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Abstract — Finite mixture models are a popular tool
for modelling unobserved heterogeneity. As these models
are in general very complex, it is essential to have suitable
methods for model diagnostics which allow e.g. to check
for model identifiability, model fit and possible model re-
strictions. In this paper we propose to use the paramet-
ric bootstrap for model diagnostics and to visualize the
bootstrap results using parallel coordinate plots. The ap-
plication of the proposed methods is illustrated using an
artificial example.

I. Introduction

This paper outlines the use of the parametric boot-
strap for finite mixture model diagnostics as a special
case of the general framework presented in [1], which
encompasses different resampling methods.

II. Finite mixture models

The finite mixture models considered in this paper
are given by

H(y|x,Θ) =
K∑

k=1

πkF (y|x,ϑk)

where H is the mixture distribution, x is an optional
vector of regressors, y the vector of responses, K the
number of components, F the component distribu-
tion function, ϑk the component specific parameters
and πk the subcomponent probabilities. Θ is the vec-
tor of all parameters with Θ ∈ Ω, where Ω denotes
the space of admissible parameters for K-component
mixtures. The restrictions on the parameters are

– 0 < πk ≤ 1, ∀k = 1, . . . ,K,

–
∑K

k=1 πk = 1, and
– ϑk 6= ϑl, ∀l 6= k with l, k ∈ {1, . . . ,K}.

Given the number of components K and the com-
ponent distribution function F , AK = AK(F,Ω) de-
notes the set of all finite mixture models with K com-
ponents and mixture distributions of form H(·|·,Θ)

In a frequentist framework the Expectation-
Maximization (EM) algorithm is the most popu-
lar method to determine the model a(XN ) ∈ AK

with the maximum likelihood. As the EM algorithm
might be trapped in a local optimum, it is in general
recommended to choose the best solution of several

runs with different starting values in order to detect
the global maximum.

III. Model diagnostics using
resampling methods

Resampling methods are already a popular technique
for model diagnostics of linear and generalized linear
models. The use of the parametric bootstrap for
finite mixture models has been proposed for

– determining the number of components [2, 3]
– estimating standard deviations [4] and
– checking for identifiability problems [5].
The parametric bootstrap procedure can be out-

lined by:
1. Estimate â(XN ) ∈ AK and determine a corre-

sponding parameterization Θ̂ ∈ Ω.
2. Sample B bootstrap samples X b

N (b = 1, . . . , B)
independently with the parametric bootstrap:
X b

N ∼ â(XN ).
3. Fit models to the bootstrap samples using the

EM algorithm with either
(a) random initialization: âb(X b

N ) ∈ AK0 with
possibly K0 6= K, or

(b) initialization in Θ̂: âb(X b
N , Θ̂) ∈ AK0 with

K0 = K.
Depending on whether global or local characteris-
tics of the fitted model are analyzed either random
initialization or initialization in the solution is used.
Random initialization introduces the problem of label
switching which has already received some attention
in Bayesian analysis and which makes it necessary
to suitably relabel the components before making
component-specific analyses.

IV. Visualization

Parallel coordinate plots are a visualization tech-
nique for hyperdimensional data [6]. For visualizing
the bootstrap results the data used are the parame-
ter estimates of each component of the models fitted
to each bootstrap sample. This visualization tech-
nique can be enhanced by

– adding the confidence intervals for the parame-
ter estimates derived using standard asymptotic
theory and



– using different colors or line types for each of
the components after appropriate relabelling,
e.g. by imposing an ordering constraint on one
of the parameters.

V. Example

All computations are done in R [7] using package
flexmix [8]. For illustration we use an artificial exam-
ple of a finite mixture of Gaussian regression models
which is not identifiable due to intra-component la-
bel switching [9]. It is assumed that the following
mixture distribution consisting of three components
has been fitted to a sample with 50 observations for
each value of x where x is a binary variable with
values {0, 1}:

Class 1: π1 = 0.45, y = x + ε
Class 2: π2 = 0.45, y = 2 + x + ε
Class 3: π3 = 0.10, y = −2 + ε

with ε ∼ N(0, 0.1).
The parametric bootstrap procedure is applied to

this model with B = 200. As identifiability problems
are investigated, the EM algorithm is randomly ini-
tialized and the best solution of 5 repetitions is re-
ported. The fitted parameters are visualized in Fig-
ure 1. It can clearly be seen that the estimated pa-
rameters cluster around three distinct values for the
coefficient of the intercept, while they cluster around
a single point for σ. The identifiability problem is in-
dicated by the different bundles which connect the
estimates of the coefficients of the intercept to those
of x.
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Figure 1: Parallel coordinate plot of the parameters
fitted to 200 parametric bootstrap samples. The line
types are according to an ordering constraint on the
intercept.

VI. Conclusions & future work

The presented procedure is based on resampling
methods and can be seen as complementary to meth-
ods using standard asymptotic theory. In order to
facilitate the interpretation of the results a visual-
ization method is proposed which uses parallel coor-
dinate plots.

In the future these methods shall be implemented
by extending the R package flexmix. As flexmix al-
lows the user to easily extend available functional-
ity and develop new mixture models, the diagnostic
tools can be used for all these models as this ap-
proach is general enough to be applied to different
kinds of mixture models.
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