE_USE, 324
MSK_IPAR_MIO_ROOT_OPTIMIZER, 316
MSK_IPAR_MIO_STRONG_BRANCH, 327
MSK_IPAR_NONCONVEX_MAX_ITERATIONS, 316
MSK_IPAR_OBJECTIVE_SENSE, 322
MSK_IPAR_OPF_MAX_TERMS PER_LINE, 323
MSK_IPAR_OPF_WRITE_HEADER, 322
MSK_IPAR_OPF_WRITE_HINTS, 326
MSK_IPAR_OPF_WRITE_PARAMETERS, 315
MSK_IPAR_OPF_WRITE_PROBLEM, 328
MSK_IPAR_OPF_WRITE_SOL_BAS, 316
MSK_IPAR_OPF_WRITE_SOL_ITG, 314
MSK_IPAR_OPF_WRITE_SOL_ITR, 315

INDEX

MSK_IPAR_OPF_WRITE_SOLUTIONS, 321
MSK_IPAR_OPTIMIZER, 327
MSK_IPAR_PARAM_READ_CASE_NAME, 326
MSK_IPAR_PARAM_READ_IGN_ERROR, 322
MSK_IPAR_PRESOLVE_ELIM_FILL, 316

MSK_IPAR _PRESOLVE_ELIMINATOR_MAX_NUM_TRIES, 320

MSK_IPAR_PRESOLVE_ELIMINATOR_USE, 326
MSK_IPAR_PRESOLVE_LEVEL, 314
MSK_IPAR_PRESOLVE_LINDEP_USE, 322
MSK_IPAR_PRESOLVE_LINDEP_WORK_LIM, 319
MSK_IPAR_PRESOLVE_USE, 314
MSK_IPAR_QO_SEPARABLE_REFORMULATION, 320
MSK_IPAR_READ_ADD_ANZ, 315
MSK_IPAR_READ_ADD_CON, 319
MSK_IPAR_READ_ADD_CONE, 314

MSK_IPAR READ_ADD_QNZ, 317
MSK_IPAR_READ_ADD_VAR, 314
MSK_IPAR_READ_ANZ, 317
MSK_IPAR_READ_CON, 315
MSK_IPAR_READ_CONE, 327
MSK_IPAR_READ_DATA_COMPRESSED, 328
MSK_IPAR_READ_DATA_FORMAT, 329
MSK_IPAR _READ KEEP_FREE_CON, 325
MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BQOU, 317
MSK_IPAR_READ_LP_QUOTED_NAMES, 324
MSK_IPAR _READ _MPS_FORMAT, 326
MSK_IPAR_READ_MPS_KEEP_INT, 324
MSK_IPAR_READ_MPS_OBJ_SENSE, 322
MSK_IPAR_READ_MPS_QUOTED_NAMES, 326
MSK_IPAR_READ_MPS_RELAX, 315
MSK_IPAR_READ_MPS_WIDTH, 318
MSK_IPAR_READ_Q_MODE, 328
MSK_IPAR_READ_QNZ, 315
MSK_IPAR_READ_TASK_IGNORE_PARAM, 320
MSK_IPAR_READ_VAR, 329
MSK_IPAR_SENSITIVITY_ALL, 323
MSK_IPAR_SENSITIVITY OPTIMIZER, 325
MSK_IPAR_SENSITIVITY_TYPE, 315
MSK_IPAR_SIM_BASIS_FACTOR_USE, 323
MSK_IPAR_SIM_DEGEN, 325
MSK_IPAR_SIM_DUAL_CRASH, 329
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD, 327
MSK_IPAR_SIM DUAL_RESTRICT_SELECTION, 315
MSK_IPAR_SIM_DUAL_SELECTION, 320
MSK_IPAR_SIM_EXPLOIT_DUPVEC, 321
MSK_IPAR_SIM_HOTSTART, 321
MSK_IPAR_SIM_HOTSTART_LU, 321
MSK_IPAR_SIM_INTEGER, 327
MSK_IPAR_SIM_MAX_ITERATIONS, 319
MSK_IPAR_SIM _MAX_NUM_SETBACKS, 325

INDEX 385

MSK_IPAR_SIM_NETWORK_DETECT, 328
MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART, 321
MSK_IPAR_SIM_NETWORK_DETECT_METHOD, 329
MSK_IPAR_SIM_NON_SINGULAR, 325
MSK_IPAR_SIM_PRIMAL_CRASH, 326

MSK_IPAR_SIM PRIMAL_PHASEONE_METHOD, 314
MSK_IPAR_SIM_PRIMAL RESTRICT_SELECTION, 327
MSK_IPAR_SIM_PRIMAL_SELECTION, 315
MSK_IPAR_SIM REFACTOR_FREQ, 320

MSK_LANG_DAN, 330

MSK_LANG_ENG, 330

MSK_LICENSE_BUFFER_LENGTH, 365
MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER, 331
MSK_LIINF_BI_CLEAN_DUAL_ITER, 330
MSK_LIINF_BI_CLEAN_PRIMAL_DEG_ITER, 330
MSK_LIINF_BI_CLEAN_PRIMAL_DUAL DEG_ITER, 330
MSK_LIINF_BI_CLEAN_PRIMAL_DUAL_ITER, 330
MSK_LIINF_BI_CLEAN_PRIMAL_DUAL_SUB_ITER, 331

MSK_IPAR_SIM_REFORMULATION, 329
MSK_IPAR_SIM_SAVE_LU, 329
MSK_IPAR_SIM_SCALING, 323
MSK_IPAR_SIM_SCALING_METHOD, 317
MSK_IPAR_SIM_SOLVE_FORM, 320
MSK_IPAR_SIM_STABILITY_PRIORITY, 314
MSK_IPAR_SIM_SWITCH_OPTIMIZER, 328
MSK_IPAR_SOL_FILTER_KEEP_BASIC, 329
MSK_IPAR_SOL_FILTER_KEEP_RANGED, 323
MSK_IPAR_SOL_QUOTED_NAMES, 321
MSK_IPAR_SOL_READ_NAME WIDTH, 319
MSK_IPAR_SOL_READ_WIDTH, 319
MSK_IPAR_SOLUTION_CALLBACK, 317
MSK_IPAR_TIMING_LEVEL, 318
MSK_IPAR_WARNING_LEVEL, 316
MSK_IPAR_WRITE_BAS_CONSTRAINTS, 327
MSK_IPAR WRITE_BAS_HEAD, 314
MSK_IPAR_WRITE_BAS_VARIABLES, 324
MSK_IPAR_WRITE_DATA_COMPRESSED, 314
MSK_IPAR_WRITE_DATA_FORMAT, 321
MSK_IPAR_WRITE_DATA_PARAM, 325
MSK_IPAR_WRITE_FREE_CON, 316
MSK_IPAR_WRITE_GENERIC_NAMES, 316
MSK_IPAR WRITE_GENERIC_NAMES_IO, 320
MSK_IPAR_WRITE_INT_CONSTRAINTS, 315
MSK_IPAR_WRITE_INT_HEAD, 322
MSK_IPAR WRITE_INT_VARIABLES, 315
MSK_IPAR_WRITE_LP_LINE WIDTH, 319
MSK_IPAR_WRITE_LP_QUOTED_NAMES, 318
MSK_IPAR_WRITE_LP_STRICT_FORMAT, 315
MSK_IPAR WRITE_LP_TERMS_PER_LINE, 323
MSK_IPAR_WRITE_MPS_INT, 325
MSK_IPAR_WRITE_MPS_0BJ_SENSE, 326
MSK_IPAR WRITE_MPS_QUOTED_NAMES, 318
MSK_IPAR_WRITE_MPS_STRICT, 314
MSK_IPAR_WRITE_PRECISION, 323
MSK_IPAR_WRITE_SOL_CONSTRAINTS, 317
MSK_IPAR_WRITE_SOL_HEAD, 327
MSK_IPAR_WRITE_SOL_VARIABLES, 325
MSK_IPAR_WRITE_TASK_INC_SOL, 321
MSK_IPAR WRITE_XML_MODE, 324

MSK_LIINF_BI_CLEAN_PRIMAL_ITER, 330
MSK_LIINF_BI_DUAL_ITER, 331
MSK_LIINF_BI_PRIMAL_ITER, 330
MSK_LIINF_INTPNT_FACTOR_NUM_NZ, 330
MSK_LIINF_MIO_INTPNT_ITER, 330
MSK_LIINF_MIO_SIMPLEX_ITER, 331
MSK_LIINF_RD_NUMANZ, 330
MSK_LIINF_RD_NUMQNZ, 330
MSK_MARK_LO, 331

MSK_MARK_UP, 331

MSK_MAX_STR_LEN, 365
MSK_MIO_CONT_SOL_ITG, 331
MSK_MIO_CONT_SOL_ITG_REL, 331
MSK_MIO_CONT_SOL_NONE, 331
MSK_MIO_CONT_SOL_ROOT, 331
MSK_MIO_MODE_IGNORED, 332
MSK_MIO_MODE_LAZY, 332
MSK_MIO_MODE_SATISFIED, 332
MSK_MIO_NODE_SELECTION_BEST, 332
MSK_MIO_NODE_SELECTION_FIRST, 332
MSK_MIO_NODE_SELECTION_FREE, 332
MSK_MIO_NODE_SELECTION_HYBRID, 332
MSK_MIO_NODE_SELECTION_PSEUDO, 332
MSK_MIO_NODE_SELECTION_WORST, 332
MSK_MPS_FORMAT_FREE, 333
MSK_MPS_FORMAT_RELAXED, 333
MSK_MPS_FORMAT_STRICT, 333
MSK_MSG_MPS_SELECTED, 333
MSK_MSG_READING_FILE, 333
MSK_MSG_WRITING_FILE, 333
MSK_NETWORK_DETECT_ADVANCED, 333
MSK_NETWORK_DETECT_FREE, 333
MSK_NETWORK_DETECT_SIMPLE, 333
MSK_OBJECTIVE_SENSE_MAXIMIZE, 334
MSK_OBJECTIVE_SENSE_MINIMIZE, 333
MSK_OBJECTIVE_SENSE_UNDEFINED, 334
MSK_OFF, 334

MSK_ON, 334
MSK_OPTIMIZER_CONCURRENT, 334
MSK_OPTIMIZER_CONIC, 334
MSK_OPTIMIZER DUAL_SIMPLEX, 334

386

MSK_OPTIMIZER_FREE, 334
MSK_OPTIMIZER_FREE_SIMPLEX, 334
MSK_OPTIMIZER_INTPNT, 334
MSK_OPTIMIZER_MIXED_INT, 334
MSK_OPTIMIZER_NONCONVEX, 334
MSK_OPTIMIZER_PRIMAL_DUAL_SIMPLEX, 334
MSK_OPTIMIZER_PRIMAL_SIMPLEX, 334
MSK_OPTIMIZER_QCONE, 334
MSK_ORDER_METHOD_APPMINLOC1, 335
MSK_ORDER_METHOD_APPMINLOC2, 335
MSK_ORDER_METHOD_FREE, 335
MSK_ORDER_METHOD_GRAPHPAR1, 335
MSK_ORDER_METHOD_GRAPHPAR2, 335
MSK_ORDER_METHOD_NONE, 335
MSK_PAR_DOU_TYPE, 335
MSK_PAR_INT_TYPE, 335
MSK_PAR_INVALID_TYPE, 335
MSK_PAR_STR_TYPE, 335

MSK_PI_CON, 336

MSK_PI_CONE, 336

MSK_PI_VAR, 336
MSK_PRESOLVE_MODE_FREE, 335
MSK_PRESOLVE_MODE_OFF, 335
MSK_PRESOLVE_MODE_ON, 335
MSK_PRO_STA_DUAL_FEAS, 337
MSK_PRO_STA_DUAL_INFEAS, 337
MSK_PRO_STA_ILL_POSED, 336
MSK_PRO_STA_NEAR_DUAL_FEAS, 337
MSK_PRO_STA_NEAR_PRIM_AND_DUAL_FEAS, 337
MSK_PRO_STA_NEAR_PRIM_FEAS, 337
MSK_PRO_STA_PRIM_AND_DUAL_FEAS, 337
MSK_PRO_STA_PRIM_AND_DUAL_INFEAS, 336
MSK_PRO_STA_PRIM_FEAS, 337
MSK_PRO_STA_PRIM_INFEAS, 336
MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED, 337
MSK_PRO_STA_UNKNOWN, 336
MSK_PROBTYPE_CONIC, 336
MSK_PROBTYPE_GECO, 336
MSK_PROBTYPE_LO, 336
MSK_PROBTYPE_MIXED, 336
MSK_PROBTYPE_QCQO, 336
MSK_PROBTYPE_QO, 336

MSK_Q_READ_ADD, 337
MSK_Q_READ_DROP_LOWER, 337
MSK_Q_READ_DROP_UPPER, 337
MSK_RES_ERR_AD_INVALID_CODELIST, 341
MSK_RES_ERR_AD_INVALID_OPERAND, 354
MSK_RES_ERR_AD_INVALID_OPERATOR, 356
MSK_RES_ERR_AD_MISSING_OPERAND, 353
MSK_RES_ERR_AD_MISSING_RETURN, 347

INDEX

MSK_RES_ERR_API_ARRAY_TOO_SMALL, 346
MSK_RES_ERR_API_CB_CONNECT, 351
MSK_RES_ERR_API_FATAL_ERROR, 345
MSK_RES_ERR_API_INTERNAL, 348
MSK_RES_ERR_ARGUMENT_DIMENSION, 353
MSK_RES_ERR_ARGUMENT_LENNEQ, 350
MSK_RES_ERR_ARGUMENT_PERM_ARRAY, 341
MSK_RES_ERR_ARGUMENT_TYPE, 341
MSK_RES_ERR_BASIS, 354
MSK_RES_ERR_BASIS_FACTOR, 340
MSK_RES_ERR_BASIS_SINGULAR, 351
MSK_RES_ERR_BLANK_NAME, 350
MSK_RES_ERR_CANNOT_CLONE_NL, 347
MSK_RES_ERR_CANNOT_HANDLE_NL, 345
MSK_RES_ERR_CON_Q_NOT_NSD, 348
MSK_RES_ERR_CON_Q_NOT_PSD, 342
MSK_RES_ERR_CONCURRENT_OPTIMIZER, 345
MSK_RES_ERR_CONE_INDEX, 343
MSK_RES_ERR_CONE_OVERLAP, 349
MSK_RES_ERR_CONE_REP_VAR, 345
MSK_RES_ERR_CONE_SIZE, 355
MSK_RES_ERR_CONE_TYPE, 349
MSK_RES_ERR_CONE_TYPE_STR, 355
MSK_RES_ERR_DATA_FILE_EXT, 341
MSK_RES_ERR_DUP_NAME, 350
MSK_RES_ERR_END_OF _FILE, 341
MSK_RES_ERR_FACTOR, 342
MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX, 340

MSK_RES_ERR_FEASREPATR_INCONSISTENT_BOUND, 348
MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED, 346

MSK_RES_ERR_FILE_LICENSE, 351
MSK_RES_ERR_FILE_OPEN, 345
MSK_RES_ERR_FILE_READ, 346
MSK_RES_ERR_FILE_WRITE, 344
MSK_RES_ERR_FIRST, 355
MSK_RES_ERR_FIRSTI, 341
MSK_RES_ERR_FIRSTJ, 341
MSK_RES_ERR_FIXED_BOUND_VALUES, 348
MSK_RES_ERR_FLEXLM, 355
MSK_RES_ERR_HUGE_AIJ, 352
MSK_RES_ERR_HUGE_C, 356
MSK_RES_ERR_IDENTICAL_TASKS, 349
MSK_RES_ERR_IN_ARGUMENT, 350
MSK_RES_ERR_INDEX, 339
MSK_RES_ERR_INDEX_ARR_IS_TOO0_LARGE, 355
MSK_RES_ERR_INDEX_ARR_IS_TO0_SMALL, 346
MSK_RES_ERR_INDEX_IS_TOO_LARGE, 340
MSK_RES_ERR_INDEX_IS_TOO_SMALL, 338
MSK_RES_ERR_INF_DOU_INDEX, 342
MSK_RES_ERR_INF_DOU_NAME, 354

INDEX

MSK_RES_ERR_INF_INT_INDEX, 346
MSK_RES_ERR_INF_INT_NAME, 348
MSK_RES_ERR_INF_LINT_INDEX, 340
MSK_RES_ERR_INF_LINT_NAME, 339
MSK_RES_ERR_INF_TYPE, 344
MSK_RES_ERR_INFEAS_UNDEFINED, 347
MSK_RES_ERR_INFINITE_BOUND, 346
MSK_RES_ERR_INT64_TO_INT32_CAST, 356
MSK_RES_ERR_INTERNAL, 340
MSK_RES_ERR_INTERNAL_TEST_FAILED, 350
MSK_RES_ERR_INV_APTRE, 351
MSK_RES_ERR_INV_BK, 355
MSK_RES_ERR_INV_BKC, 349
MSK_RES_ERR_INV_BKX, 354
MSK_RES_ERR_INV_CONE_TYPE, 354
MSK_RES_ERR_INV_CONE_TYPE_STR, 352
MSK_RES_ERR_INV_MARKI, 338
MSK_RES_ERR_INV_MARKJ, 356
MSK_RES_ERR_INV_NAME_ITEM, 347
MSK_RES_ERR_INV_NUMI, 342
MSK_RES_ERR_INV_NUMJ, 342
MSK_RES_ERR_INV_OPTIMIZER, 345
MSK_RES_ERR_INV_PROBLEM, 338
MSK_RES_ERR_INV_QCON_SUBI, 355
MSK_RES_ERR_INV_QCON_SUBJ, 341
MSK_RES_ERR_INV_QCON_SUBK, 341
MSK_RES_ERR_INV_QCON_VAL, 343
MSK_RES_ERR_INV_QOBJ_SUBI, 349
MSK_RES_ERR_INV_QOBJ_SUBJ, 349
MSK_RES_ERR_INV_QOBJ_VAL, 346
MSK_RES_ERR_INV_SK, 354
MSK_RES_ERR_INV_SK_STR, 353
MSK_RES_ERR_INV_SKC, 339
MSK_RES_ERR_INV_SKN, 339
MSK_RES_ERR_INV_SKX, 338
MSK_RES_ERR_INV_VAR_TYPE, 355
MSK_RES_ERR_INVALID_ACCMODE, 347
MSK_RES_ERR_INVALID_AMPL_STUB, 353
MSK_RES_ERR_INVALID_BRANCH_DIRECTION, 349
MSK_RES_ERR_INVALID _BRANCH PRIORITY, 342
MSK_RES_ERR_INVALID_COMPRESSION, 350
MSK_RES_ERR_INVALID_FILE_NAME, 344
MSK_RES_ERR_INVALID_FORMAT_TYPE, 352
MSK_RES_ERR_INVALID_IOMODE, 348
MSK_RES_ERR_INVALID_MBT_FILE, 348
MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE, 338
MSK_RES_ERR_INVALID_0BJ_NAME, 345
MSK_RES_ERR_INVALID_OBJECTIVE_SENSE, 351
MSK_RES_ERR_INVALID_SOL_FILE_NAME, 352
MSK_RES_ERR_INVALID_STREAM, 347

387

MSK_RES_ERR_INVALID_SURPLUS, 355
MSK_RES_ERR_INVALID_TASK, 345
MSK_RES_ERR_INVALID_UTF8, 356
MSK_RES_ERR_INVALID_WCHAR, 341
MSK_RES_ERR_LAST, 346
MSK_RES_ERR_LASTI, 342
MSK_RES_ERR_LASTJ, 339
MSK_RES_ERR_LICENSE, 341
MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE, 349
MSK_RES_ERR_LICENSE_CANNOT_CONNECT, 355
MSK_RES_ERR_LICENSE_EXPIRED, 339
MSK_RES_ERR_LICENSE_FEATURE, 346
MSK_RES_ERR_LICENSE_INVALID_HOSTID, 347
MSK_RES_ERR_LICENSE_MAX, 348
MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON, 341
MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT, 343
MSK_RES_ERR_LICENSE_SERVER, 354
MSK_RES_ERR_LICENSE_SERVER_VERSION, 347
MSK_RES_ERR_LICENSE_VERSION, 342
MSK_RES_ERR_LINK FILE DLL, 346
MSK_RES_ERR_LIVING_TASKS, 344
MSK_RES_ERR_LP_DUP_SLACK_NAME, 343
MSK_RES_ERR_LP_EMPTY, 346
MSK_RES_ERR_LP_FILE_FORMAT, 355
MSK_RES_ERR_LP_FORMAT, 351
MSK_RES_ERR_LP_FREE_CONSTRAINT, 351
MSK_RES_ERR_LP_INCOMPATIBLE, 340
MSK_RES_ERR_LP_INVALID_CON_NAME, 344
MSK_RES_ERR_LP_INVALID_VAR_NAME, 340
MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM, 342
MSK_RES_ERR_LP_WRITE_GECO_PROBLENM, 352
MSK_RES_ERR_LU_MAX_NUM_TRIES, 339
MSK_RES_ERR_MAXNUMCON, 342
MSK_RES_ERR_MAXNUMCONE, 344
MSK_RES_ERR_MAXNUMQNZ, 345
MSK_RES_ERR_MAXNUMVAR, 350
MSK_RES_ERR_MBT_INCOMPATIBLE, 347
MSK_RES_ERR_MIO_NO_OPTIMIZER, 338
MSK_RES_ERR_MIO_NOT_LOADED, 349
MSK_RES_ERR_MISSING_LICENSE FILE, 339
MSK_RES_ERR_MIXED_PROBLEM, 340
MSK_RES_ERR_MPS_CONE_OVERLAP, 351
MSK_RES_ERR_MPS_CONE_REPEAT, 352
MSK_RES_ERR_MPS_CONE_TYPE, 356
MSK_RES_ERR_MPS_FILE, 342
MSK_RES_ERR_MPS_INV_BOUND_KEY, 354
MSK_RES_ERR_MPS_INV_CON_KEY, 348
MSK_RES_ERR_MPS_INV_FIELD, 350
MSK_RES_ERR_MPS_INV_MARKER, 354
MSK_RES_ERR_MPS_INV_SEC_NAME, 354

388

MSK_RES_ERR_MPS_INV_SEC_ORDER, 348
MSK_RES_ERR_MPS_INVALID_0BJ_NAME, 355
MSK_RES_ERR_MPS_INVALID_0BJSENSE, 350
MSK_RES_ERR_MPS_MUL_CON_NAME, 347
MSK_RES_ERR_MPS_MUL_CSEC, 350
MSK_RES_ERR_MPS_MUL_QOBJ, 338
MSK_RES_ERR_MPS_MUL_QSEC, 353
MSK_RES_ERR_MPS_NO_OBJECTIVE, 346
MSK_RES_ERR_MPS_NULL_CON_NAME, 344
MSK_RES_ERR_MPS_NULL_VAR_NAME, 347
MSK_RES_ERR_MPS_SPLITTED_VAR, 353
MSK_RES_ERR_MPS_TAB_IN_FIELD2, 344
MSK_RES_ERR_MPS_TAB_IN_FIELD3, 355
MSK_RES_ERR_MPS_TAB_IN_FIELD5, 344
MSK_RES_ERR_MPS_UNDEF_CON_NAME, 356
MSK_RES_ERR_MPS_UNDEF_VAR_NAME, 340
MSK_RES_ERR_MUL_A_ELEMENT, 338
MSK_RES_ERR_NAME_IS_NULL, 355
MSK_RES_ERR_NAME MAX_LEN, 349
MSK_RES_ERR_NAN_IN_AIJ, 356
MSK_RES_ERR_NAN_IN_BLC, 343
MSK_RES_ERR_NAN_IN_BLX, 353
MSK_RES_ERR_NAN_IN_BUC, 341
MSK_RES_ERR_NAN_IN_BUX, 354
MSK_RES_ERR_NAN_IN_C, 343
MSK_RES_ERR_NAN_IN_DOUBLE DATA, 354
MSK_RES_ERR_NEGATIVE_APPEND, 354
MSK_RES_ERR_NEGATIVE_SURPLUS, 341
MSK_RES_ERR_NEWER_DLL, 353
MSK_RES_ERR_NO_BASIS_SOL, 345
MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL, 340
MSK_RES_ERR_NO_DUAL_INFEAS_CER, 338
MSK_RES_ERR_NO_INIT_ENV, 338
MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE, 356
MSK_RES_ERR_NO_PRIMAL_INFEAS_CER, 343
MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK, 356
MSK_RES_ERR_NONCONVEX, 350
MSK_RES_ERR_NONLINEAR_EQUALITY, 341
MSK_RES_ERR_NONLINEAR_RANGED, 342
MSK_RES_ERR_NR_ARGUMENTS, 342
MSK_RES_ERR_NULL_ENV, 350
MSK_RES_ERR_NULL_POINTER, 345
MSK_RES_ERR_NULL_TASK, 349
MSK_RES_ERR_NUMCONLIM, 347
MSK_RES_ERR_NUMVARLIM, 353
MSK_RES_ERR_OBJ_Q_NOT_NSD, 345
MSK_RES_ERR_0BJ_Q_NOT_PSD, 339
MSK_RES_ERR_OBJECTIVE_RANGE, 353
MSK_RES_ERR_OLDER._DLL, 352
MSK_RES_ERR_OPEN DL, 346

INDEX

MSK_RES_ERR_OPF_FORMAT, 350
MSK_RES_ERR_OPF_NEW_VARIABLE, 355
MSK_RES_ERR_OPF_PREMATURE_EOQF, 343
MSK_RES_ERR_OPTIMIZER_LICENSE, 351
MSK_RES_ERR_ORD_INVALID, 345
MSK_RES_ERR_ORD_INVALID BRANCH_DIR, 356
MSK_RES_ERR_OVERFLOW, 340
MSK_RES_ERR_PARAM_INDEX, 341
MSK_RES_ERR_PARAM_IS_TOO_LARGE, 352
MSK_RES_ERR_PARAM_IS_TOO_SMALL, 342
MSK_RES_ERR_PARAM_NAME, 340
MSK_RES_ERR_PARAM_NAME_DQU, 343
MSK_RES_ERR_PARAM_NAME_INT, 340
MSK_RES_ERR_PARAM_NAME_STR, 345
MSK_RES_ERR_PARAM_TYPE, 337
MSK_RES_ERR_PARAM_VALUE_STR, 355
MSK_RES_ERR_PLATFORM_NOT_LICENSED, 352
MSK_RES_ERR_POSTSOLVE, 352
MSK_RES_ERR_PRO_ITEM, 352
MSK_RES_ERR_PROB_LICENSE, 354
MSK_RES_ERR_QCON_SUBI_TOO_LARGE, 356
MSK_RES_ERR_QCON_SUBI_TOO_SMALL, 351
MSK_RES_ERR_QCON_UPPER_TRIANGLE, 344
MSK_RES_ERR_QOBJ_UPPER_TRIANGLE, 344
MSK_RES_ERR_READ_FORMAT, 351
MSK_RES_ERR_READ_LP_MISSING_END_TAG, 353
MSK_RES_ERR_READ_LP_NONEXISTING_NAME, 342
MSK_RES_ERR_REMOVE_CONE_VARIABLE, 345
MSK_RES_ERR_SEN_BOUND_INVALID_LO, 353
MSK_RES_ERR_SEN_BOUND_INVALID_UP, 348
MSK_RES_ERR_SEN_FORMAT, 343
MSK_RES_ERR_SEN_INDEX_INVALID, 339
MSK_RES_ERR_SEN_INDEX_RANGE, 343
MSK_RES_ERR_SEN_INVALID_REGEXP, 348
MSK_RES_ERR_SEN_NUMERICAL, 343
MSK_RES_ERR_SEN_SOLUTION_STATUS, 340
MSK_RES_ERR_SEN_UNDEF _NAME, 352
MSK_RES_ERR_SIZE_LICENSE, 356
MSK_RES_ERR_SIZE_LICENSE_CON, 351
MSK_RES_ERR_SIZE LICENSE_INTVAR, 356
MSK_RES_ERR_SIZE_LICENSE_NUMCORES, 342
MSK_RES_ERR_SIZE_LICENSE_VAR, 347
MSK_RES_ERR_SOL_FILE_INVALID_NUMBER, 339
MSK_RES_ERR_SOLITEM, 351
MSK_RES_ERR_SOLVER_PROBTYPE, 346
MSK_RES_ERR_SPACE, 350
MSK_RES_ERR_SPACE_LEAKING, 353
MSK_RES_ERR_SPACE_NO_INFO, 340
MSK_RES_ERR_THREAD_COND_INIT, 353
MSK_RES_ERR_THREAD_CREATE, 344

INDEX 389

MSK_RES_ERR_THREAD _MUTEX_INIT, 347 MSK_RES_WRN_IGNORE_INTEGER, 345
MSK_RES_ERR_THREAD _MUTEX_LOCK, 346 MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK,
MSK_RES_ERR_THREAD_MUTEX_UNLOCK, 342 344
MSK_RES_ERR_TO0_SMALL_MAXNUMANZ, 350 MSK_RES_WRN_LARGE_AIJ, 345
MSK_RES_ERR_UNB_STEP_SIZE, 351 MSK_RES_WRN_LARGE_BOUND, 350
MSK_RES_ERR_UNDEF_SOLUTION, 338 MSK_RES_WRN_LARGE_CJ, 352
MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE, 356 MSK_RES_WRN_LARGE_CON_FX, 347
MSK_RES_ERR_UNKNOWN, 342 MSK_RES_WRN_LARGE_LO_BOUND, 348
MSK_RES_ERR_USER_FUNC_RET, 349 MSK_RES_WRN_LARGE_UP_BOUND, 347
MSK_RES_ERR_USER_FUNC_RET_DATA, 342 MSK_RES_WRN_LICENSE_EXPIRE, 350
MSK_RES_ERR_USER_NLO_EVAL, 344 MSK_RES_WRN_LICENSE_FEATURE_EXPIRE, 340
MSK_RES_ERR_USER_NLO_EVAL_HESSUBI, 346 MSK_RES_WRN_LICENSE_SERVER, 350
MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ, 346 MSK_RES_WRN_LP_DROP_VARIABLE, 341
MSK_RES_ERR_USER_NLO_FUNC, 341 MSK_RES_WRN_LP_OLD_QUAD_FORMAT, 354
MSK_RES_ERR_WHICHITEM_NOT_ALLOWED, 353 MSK_RES_WRN_MIO_INFEASIBLE FINAL, 344
MSK_RES_ERR_WHICHSOL, 353 MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR, 347
MSK_RES_ERR_WRITE_LP_FORMAT, 343 MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR, 352
MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME, 354 MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR, 348
MSK_RES_ERR_WRITE_MPS_INVALID_NAME, 349 MSK_RES_WRN_NAME_MAX_LEN, 355
MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME, 343 MSK_RES_WRN_NO_GLOBAL_OPTIMIZER, 346
MSK_RES_ERR_WRITING_FILE, 356 MSK_RES_WRN_NZ_IN_UPR_TRI, 340
MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE, 348 MSK_RES_WRN_OPEN_PARAM_FILE, 350
MSK_RES_ERR_Y_IS_UNDEFINED, 348 MSK_RES_WRN_PRESOLVE_BAD_PRECISION, 338
MSK_RES_0K, 351 MSK_RES_WRN_PRESOLVE_OUTOFSPACE, 356
MSK_RES_TRM_INTERNAL, 346 MSK_RES_WRN_SOL_FILE_IGNORED_CON, 354
MSK_RES_TRM_INTERNAL_STOP, 356 MSK_RES_WRN_SOL_FILE_IGNORED_VAR, 337
MSK_RES_TRM_MAX_ITERATIONS, 356 MSK_RES_WRN_SOL_FILTER, 346
MSK_RES_TRM_MAX_NUM_SETBACKS, 349 MSK_RES_WRN_SPAR_MAX_LEN, 343
MSK_RES_TRM_MAX_TIME, 353 MSK_RES_WRN_TOO_FEW_BASIS_VARS, 354
MSK_RES_TRM_MIO_NEAR_ABS_GAP, 338 MSK_RES_WRN_TOO_MANY_BASIS_VARS, 340
MSK_RES_TRM_MIO_NEAR_REL_GAP, 354 MSK_RES_WRN_UNDEF_SOL_FILE_NAME, 355
MSK_RES_TRM_MIO_NUM_BRANCHES, 338 MSK_RES_WRN_USING_GENERIC_NAMES, 344
MSK_RES_TRM_MIO_NUM_RELAXS, 340 MSK_RES_WRN_WRITE_DISCARDED_CFIX, 344
MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS, 349 MSK_RES_WRN_ZERO_AIJ, 342
MSK_RES_TRM_NUMERICAL_PROBLEM, 348 MSK_RES_WRN_ZEROS_IN_SPARSE_COL, 344
MSK_RES_TRM_OBJECTIVE_RANGE, 355 MSK_RES_WRN_ZEROS_IN_SPARSE_ROW, 341
MSK_RES_TRM_STALL, 351 MSK_RESPONSE_ERR, 357
MSK_RES_TRM_USER_BREAK, 349 MSK_RESPONSE_OK, 357
MSK_RES_TRM_USER_CALLBACK, 348 MSK_RESPONSE_TRM, 357
MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS, 349 MSK_RESPONSE_UNK, 357
MSK_RES_WRN_ANA_C_ZERO, 347 MSK_RESPONSE_WRN, 357
MSK_RES_WRN_ANA_CLOSE_BOUNDS, 339 MSK_SCALING_AGGRESSIVE, 357
MSK_RES_WRN_ANA_EMPTY_COLS, 355 MSK_SCALING_FREE, 357
MSK_RES_WRN_ANA_LARGE_BOUNDS, 350 MSK_SCALING_METHOD_FREE, 357
MSK_RES_WRN_CONSTRUCT_INVALID_SOL_ITG, 349 MSK_SCALING_METHOD_POW2, 357
MSK_RES_WRN_CONSTRUCT_NO_SOL_ITG, 353 MSK_SCALING_MODERATE, 357
MSK_RES_WRN_CONSTRUCT_SOLUTION_INFEAS, 348 MSK_SCALING_NONE, 357
MSK_RES_WRN_DROPPED_NZ_QOBJ, 340 MSK_SENSITIVITY_TYPE BASIS, 358
MSK_RES_WRN_ELIMINATOR_SPACE, 353 MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION, 357

MSK_RES_WRN_EMPTY_NAME, 353 MSK_SIM_DEGEN_AGGRESSIVE, 358

390

MSK_SIM_DEGEN_FREE, 358
MSK_SIM_DEGEN_MINIMUM, 358
MSK_SIM_DEGEN_MODERATE, 358
MSK_SIM_DEGEN_NONE, 358
MSK_SIM_EXPLOIT_DUPVEC_FREE, 358
MSK_SIM_EXPLOIT_DUPVEC_OFF, 358
MSK_SIM_EXPLOIT_DUPVEC_ON, 358
MSK_SIM_HOTSTART_FREE, 359
MSK_SIM_HOTSTART_NONE, 358
MSK_SIM_HOTSTART_STATUS_KEYS, 358
MSK_SIM_REFORMULATION_AGGRESSIVE, 359
MSK_SIM_REFORMULATION_FREE, 359
MSK_SIM_REFORMULATION_OFF, 359
MSK_SIM_REFORMULATION_ON, 359
MSK_SIM_SELECTION_ASE, 359
MSK_SIM_SELECTION_DEVEX, 359
MSK_SIM_SELECTION_FREE, 359
MSK_SIM_SELECTION_FULL, 359
MSK_SIM_SELECTION_PARTIAL, 359
MSK_SIM_SELECTION_SE, 359
MSK_SK_BAS, 364

MSK_SK_FIX, 364

MSK_SK_INF, 364

MSK_SK_LOW, 364

MSK_SK_SUPBAS, 363

MSK_SK_UNK, 364

MSK_SK_UPR, 364

MSK_SOL_BAS, 361
MSK_SOL_ITEM_SLC, 360
MSK_SOL_ITEM_SLX, 360
MSK_SOL_ITEM_SNX, 360
MSK_SOL_ITEM_SUC, 360
MSK_SOL_ITEM_SUX, 360
MSK_SOL_ITEM_XC, 360
MSK_SOL_ITEM_XX, 360
MSK_SOL_ITEM.Y, 360

MSK_SOL_ITG, 361

MSK_SOL_ITR, 361
MSK_SOL_STA_DUAL_FEAS, 361
MSK_SOL_STA_DUAL_INFEAS_CER, 360
MSK_SOL_STA_INTEGER_OPTIMAL, 360
MSK_SOL_STA_NEAR_DUAL_FEAS, 360
MSK_SOL_STA_NEAR_DUAL_INFEAS_CER, 360
MSK_SOL_STA_NEAR_INTEGER_OPTIMAL, 360
MSK_SOL_STA_NEAR_OPTIMAL, 360

MSK_SOL_STA_NEAR_PRIM_AND_DUAL_FEAS, 361

MSK_SOL_STA_NEAR_PRIM_FEAS, 361
MSK_SOL_STA_NEAR_PRIM_INFEAS_CER, 360
MSK_SOL_STA_OPTIMAL, 361
MSK_SOL_STA_PRIM_AND DUAL _FEAS, 361

INDEX

MSK_SOL_STA_PRIM_FEAS, 360
MSK_SOL_STA_PRIM_INFEAS_CER, 360
MSK_SOL_STA_UNKNOWN, 360
MSK_SOLVE_DUAL, 361

MSK_SOLVE_FREE, 361
MSK_SOLVE_PRIMAL, 361
MSK_SPAR_BAS_SOL_FILE_NAME, 362
MSK_SPAR_DATA_FILE NAME, 362
MSK_SPAR_DEBUG_FILE_NAME, 363
MSK_SPAR_FEASREPAIR_NAME_PREFIX, 362
MSK_SPAR_FEASREPAIR _NAME_SEPARATOR, 362
MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL, 362
MSK_SPAR_INT_SOL_FILE_NAME, 362
MSK_SPAR_ITR_SOL_FILE_NAME, 363
MSK_SPAR_PARAM_COMMENT_SIGN, 361
MSK_SPAR_PARAM_READ_FILE_NAME, 363
MSK_SPAR_PARAM_WRITE_FILE NAME, 362
MSK_SPAR_READ_MPS_BOU_NAME, 363
MSK_SPAR_READ_MPS_OBJ_NAME, 362
MSK_SPAR_READ_MPS_RAN_NAME, 362
MSK_SPAR_READ_MPS_RHS_NAME, 362
MSK_SPAR_SENSITIVITY _FILE_NAME, 363
MSK_SPAR_SENSITIVITY RES_FILE NAME, 363
MSK_SPAR_SOL_FILTER_XC_LOW, 362
MSK_SPAR_SOL_FILTER_XC_UPR, 362
MSK_SPAR_SOL_FILTER XX_LOW, 363
MSK_SPAR_SOL_FILTER_XX_UPR, 363
MSK_SPAR_STAT_FILE_NAME, 362
MSK_SPAR_STAT KEY, 363
MSK_SPAR_STAT_NAME, 363
MSK_SPAR_WRITE_LP_GEN_VAR_NAME, 362
MSK_STARTING_POINT_CONSTANT, 364
MSK_STARTING_POINT_FREE, 364
MSK_STARTING_POINT_GUESS, 364
MSK_STARTING_POINT_SATISFY_BOUNDS, 364
MSK_STREAM_ERR, 365

MSK_STREAM_LOG, 364

MSK_STREAM_MSG, 364

MSK_STREAM_WRN, 364
MSK_VAR_TYPE_CONT, 365
MSK_VAR_TYPE_INT, 365
MSK_WRITE_XML_MODE_COL, 365
MSK_WRITE_XML_MODE_ROW, 365

timing level (parameter), 268

upper_obj_cut (parameter), 200
upper_obj_cut_finite_trh (parameter), 200

variables
decision, 37, 52, 113

INDEX

lower limit, 38, 52, 113
upper limit, 38, 52, 113

warning level (parameter), 268
write_bas_constraints (parameter), 268
write_bas_head (parameter), 269
write_bas_variables (parameter), 269
write_data_compressed (parameter), 269
write_data_format (parameter), 269
write_data_param (parameter), 270
write_free_con (parameter), 270
write_generic_names (parameter), 270
write_generic_names_io (parameter), 271
write_int_constraints (parameter), 271
write_int_head (parameter), 271
write_int_variables (parameter), 271
write_lp_gen var name (parameter), 283
write_lp_line width (parameter), 272
write_lp_quoted_names (parameter), 272
write_ lp_strict_format (parameter), 272
write_lp_terms_per_line (parameter), 272
writemps_int (parameter), 273

write mps_obj_sense (parameter), 273
write mps_quoted names (parameter), 273
writemps_strict (parameter), 274
write_precision (parameter), 274
write_sol_constraints (parameter), 274
write_sol head (parameter), 274
write_sol_variables (parameter), 275
write_task_inc_sol (parameter), 275
write_xml mode (parameter), 275

xml format, 145

391

	Changes and new features in MOSEK
	Compilers used to build MOSEK
	General changes
	Optimizers
	Interior point optimizer
	The simplex optimizers
	Mixed-integer optimizer

	License system
	Other changes
	Interfaces
	Platform changes

	The MOSEK optimization tools
	What is MOSEK
	Interfaces

	How to use this manual

	Getting support and help
	MOSEK documentation
	Additional reading

	Using the MOSEK command line tool
	Getting started
	Examples
	Linear optimization
	Quadratic optimization
	Conic optimization

	Passing options to the command line tool
	Reading and writing problem data files
	Reading compressed data files
	Converting from one format and to another

	Hot-start
	An example

	Further information
	Solution file filtering

	MOSEK and AMPL
	Invoking the AMPL shell
	Applicability
	An example
	Determining the outcome of an optimization
	Optimizer options
	The MOSEK parameter database
	Options

	Constraint and variable names
	Which solution is returned to AMPL
	Hot-start
	Conic constraints
	Sensitivity analysis
	Using the command line version of the AMPL interface

	MOSEK and GAMS
	MOSEK and MATLAB
	Interfaces to MOSEK
	The optimizer API

	Modelling
	Linear optimization
	Duality for linear optimization
	Primal and dual infeasible case

	Quadratic and quadratically constrained optimization
	A general recommendation
	Reformulating as a separable quadratic problem

	Conic optimization
	Duality for conic optimization
	Infeasibility
	Examples
	Potential pitfalls in conic optimization

	Nonlinear convex optimization
	Duality

	Recommendations
	Avoid near infeasible models

	Examples continued
	The absolute value
	The Markowitz portfolio model

	The optimizers for continuous problems
	How an optimizer works
	Presolve
	Dualizer
	Scaling
	Using multiple CPU's

	Linear optimization
	Optimizer selection
	The interior-point optimizer
	The simplex based optimizer
	The interior-point or the simplex optimizer?
	The primal or the dual simplex variant?

	Linear network optimization
	Network flow problems
	Embedded network problems

	Conic optimization
	The interior-point optimizer

	Nonlinear convex optimization
	The interior-point optimizer

	Solving problems in parallel
	Thread safety
	The parallelized interior-point optimizer
	The concurrent optimizer

	Understanding solution quality
	The solution summary

	The optimizer for mixed integer problems
	Some notation
	An important fact about integer optimization problems
	How the integer optimizer works
	Presolve
	Heuristic
	The optimization phase

	Termination criterion
	How to speed up the solution process
	Understanding solution quality
	Solutionsummary

	The analyzers
	The problem analyzer
	General characteristics
	Objective
	Linear constraints
	Constraint and variable bounds
	Quadratic constraints
	Conic constraints

	Analyzing infeasible problems
	Example: Primal infeasibility
	Locating the cause of primal infeasibility
	Locating the cause of dual infeasibility
	The infeasibility report
	Theory concerning infeasible problems
	The certificate of primal infeasibility
	The certificate of dual infeasibility

	Feasibility repair
	The main idea
	Feasibility repair in MOSEK
	Usage of negative weights
	Automatical naming
	An example

	Sensitivity analysis
	Introduction
	Restrictions
	References
	Sensitivity analysis for linear problems
	The optimal objective value function
	The basis type sensitivity analysis
	The optimal partition type sensitivity analysis
	An example

	Sensitivity analysis with the command line tool
	Sensitivity analysis specification file
	Example: Sensitivity analysis from command line
	Controlling log output

	MOSEK command line tool reference
	Introduction
	Command line arguments
	The parameter file
	Using the parameter file

	The MPS file format
	The MPS file format
	An example
	NAME
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer variables
	General limitations
	Interpretation of the MPS format
	The free MPS format

	The LP file format
	A warning
	The LP file format
	The sections
	LP format peculiarities
	The strict LP format
	Formatting of an LP file

	The OPF format
	Intended use
	The file format
	Sections
	Numbers
	Names

	Parameters section
	Writing OPF files from MOSEK
	Examples
	Linear example lo1.opf
	Quadratic example qo1.opf
	Conic quadratic example cqo1.opf
	Mixed integer example milo1.opf

	The XML (OSiL) format
	The solution file format
	The basic and interior solution files
	The integer solution file

	The ORD file format
	An example

	Parameters reference
	Parameter groups
	Logging parameters.
	Basis identification parameters.
	The Interior-point method parameters.
	Simplex optimizer parameters.
	Primal simplex optimizer parameters.
	Dual simplex optimizer parameters.
	Network simplex optimizer parameters.
	Nonlinear convex method parameters.
	The conic interior-point method parameters.
	The mixed-integer optimization parameters.
	Presolve parameters.
	Termination criterion parameters.
	Progress call-back parameters.
	Non-convex solver parameters.
	Feasibility repair parameters.
	Optimization system parameters.
	Output information parameters.
	Extra information about the optimization problem.
	Overall solver parameters.
	Behavior of the optimization task.
	Data input/output parameters.
	Analysis parameters.
	Solution input/output parameters.
	Infeasibility report parameters.
	License manager parameters.
	Data check parameters.
	Debugging parameters.

	Double parameters
	Integer parameters
	String parameter types

	Symbolic constants reference
	Constraint or variable access modes
	Function opcode
	Function operand type
	Basis identification
	Bound keys
	Specifies the branching direction.
	Progress call-back codes
	Types of convexity checks.
	Compression types
	Cone types
	CPU type
	Data format types
	Double information items
	Double parameters
	Feasibility repair types
	License feature
	Integer information items.
	Information item types
	Input/output modes
	Integer parameters
	Language selection constants
	Long integer information items.
	Mark
	Continuous mixed-integer solution type
	Integer restrictions
	Mixed-integer node selection types
	MPS file format type
	Message keys
	Network detection method
	Objective sense types
	On/off
	Optimizer types
	Ordering strategies
	Parameter type
	Presolve method.
	Problem data items
	Problem types
	Problem status keys
	Interpretation of quadratic terms in MPS files
	Response codes
	Response code type
	Scaling type
	Scaling type
	Sensitivity types
	Degeneracy strategies
	Exploit duplicate columns.
	Hot-start type employed by the simplex optimizer
	Problem reformulation.
	Simplex selection strategy
	Solution items
	Solution status keys
	Solution types
	Solve primal or dual form
	String parameter types
	Status keys
	Starting point types
	Stream types
	Integer values
	Variable types
	XML writer output mode

	Problem analyzer examples
	air04
	arki001
	Problem with both linear and quadratic constraints
	Problem with both linear and conic constraints

