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Summary. A general model class of finite mixtures of linear regression models is
presented. It allows (nested) varying and fixed effects for the regression coefficients
and the variance. A combination of varying and fixed effects is useful in applications
because it can be used to account for overdispersion as a nuisance parameter or
to reduce the number of estimated parameters. In addition concomitant variable
models for the component weights provide the possibility to partition the data into
the mixture components through other variables.

Maximum likelihood parameter estimation using the EM algorithm is outlined
and the implementation in R by extending package flexmix is described. In this pa-
per multinomial logit concomitant variable models are considered, but the provided
infrastructure allows to easily define new concomitant models and rapid prototyping
is possible if functionality already available in R can be used.
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1 Introduction

Finite mixtures of regression models are frequently used in applications to model
unobserved heterogeneity. Areas of application include biology, economics, marketing
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and medicine [WCP98; Ait99; MP00]. The unobserved heterogeneity in the data
might either be considered a nuisance parameter which has to be accounted for as,
e.g. in random intercept models [FL89], or the main interest is to detect underlying
groups in the data, as e.g. in market segmentation [WK01]. In both cases it might
be desirable to restrict certain coefficients to be equal over all components as this
reduces the number of estimated parameters, or the equality is a-priori assumed
due to expert knowledge. In the following we refer to the fixed parameters as fixed
effects and to the others, which vary between the components, as varying effects.
In addition we also introduce varying effects between groups of components where
equality of the coefficients is assumed for each group.

In model-based clustering, where the dependent variable has a multivariate Gaus-
sian distribution and the independent variables consist only of the intercept, differ-
ent models to restrict the dispersion parameters over the components have been
proposed which take the orientation, shape and volume of the variance-covariance
matrices into account [FR02]. It is therefore natural to also consider restrictions for
the variance parameters of the components for mixtures of linear regression models.

In order to characterize the different components of the mixture the use of con-
comitant variables has been suggested [DM88]. Different concomitant variable mod-
els are possible, but multinomial logit models are the most popular ones [WCP98].

In Section 2 the model class of finite mixtures of linear regression models with
varying and fixed effects is introduced and the maximum likelihood estimation of
the parameters using the EM algorithm [DLR77] is outlined. Section 3 presents
the model fitting in R [R D05] using package flexmix [Lei04]. The implementational
details which are especially of interest if the functionality shall be extended, e.g. by
specifying a different concomitant variable model, are given in Section 4.

2 Model specification

Finite mixtures of regression models are given by

H(y|x, w, Θ) =

KX
k=1

πk(w, α)Fk(y|x, ϑk)

where Θ denotes the vector of all parameters. The dependent variables are y, the
independent x and the concomitant w. Fk is the component specific distribution
function. The component specific parameters are given by ϑk. For the component
weights πk it holds ∀w that

KX
k=1

πk(w, α) = 1 ∧ πk(w, α) ≥ 0∀k (1)

where α are the parameters of the concomitant variable model.
In the following only finite mixtures where the component specific distribution

functions follow the Gaussian distribution are considered, i.e. Fk ≡ Φ. In this case
the component specific parameters are given by ϑk = (β′

k, σ2
k) where βk are the

regression coefficients and σ2
k denotes the variance.

Different concomitant variable models are possible to determine the component
weights [DM88]. The mapping function only has to fulfill condition (1). In the fol-
lowing we assume a multinomial logit model for the πk given by
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πk(w, α) =
ew′αkPK

u=1 ew′αu
∀k

with α = (α′
k)k=1,...,K and α1 ≡ 0.

The component specific parameters ϑk are either restricted to be equal over
all components, to vary between groups of components or for all components. The
varying between groups is referred to as varying effects with one level of nesting.
For the nesting a disjoint partition Kc, c ∈ C of the set K̃ := {1 . . . , K} is defined
for the regression coefficients which are accordingly split into three groups:

βk = (β′
1, β

′
2,c(k), β

′
3,k)′

where c(k) = {c ∈ C : k ∈ Kc}. Similar a disjoint partition Kv, v ∈ V , of K̃ is
defined for the variance parameters which gives:

σ2
k = (σ2

1 , σ2
2,v(k), σ

2
3,k)

where v(k) = {v ∈ V : k ∈ Kv}.

2.1 Parameter estimation

For maximum likelihood estimation of finite mixture models with a fixed num-
ber of components K, the EM algorithm is the most popular solution. The un-
observed component memberships z of the observations are treated as missing
values and the data are augmented by estimates of the component memberships,
i.e. the estimated a-posteriori probabilities p̂nk. For a sample of N observations
{(y1, x1, w1), . . . , (yN , xN , wN )} the EM-algorithm is given by:

E-step: Given the current parameter estimates Θ(i) in the i-th iteration, replace the
missing data z by the estimated a-posteriori probabilities

p̂nk = P (k|yn, xn, wn, Θ(i)) =
πk(wn, α(i))F (yn|xn, ϑ

(i)
k )

KX
u=1

πu(wn, α(i))F (yn|xn, ϑ(i)
u )

M-step: Given the estimates for the a-posteriori probabilities p̂nk (which are func-
tions of Θ(i)), obtain new estimates Θ(i+1) of the parameters by maximizing

Q(Θ(i+1)|Θ(i)) = Q1(ϑ
(i+1)|Θ(i)) + Q2(α

(i+1)|Θ(i))

where

Q1(ϑ
(i+1)|Θ(i)) =

NX
n=1

KX
k=1

p̂nk log(F (yn|xn, ϑ
(i+1)
k )) (2)

and

Q2(α
(i+1)|Θ(i)) =

NX
n=1

KX
k=1

p̂nk log(πk(wn, α(i+1))). (3)

Q1 and Q2 can be maximized separately. The maximization of Q1 gives new
estimates ϑ(i+1) and the maximization of Q2 gives α(i+1). Q1 is maximized using
weighted ML estimation of linear models and Q2 using weighted ML estimation
of multinomial logit models.
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If there are only varying effects for the component-specific parameters specified
they can be determined separately for each component. If there are also fixed or
nested varying effects, the vector of observations y = (yn)n=1,...,N has to be repli-
cated K times and the covariate matrix X = (Xfixed, Xnested, Xvarying) is given
by

Xfixed = 1K ⊗ (x′
1,n)n=1,...,N

Xnested = J � (x′
2,n)n=1,...,N

Xvarying = IK ⊗ (x′
3,n)n=1,...,N

1K is a vector of 1s of length K. J is the incidence matrix for each component
k = 1, . . . , K and each nesting group c ∈ C and hence is of dimension K × |C|.
IK is the identity matrix of dimension K × K. ⊗ denotes the Kronecker product,
� represents the Khatri-Rao product (i.e. the column-wise Kronecker product) and
xm,n are the covariates which correspond to the coefficients βm,. for m = 1, 2, 3.

The EM algorithm is initialized by randomly assigning a-posteriori probabilities
to each observation, e.g. by partitioning the data into the components using a clus-
ter algorithm. After each M-step the convergence of the algorithm is checked. The
algorithm is stopped if the change in the likelihood is smaller than a pre-specified ε
or the maximum number of iterations is reached. Furthermore, after each M-step the
average component sizes (over the given data points) are checked and components
which are smaller than a given (relative) minimum size are omitted in order to avoid
too small components where fitting problems might arise.

It has been shown that the values of the likelihood are monotonically increased
during the EM algorithm. On the one hand this ensures the convergence of the EM
algorithm if the likelihood is bounded, but on the other hand only the detection
of a local maximum can be guaranteed. Therefore, it is in general recommended to
repeat the EM algorithm with different initializations and choose as final solution
the one with the maximum likelihood.

3 Using the new functionality

We illustrate the fitting of a finite mixture of the model class presented in Section 2
on a simple artificial example. For each component we assume a linear regression
model with two covariates and an intercept. There are varying effects for the inter-
cept, nested varying effects for variable x1 and fixed effects for x2. The mixture has
three components and the regression model for each component is given by

Class 1: y = −8 + 10x1 + 5x2 + ε
Class 2: y = 1 + 10x1 + 5x2 + ε
Class 3: y = 3 + 5x2 + ε

with ε ∼ N(0, 1).
The component weights depend on the variable w and are determined by

Class 2: logit(π2(w, α)) = 2− 2w
Class 3: logit(π3(w, α)) = 2w
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Fig. 1. Sample with 200 observations from the artificial example.

The covariates x1 and x2 and the concomitant variable w are mutually independent.
x1 is sampled from the standard Gaussian distribution. x2 and w are each sampled
from {0, 1} with equal probability. In Figure 1 a sample with 200 observations from
this mixture is shown. The effect of the concomitant variable can clearly be seen
as for w = 0 class 2 is the largest with π = 0.79 and for w = 1 class 3 also with
π = 0.79.

The model has been implemented in R package flexmix (available from http:

//cran.R-project.org), see [Lei04] for details on using the software. After loading
the package itself and the data set NregFix, the component specific model is specified
using function FLXglmFix:

> Model <- FLXglmFix(fixed = ~x2, nested = list(k = c(2,

+ 1), formula = c(~x1, ~0)), varFix = TRUE)

Compared to FLXglm, which is already available in flexmix to specify component
models where only varying effects are allowed, there are additional arguments for
the fixed and nested varying effects of the regression coefficients and the variance.

We fit the model 5 times with the EM algorithm and return the best model with
respect to the log-likelihood. For the concomitant variable model we use function
FLXmultinom:

> fittedModel <- stepFlexmix(y ~ 1, model = Model,

+ nrep = 5, data = NregFix, concomitant = FLXmultinom(~w))

> fittedModel
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Call:

stepFlexmix(y ~ 1, model = Model, data = NregFix,

concomitant = FLXmultinom(~w), nrep = 5)

Cluster sizes:

1 2 3

32 74 94

convergence after 20 iterations

The returned object is a flexmix object and therefore, the already available functions
for inspecting the fitted model such as e.g. plot, summary or parameters can be used.

The fitted coefficients plus tests for significance are obtained with

> SummaryFittedModel <- summary(refit(fittedModel))

The coefficients are ordered such that the fixed coefficients are first, the nested
varying coefficients second and the varying coefficients last.

4 Implementational details

The implementation extends the R package flexmix and tries to conform to the main
aims of the package, which is easy extendibility and fast prototyping for new types
of mixture models. It uses S4 classes and methods [Cha98] as implemented in the R
package methods.

A new M-step driver is provided which fits finite mixtures of linear regression
models with fixed and nested varying effects for the coefficients and the variance.
The class "FLXglmFixmodel" returned by the driver FLXglmFix has the additional
slots with respect to "FLXglmmodel":

design: An incidence matrix indicating which columns of the model matrix are used
for which component.

nestedformula: An object of class "FLXnested" containing the formula for the nested
effects of the regression coefficients and the number of components in each Kc,
c ∈ C.

fixed: The formula for the fixed effects of the regression coefficients.
variance: A logical indicating if varying effects should be estimated or a vector

specifying the grouping of the nested effects for the variance.

The difference between estimating finite mixtures including only varying effects using
models specified with FLXglm and those with varying and fixed effects using function
FLXglmFix is hidden from the user, as the user interface for the function flexmix

is the same. The fitted model is of class "flexmix" and can be analyzed using
the same functions as for any model fitted using package flexmix. The methods
used are the same except if the slot containing the model is accessed and method
dispatching is made via the model class. New methods are provided for models
of class "FLXglmFixmodel" for the following functions: flexmix, the fitter function
FLXfit and the functions refit, fitted and predict which can be used for analyzing
the fitted model.
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The implementation allows repeated measurements by specifying a grouping
variable in the formula argument of the flexmix call. However, multiple independent
responses are not possible at the moment. Furthermore, it has to be noticed that
the formulas of the different effects are evaluated by updating the formula of the
random effects successively with the formula of the fixed and then of the nested
varying effects. This ensures that if a random effect is fitted to the intercept, the
model matrix of a factor includes only the remaining columns for the fixed effects
to have full column rank. However, this updating scheme makes it impossible to
estimate fixed effects for the intercept while fitting random effects to a factor.

For representing concomitant variable models the class "FLXconcomitant" is
defined. It specifies how the concomitant model is fitted and has the following slots:

fit: A function (x, y, ...) returning the fitted values for the component weights during
the EM algorithm.

df: A function (x, k, ...) returning the degrees of freedom used for estimating the
concomitant model given the model matrix x and the number of components k.

x: A matrix containing the data of the concomitant variables.
formula: Formula for determining the model matrix x.
name: A character string describing the model.

Two constructor functions for concomitant variable models are provided. FLXcon-
stant is for constant component weights without concomitant variables and FLX-

multinom for multinomial logit models. FLXmultinom has its own class which ex-
tends "FLXconcomitant" and has additional slots for the fitted coefficients and a
refit function. The multinomial logit models in equation (3) are fitted using package
nnet [VR02].

5 Summary & outlook

A general model class for fitting finite mixtures of linear regression models has
been presented. The regression coefficients can be modelled using fixed and (nested)
varying effects. A similar structure is possible for the variances. For characterizing
the components concomitant variables are introduced where the component mem-
bership is determined using multinomial logit models. The parameter estimation is
outlined and the implementation in R extending package flexmix is presented and
its application demonstrated on an artificial example.

In the future we want to extend this model class to allow for generalized linear
models [MN89] in the components. For this purpose, other distributions have to be
possible for the dependent variable. Finally, the same functionality as FLXglm shall
be provided for varying and fixed effects. Furthermore, it would be interesting to
consider other concomitant variable models, as e.g. multinomial probit models or
constant component memberships for groups induced by the concomitant variables.
This extension should be easily possible by providing a new constructor function for
the concomitant variable model represented by an object of class "FLXconcomitant"
which specifies the fitting function given the concomitant variable model matrix and
the a-posteriori probabilities.

In addition, it would be interesting to consider different estimation methods. For
example the use of vertex direction algorithms [Böh95] to provide good initial values
for the EM algorithm could be investigated.
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