Bibliography

[1]
H. P. Williams.
Model building in mathematical programming.
John Wiley and Sons, 1993.
[2]
S. W. Wallace.
Decision making under uncertainty: Is sensitivity of any use.
Oper. Res. 48(1):20--25, January 2000.
[3]
Bernd Scherer.
Portfolio construction and risk budgeting.
Risk Books, 2004.
[4]
A. Ben-Tal and A. Nemirovski.
Robust solutions of Linear Programming problems contaminated with uncertain data.
Math. Programming 88(3):411--424, 2000.
[5]
A. Ben-Tal and A Nemirovski.
Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications.
MPS/SIAM Series on Optimization.
SIAM, 2001.
[6]
E. D. Andersen, J. Gondzio, Cs. Meszaros and X. Xu.
Implementation of interior point methods for large scale linear programming.
In Interior-point methods of mathematical programming.
T. Terlaky, editor(s).Kluwer Academic Publishers,
[7]
E. D. Andersen and Y. Ye.
Combining interior-point and pivoting algorithms.
Management Sci. 42(12):1719--1731, December 1996.
[8]
Erling D. Andersen.
The homogeneous and self-dual model and algorithm for linear optimization.
2009.
http://www.mosek.com/fileadmin/reports/tech/homolo.pdf.
[9]
E. D. Andersen and K. D. Andersen.
Presolving in linear programming.
Math. Programming 71(2):221--245, 1995.
[10]
F. Alizadeh and D. Goldfarb.
Second-order cone programming.
Math. Programming 95(1):3--51, 2003.
[11]
J. L. Nazareth.
Computer Solution of Linear Programs.
Oxford University Press, New York, 1987.
[12]
C. Beightler and D. T. Phillips.
Applied geometric programming.
John Wiley and Sons, New York, 1976.
[13]
S.P. Boyd, S.J. Kim, L. Vandenberghe and A. Hassibi.
A Tutorial on Geometric Programming.
2004.
Available at http://www.stanford.edu/~boyd/gptutorial.html.
[14]
M. S. Lobo, M. Fazel, and S. Boyd.
Portfolio optimization with linear and fixed transaction costs.
2005.
To appear in Annals of Operations Research. http://www.cds.caltech.edu/~maryam/portfolio.html.
[15]
C. Roos, T. Terlaky and J. -Ph. Vial.
Theory and algorithms for linear optimization: an interior point approach.
John Wiley and Sons, New York, 1997.
[16]
Richard C. Grinold abd Ronald N. Kahn.
Active portfolio management.
McGraw-Hill, New York, 2000.
[17]
M. S. Bazaraa, H. D. Sherali and C. M. Shetty.
Nonlinear programming: Theory and algorithms.
John Wiley and Sons, New York, 1993.
[18]
L. A. Wolsey.
Integer programming.
John Wiley and Sons, 1998.
[19]
M. S. Lobo, L. Vanderberghe, S. Boyd and H. Lebret.
Applications of second-order cone programming.
Linear Algebra Appl. 284:193-228, November 1998.
[20]
V. Chvatal.
Linear programming.
W.H. Freeman and Company, 1983.
[21]
E. D. Andersen and Y. Ye.
On a homogeneous algorithm for the monotone complementarity problem.
Math. Programming 84(2):375--399, February 1999.
[22]
E. D. Andersen and Y. Ye.
A computational study of the homogeneous algorithm for large-scale convex optimization.
Computational Optimization and Applications 10:243--269, 1998.
[23]
E. D. Andersen and K. D. Andersen.
The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm.
In High Performance Optimization Techniques, Proceedings of the HPOPT-II conference.
J. B. G. Frenk, C. Roos, T. Terlaky and S. Zhang, editor(s).
forthcoming.
[24]
J. L. Kenningon and K. R. Lewis.
Generalized networks: The theory of preprocessing and an emperical analysis.
INFORMS Journal on Computing 16(2):162--173, 2004.
[25]
E. D. Andersen, C. Roos and T. Terlaky.
On implementing a primal-dual interior-point method for conic quadratic optimization.
Math. Programming 95(2), February 2003.
[26]
N. Gould and P. L. Toint.
Preprocessing for quadratic programming.
Math. Programming 100(1):95--132, 2004.
Wed Feb 29 16:17:02 2012