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Abstract: Finite mixture regression models are used for modelling unob-
served heterogeneity in the population. However, depending on the specifi-
cations these models need not be identifiable, which is especially of concern
if the parameters are interpreted. As bootstrap methods are already used
as a diagnostic tool for linear regression models, we investigate their use
for finite mixture models. We show that bootstrapping helps in revealing
identifiability problems and that parametric bootstrapping can be used for
analyzing the reliability of coefficient estimates.

1 Introduction

During the last decades it has become popular to include covariates into
mixture models leading to mixture regression models. Applications can be
found, e.g., in marketing [15] or for clinical trials [13], where unobserved
heterogeneity of the population is present in the data and should therefore
be taken into account in the modelling process.

The mixture regression models we consider can be formulated by

H(y|x,Θ) =

K∑

k=1

πkF (y|x, θk, φk), 0 < πk ≤ 1,

K∑

k=1

πk = 1

where H is the mixture distribution, x are the regressors, y the responses,
K the number of components, F the component distribution functions, θk

the regression coefficients, φk the (possible) dispersion parameters, πk the
prior class probabilities and Θ the vector of all parameters. If the component
distribution functions F are from the exponential family the generalized lin-
ear modelling framework [7] can be used leading to the so-called GLIMMIX
models [14].

A very popular way of estimating mixture models is the EM method,
which is a class of iterative algorithms for maximum likelihood estimation in
problems with incomplete data [2]. It has been shown that during the classical
EM algorithm the values of the likelihood are monotonically increased. The
likelihood is in general multimodal with a unique internal global maximum
(if the model is identifiable) and several local maxima. Unboundedness of
the likelihood might occur at the edge of the parameter space [5]. Then, the
solution found by the EM algorithm depends on its initialization.
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One possibility to initialize the EM algorithm is to use a partition of
the data into the number of requested segments [8]. This partition can be
generated randomly or by applying some clustering algorithm, such as, e.g.,
k-means. In order to ensure that the global maximum is found the EM
algorithm is in general run several times with different initializations.

The solution of the EM algorithm does also depend on the given data
set. For eliminating random effects of a given data set the results for dif-
ferent samples from the same data generating process (DGP) can be com-
pared. However, in applications there is in general only one data set available.
A remedy can be then to draw samples from the empirical distribution of the
given data set, i.e., bootstrapping [1]. Furthermore, the parametric bootstrap
can be used to assess the stability of the estimated parameters.

2 Identifiability

Finite mixture models are trivially not identifiable with respect to the order-
ing of the segments and to overfitting, as this leads to empty segments or
to several segments having the same parameters. By imposing constraints,
e.g., on the ordering of the components, these identifiability problems can be
eliminated.

It has been shown that except for these identifiability problems finite mix-
ture distributions of several popular continuous distributions are generically
identifiable, as e.g., the (multivariate) normal, gamma and exponential dis-
tribution [11], [12], [16]. A discrete identifiable distribution is the Poisson
distribution [10]. In contrast the discrete and the continuous uniform distri-
butions are not generically identifiable. The binomial and the multinomial
distributions are identifiable if the number of segments is limited with respect
to the repetition parameter [11], [3].

In a first analysis of mixture regression models it has been shown that
the identifiability of standard linear regression models is not guaranteed even
if the regressor matrix has full rank [4], which is also shown by the example
given in Section 3.1.1. Furthermore, multinomial mixture regression models
were analyzed in [3].

The identifiability of a mixture regression model depends on the distribu-
tion of the dependent variable, the maximum number of segments allowed,
the available information per object and the regressor matrix. With respect
to the regressor matrix identifiability problems might arise if there are only
a limited number of different covariate points and if in addition there is only
very limited information per person available. Such problems might occur in
applications because the covariates are often categorical variables, as, e.g.,
gender, promotion in marketing, likes/dislikes, test and control group in clin-
ical trials . . . . These variables are in general coded as dummy variables.
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3 Simulation

Two examples are presented where bootstrap methods are applied to finite
mixture models. A standard linear regression example is used for demon-
strating that bootstrap samples can reveal identifiability problems, whereas
a Poisson regression example shows that by parametric bootstrapping the
stability of the estimated coefficients can be challenged.

Our simulation was performed using the R environment for statistical
computing [9]. For EM estimation the contributed package flexmix [6] was
taken, which implements a general framework for finite mixtures of regression
models.

As the EM algorithm might be trapped in local maxima, we always made
five initializations with random partitions of the data and considered only the
best result with respect to the log-likelihood. Hence, the result of one “run”
of the EM algorithm refers to the best result out of these five repetitions.

3.1 Bootstrapping global maxima

We investigate the convergence of the EM algorithm to different global max-
ima with respect to a simple standard linear mixture regression example with
two global maxima.

3.1.1 Normal mixture example Assume we have a standard linear mix-
ture regression with one measurement per object and two different covariate
points x1 = (1, 0)′ and x2 = (1, 1)′. Furthermore, let the mixture consist of
two components with equal prior class probabilities.

The mixture regression can be formulated as

H(y|x,Θ) =
1

2
N(µ1, 0.1) +

1

2
N(µ2, 0.1)

where µi(x) = x′θi and N(µ, σ2) is the normal distribution.
As Gaussian mixture distributions are generically identifiable the means,

variances and prior class probabilities are uniquely determined in each co-
variate point given the mixture distribution. If we assume that µ1(x1) =
1, µ2(x1) = 2, µ1(x2) = −1 and µ2(x2) = 4, the two possible solutions for θ
are:

θ1
1 = (2, 2)′, θ1

2 = (1,−2)′ and

θ2
1 = (2,−3)′, θ2

2 = (1, 3)′

A balanced sample of length 100 has been generated and can be seen
together with the regression lines corresponding to the two different solutions
in Figure 1.

3.1.2 Simulation results As the EM algorithm converges nearly always
to the same global maximum for a given data set, we eliminate the influence
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Figure 1: Data and theoretical solutions.

of a given data set by using different samples from the DGP and several
bootstrap samples from a given data set. As the unidentifiability depends on
the equality of the prior class probabilities we disturb them slightly in order
to assess the sensitivity with respect to this parameter.

Thus, we generated 1000 balanced samples of size 100 from the mixture
regression model specified in Section 3.1.1 for the DGP analysis. For the
bootstrapping analysis we generated 20 samples in the same way and to each
data set we added 49 bootstrap samples of the same length. For the sensitivity
analysis of the prior class probabilities we applied the same setup except
that we used prior class probabilities (0.6, 0.4) and (0.7, 0.3) respectively and
the coefficients from solution 1 in Section 3.1.1 for sampling from the DGP.
We made 10 runs of the EM algorithm for each sample (from the DGP or
bootstrap) in order to show that if the sample is fixed the EM algorithm
converges in most of the cases to the same global maximum.

We decided that a result of the EM algorithm is equal to one of the
solutions if the maximum distance between the coefficients is less than 0.25
after ordering the components with respect to the intercept which is necessary
due to label switching. Then we determined how often which solution was
detected and how often during all ten runs only one, none and both of the
solutions were found (cp. Table 1).

It can be seen that the results are similar for bootstrapping and sampling
from the DGP except that the solutions are always found less often for the
BS samples than the DGP samples. Even though this behavior is intuitive, it
nevertheless causes that the percentage where none of the solutions are found
is considerably higher for the BS samples. If the prior class probabilities are
not equal but are 0.6 and 0.4, solution 2 is still found in about 20% of the runs
and it is the only solution found during 10 repeated runs for nearly the same
percentage. Because of the unequal priors solution 2 is only a local maximum,
but obviously the attraction area is large enough that it is relatively often
the best solution found in one run of the EM algorithm. The convergence
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Priors Equal 0.6/0.4 0.7/0.3
DGP BS DGP BS DGP BS

Overall fraction of
Solution 1 0.49 0.38 0.74 0.58 0.87 0.68
Solution 2 0.46 0.41 0.20 0.20 0.01 0.04

Fraction over 10 runs of
Only solution 1 0.45 0.36 0.72 0.56 0.87 0.66
Only solution 2 0.43 0.39 0.18 0.18 0.01 0.04
None of them 0.05 0.20 0.06 0.22 0.12 0.28
Both solutions 0.06 0.04 0.03 0.03 0.00 0.01

Table 1: Simulation results.
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Figure 2: Fraction of only solution 1 or 2 found separately for each of the
20 data sets generated from the DGP when BS.

to solution 2 gets less the more the prior class probabilities deviate from 0.5
such that for (0.7, 0.3) solution 2 is hardly ever found.

In Figure 2 the bootstrap results are analyzed separately for the 20 dif-
ferent data sets generated from the DGP. It can be seen how often which
solution was the only one found during 10 runs. Even though the results
are varying a lot for the different data sets, it can nevertheless be seen that
both valid solutions are found every time by bootstrapping the data for equal
priors and that for unequal priors there are data sets, where both solutions
are nearly equally often found.

3.2 Parametric bootstrapping

Given a solution bootstrapping from the estimated distribution can be used
for assessing the stability of the estimates. Note that we do not intend to
replace the standard tools for estimating standard deviations but we propose
that by additionally applying the parametric bootstrap it can be assessed if
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the standard asymptotic theory is appropriate. We use a Poisson mixture
regression model to analyze the application of this method to finite mixture
models.

3.2.1 Poisson mixture In [13] a Poisson mixture regression is fitted to
data from a clinical trial where the effect of intravenous gammaglobulin on
suppression of epileptic seizures is investigated. The data used were 140 ob-
servations from one treated patient, where treatment has started on the
28th day. In the regression there were three independent variables included:
treatment, trend and interaction treatment-trend. Treatment is a dummy
variable indicating if the treatment period has already started. Furthermore,
the number of parental observation hours per day were available and it is
assumed that the number of epileptic seizures per observation hour follows
a Poisson mixture distribution. The fitted mixture distribution consisted of
two components which can be interpreted as representing ’good’ and ’bad’
days of the patients.

The mixture model can be formulated by

H(y|x,Θ) = π1P (λ1) + π2P (λ2)

where λi = ex
′θi for i = 1, 2 and P (λ) is the Poisson distribution.

By reestimating this model we became nearly equal results than in [13].
Our solution for θi i = 1, 2 with the corresponding standard deviations is:

θ1 = (2.84, 1.30,−0.41,−0.43)′ with SD(θ1) = (0.23, 0.47, 0.09, 0.13)′

θ2 = (2.07, 7.43,−0.27,−2.28)′ with SD(θ2) = (0.09, 0.52, 0.04, 0.14)′

The size of the first component representing ’bad’ days is 0.28.

3.2.2 Simulation results We generated 100 samples from the estimated
mixture distribution with the same structure as the sample used in [13] and
applied the EM algorithm to them.

In Figure 3 the theoretical means are given together with the 95% confi-
dence intervals derived with standard asymptotic theory in both plots. The
means estimated for the bootstrap samples classified with respect to their
prior class probability have been separated. While the confidence intervals
for baseline and treatment period are of similar width, it can clearly be seen
from the bootstrap application that estimation in the baseline period is much
less stable than in the treatment period.

Furthermore, there can be component label switching observed. As the
dummy variable treatment is included with its interaction terms and the
component sizes are not separated enough, there are solutions which join
days with low numbers of seizure episodes during baseline period with those
with high numbers during treatment period.
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Figure 3: Theoretical means and estimated means of bootstrap samples.

4 Conclusion and future research
We showed that bootstrapping can be a valuable diagnostic tool when es-
timating finite mixture models as it can reveal identifiability problems and
give further insight into the stability of parameter estimates.

Obviously, there exist data sets where the attraction area to one global
maximum is that large that only this solution is found by using different
initializations to the EM algorithm. Bootstrapping can be used in such
a situation for revealing other global maxima. Furthermore, the stability
of a solution can be analyzed by parametric bootstrap. In an example it was
shown that by including categorical variables with their interaction terms la-
bel switching can also occur within components, because there are solutions
found where components are joined differently for the different values of the
factor due to the flexibility of the estimated model.

As computers are nowadays fast enough to repeat the EM algorithm
with different initializations and different input samples within a reasonable
amount of time, we recommend to use bootstrapping in addition to the al-
ready commonly accepted strategy to use different initializations, in order to
ensure a higher stability of the method with respect to the dependency on
a certain initialization and data set. Furthermore, by applying the parametric
bootstrap additional insights can be gained on the stability of the estimates
complementing the results derived with standard asymptotic theory.
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