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Abstract: Model-based cluster analysis and latent class regression are pop-
ular methods for grouping observations into unobserved segments. In many
applications it is of great interest to the practitioner to assess the relation-
ships between those segments, especially which segments are close to each
other and which are markedly different from the rest. We present several
new tools for the R statistical computing environment that allow the user to
visually explore the component structure of arbitrary mixture models and do
computations using a graph representation of the model.

1 Introduction

Finite mixture models have been used for more than 100 years, but have seen
a real boost in popularity over the last decade due to the tremendous increase
in available computing power. The areas of application of mixture models
range from biology and medicine to physics, economics and marketing. On
the one hand these models can be applied to data where observations originate
from various groups and the group affiliations are not known, and on the other
hand to provide approximations for multi-modal distributions [4], [12], [9].

In the 1990s finite mixture models have been extended by mixing stan-
dard linear regression models as well as generalized linear models [14]. An
important area of application of mixture models and also of these extensions
are in market segmentation [15], where finite mixture models replace more
traditional cluster analysis and cluster-wise regression techniques as state of
the art. Finite mixture models with a fixed number of components are usually
estimated with the EM algorithm within a maximum likelihood framework [2]
and with MCMC sampling [3] within a Bayesian framework.

The R environment for statistical computing [10] features several pack-
ages for finite mixture models, including mclust for mixtures of multivariate
Gaussian distributions [6, 5], fpc for mixtures of linear regression models [7]
and mmlcr for mixed-mode latent class regression [1]. All of those primarily
target one or more special cases of mixture models. Package flexmix imple-
ments an extensible framework for mixture modelling where users can easily
create new models by supplying their own M-step for the EM algorithm [8].

Efficient estimation of mixture models has received a lot of attention over
the last years, however model diagnostics and general visualization techniques
are scarcely available. E.g., the confidence ellipses commonly used to visualize
low-dimensional Gaussians cannot be used for regression models. In this



1406 Friderich Leisch

paper we present several new tools implemented in flexmix that can be used
to graphically explore the structure of the components of any finite mixture
model. Of special interest in all applications where mixtures are used to
group observations is which components are overlapping or “close” to each
other. If the mixture model is used for market segmentation it is important
to know for the practitioner which clusters are distinct market niches and
which clusters are parts of larger consumer groups.

2 The posterior class probabilities

Consider finite mixture models with K components of form

h(y|x,w) =

K∑

k=1

πkf(y|x, θk) (1)

πk ≥ 0,

K∑

k=1

πk = 1

where y is a (possibly multivariate) dependent variable with conditional den-
sity h, x is a vector of independent variables, πk is the prior probability
of component k, and θk is the component specific parameter vector for the
density function f .

If f is a normal density with component-specific mean β′
kx and variance

σ2
k, we have θk = (β′

k, σ
2
k)′ and Equation (1) describes a mixture of standard

linear regression models, also called latent class regression. A special case is
x ≡ 1, which gives a mixture of Gaussians without a regression part. If f is
a member of the exponential family, we get a mixture of generalized linear
models (GLMs).

The posterior probability that observation (x, y) belongs to class j is given
by

¶(j|x, y) =
πjfj(y|x, θj)∑
k πkfk(y|x, θk)

Histograms or rootograms of the posterior class probabilities can be used
to assess the cluster structure [11], this is now the default plot method for
"flexmix" objects. Rootograms are very similar to histograms, the only
difference is that the height of the bars correspond to square roots of counts
rather than the counts themselves, hence low counts are more visible and
peaks less emphasized.

Usually in each component a lot of observations have posteriors close to
zero, resulting in a high count for the corresponing bin in the rootogram
which obscures the information in the other bins. To avoid this problem, all
probabilities with a posterior below a threshold are ignored (we use 0.0001).
A peak at probability 1 indicates that a mixture component is well seperated
from the other components, while no peak at 1 and/or significant mass in
the middle of the unit interval indicates overlap with other components.
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As example we use a 2-component mixture of Poisson regression models
with one independent variable, parameters θ1 = (2,−0.2)′ and θ2 = (1, 0.1)′,
and the exponential link function. Hence, given x the response y in group
k has a Poisson distribution with mean exp((1, x) · θk). A sample with 100
observations in each group is shown in Figure 1. For data stored in an R
data frame mydata the mixture model can be estimated using the commands

R> model1 = flexmix(y ~ x, data = mydata, k = 2,

+ model = FLXglm(family = "poisson"))

Classification: weighted

10 Log-likelihood: -458.3680

20 Log-likelihood: -458.1333

24 Log-likelihood: -458.1307

converged

The estimated parameters are

(Intercept) x

[1,] 1.922 -0.181

[2,] 0.997 0.106

which is close to the true parameters. The corresponding clusters can be seen
in the right panel of Figure 1.
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Figure 1: Poisson regression mixture with 2 components: true groups (left)
and groups found by model1 (right).

Issuing the command plot(model1) gives the rootograms shown in the
left panel of Figure 2. The obvious overlap between the clusters is easily
identified, the posteriors have almost a uniform distribution over the interval
[0, 1].
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Now assume that instead of 200 independent observations we have 2 mea-
surements each from 100 persons and that column id of mydata contains a
factor identifying the 100 persons. If we use the additional information the
EM algorithm needs only half the number of iterations to converge:

R> model2 = flexmix(y ~ x | id, data = mydata, k = 2,

+ model = FLXglm(family = "poisson"))

Classification: weighted

10 Log-likelihood: -889.0594

13 Log-likelihood: -889.0556

converged

The model2 parameter estimates

(Intercept) x

[1,] 1.96 -0.201

[2,] 1.04 0.101

are only slightly better than for model1, but now we can assign the observa-
tions with more confidence into the two classes as the posteriors are shifted
towards 0 and 1 (middle panel of Figure 2). If we have 4 repeated measure-
ments from 50 persons, this effect is of course even much more pronounced
(right panel of Figure 2) and there are only very few observations with pos-
teriors close to 0.5.
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Figure 2: Rootograms for models with no repeated measurements (left), 2
(middle) and 4 (right) measurements per person.

3 Kullbach-Leibler divergence between component

Histograms or rootograms of posteriors visualize with how much confidence
observations are assigned to clusters, but can not help to identify relation-
ships between clusters in case of more than 2 components. Consider the
smiley data from R package mlbench shown in Figure 3. Although only the
“eyes” are really Gaussian, we can use model-based clustering with Gaussians
to approximate the multimodal density (similar to a density estimate using
a Gaussian kernel).
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Figure 3: The smiley data (right) and a 9 component partition.
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Figure 4: Rootograms of the 9 components for the smiley data.
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The corrsponding rootograms are shown in Figure 4. Only components 7
and 8 (the “eyes”) do not overlap with any other cluster, all others have
a lot of posteriors much smaller than 1. One possibility to explore which
pairs of clusters overlap would be to use the brushing facilities of interactive
histograms as provided by the R package iplots [13]. Another way is to
compute pairwise distances between the clusters. The most common distance
measure for two distributions with densities f and g is the Kullbach-Leibler
(KL) divergence

KL(f, g) =

∫
f(x) (log f(x) − log g(x)) dx

(for discrete distributions the integral is replaced by a sum), which cannot
be solved analytically in many cases. However, the KL divergence between
mixture components k and l can be estimated as

KL(fk, fl) ≈
N∑

n=1

pnk (log pnk − log pnl)

pnk = πkf(yn|xn, θk)

Evaluating the sum is numerically problematic because most pnk are almost
zero. To get a stable estimate we remove all terms in the sum involving
densities below a threshold of ε = 0.01, which results in the KL divergence
matrix

1 2 3 4 5 6 7 8 9

1 0 14 . . 26 . . . .

2 28 0 . . . 18 . . .

3 . . 0 139 . . . . 41

4 . . 20 0 . . . . 15

5 18 . . . 0 . . . .

6 . 19 . . . 0 . . .

7 . . . . . . 0 . .

8 . . . . . . . 0 .

9 . . 18 109 . . . . 0

for the smiley data (rounded to integers). Dot entries correspond to compo-
nents where the regions with densities larger than ε do not overlap.

The KL divergence matrix can be represented by a directed graph with
one node for each component as shown in Figure 5. Overlapping clusters
correspond to connected nodes and modes of the mixture density to cliques of
the graph. For our 2-dimensional example data without covariates a natural
positioning of the graph nodes are the centers of the clusters. For higher-
dimensional data or regression mixtures this is not possible and we have to
restrict ourselves to general graph layout algorithms. Sammon mapping of
the KL divergences results in the right panel of Figure 5, where especially
the linear structure of the “mouth” is preserved correctly. Of course all
unconnected components of the graph are placed randomly with respect to
each other (and could as well be projected seperately).
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Figure 5: Graph corresponding to the KL divergences: node positions ac-
cording to cluster centers (left) and Sammon mapping (right). The circles
around the nodes are proportional to the cluster sizes.

4 Summary

Finite mixture models have become increasingly popular in many domains
of applications, yet diagnostic tools for fitted models (and especially corre-
sponding software) are much less developed. We have developed several new
tools available in the R package flexmix which allow the user to explore the
relationships between components of fitted mixture models.

All methods presented in this paper work off the densities or posterior
probabilities of the observations and thus do not depend on the dimension-
ality of the input space. While we have used simple 2-dimensional examples
to demonstrate the techniques, they can easily be used on high-dimensional
data sets or models with complicated covariate structures.

As a next step we will integrate the graph representation of the model into
more interactive visualization systems such that the user can easily explore
the distribution of background variables. E.g., if each mixture component
corresponds to a market segment, clicking on a node in the graph could show
the distribution of sales and sociodemographic data of the consumers in the
respective segment.
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