Chapter 1

Introduction
Introduction

An Introductory R Session
Demand for economics journals

Data set from Stock & Watson (2007), originally collected by T. Bergstrom, on subscriptions to 180 economics journals at US libraries, for the year 2000.

10 variables are provided including:

- subs – number of library subscriptions,
- price – library subscription price,
- citations – total number of citations,

and other information such as number of pages, founding year, characters per page, etc.

Of interest: relation between demand and price for economics journals. Price is measured as price per citation.
Demand for economics journals

Load data and obtain basic information:

```r
R> library("AER")
R> data("Journals", package = "AER")
R> dim(Journals)
[1] 180 10
R> names(Journals)
[1] "title" "publisher" "society" "price"
[5] "pages" "charpp" "citations" "foundingyear"
[9] "subs" "field"
```

Plot variables of interest:

```r
R> plot(log(subs) ~ log(price/citations), data = Journals)
```

Fit linear regression model:

```r
R> j_lm <- lm(log(subs) ~ log(price/citations), data = Journals)
R> abline(j_lm)
```
Demand for economics journals
Demand for economics journals
Demand for economics journals

R> summary(j_lm)

Call:
 lm(formula = log(subs) ~ log(price/citations), data = Journals)

Residuals:
 Min 1Q Median 3Q Max
-2.7248 -0.5361 0.0372 0.4662 1.8481

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7662 0.0559 85.20 <2e-16
log(price/citations) -0.5331 0.0356 -15.00 <2e-16

Residual standard error: 0.75 on 178 degrees of freedom
Multiple R-squared: 0.557, Adjusted R-squared: 0.555
F-statistic: 224 on 1 and 178 DF, p-value: <2e-16
Determinants of wages

Data: random subsample of cross-section data from the May 1985 Current Population Survey.

Model: wage equation in semi-logarithmic form (with regressors education and quadratic polynomial in experience).

Comparison: OLS and LAD estimator (and further regression quantiles).

In R:

- use `lm()` again for more complex model,
- use `rq()` from `quantreg` for quantile regression (with the same type of interface),
- employ R’s graphics capabilities for visualization and graphical comparison.
Determinants of wages

Load data:

```R
R> data("CPS1985", package = "AER")
R> cps <- CPS1985
```

OLS regression:

```R
R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) +
+ education, data = cps)
```

Fitted mean function:

```R
R> cps2 <- data.frame(education = mean(cps$education),
+ experience = min(cps$experience):max(cps$experience))
R> cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2,
+ interval = "prediction"))
```

Visualization:

```R
R> plot(log(wage) ~ experience, data = cps)
R> lines(fit ~ experience, data = cps2, col = 2)
```
Determinants of wages
Determinants of wages

Quantile regression for $\tau = 0.2, 0.35, 0.5, 0.65, 0.8$:

```r
R> library("quantreg")
R> cps_rq <- rq(log(wage) ~ experience + I(experience^2) +
+ education, data = cps, tau = seq(0.2, 0.8, by = 0.15))
```

Fitted quantile regressions:

```r
R> cps2 <- cbind(cps2,
+ predict(cps_rq, newdata = cps2))
```

Visualization:

```r
R> plot(log(wage) ~ experience, data = cps)
R> for(i in 6:10) lines(cps2[,i] ~ experience,
+ data = cps2, col = 2)
```

Graphical comparison of OLS and regression quantiles:

```r
R> plot(summary(cps_rq))
```
Determinants of wages

\[\log(\text{wage}) \]

\[\text{experience} \]
Determinants of wages

(Intercept)

experience

I(experience^2)

education

Christian Kleiber, Achim Zeileis © 2008–2013

Applied Econometrics with R – 1 – Introduction – 12 / 49
Determinants of wages

Bivariate kernel density estimate of experience and log(wage):

R> library("KernSmooth")
R> cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)),
+ bandwidth = c(3.5, 0.5), gridsize = c(200, 200))

Visualize with fitted OLS regression and confidence bounds:

R> image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat,
+ col = rev(gray.colors(10, gamma = 1)),
+ xlab = "experience", ylab = "log(wage)"
R> box()
R> lines(fit ~ experience, data = cps2)
R> lines(lwr ~ experience, data = cps2, lty = 2)
R> lines(upr ~ experience, data = cps2, lty = 2)
Determinants of wages
Introduction

Getting Started
R system for statistical computing and graphics

- R project homepage: http://www.R-project.org/,
- open-source software project,
- released under the GNU General Public License (GPL), Version 2,
- full sources available online from Comprehensive R Archive Network (CRAN),
- binary versions for Microsoft Windows, various flavours of Linux (including Debian, Red Hat, SUSE, and Ubuntu), and for MacOS X,
- CRAN has a world-wide network of mirrors, see: http://CRAN.R-project.org/mirrors.html.
Installation

Installation of binary versions is straightforward:

- go to CRAN, pick up the version for your operating system, follow instructions in readme file,
- Microsoft Windows: download and run setup .exe file,
- Mac OS X: Installer package .pkg for base system and platform-specific GUI, along with additional programming tools (as disk image .dmg files),
- Linux: pre-packaged binaries for various flavors (.deb or .rpm files), also interfaced in various update managers (apt, yum, etc.).
Installation

Installation from source:

- possible on numerous (and also exotic) platforms,
- easy when compilers ship with the operating system (e.g., Unix/Linux) in the usual configure/make/install steps,
- compilers are also available for Windows but require some more installation/configuration.

Manual: *R Installation and Administration.*
R is highly extensible by means of *packages*:

- packages can contain R code, source code (e.g., C, Fortran), data, manual pages, further documentation, examples, demos, . . .
- a package can *depend* on other packages (that need to be available for using the package),
- “base” packages: contained in the R sources,
- “recommended” packages: included in every binary distribution,
- “contributed” packages: available from the CRAN servers (currently about 5,000) at http://CRAN.R-project.org/web/packages/
Packages

Installing and loading packages:

- if connected to the internet, simply type `install.packages("AER")` for installing package AER,
- additionally on Windows and Mac: GUI installer menus,
- packages are installed in libraries (= collections of packages),
- library paths can be specified (see `?library`),
- packages are loaded by the command `library()`, e.g., `library("AER")`,
- `library()` lists all currently installed packages.

CRAN task views: provide overview of packages for certain tasks (e.g., econometrics, finance, social sciences, Bayesian statistics, ...). http://CRAN.R-project.org/web/views/
User interfaces and development environments

Base R: Command line interface (CLI), possibly enhanced by some limited graphical user interface (GUI) capabilities on Windows and Mac.

Additionally:
- Various integrated development environments (IDEs).
- Various GUIs interfacing certain statistical functionality.

Popular choices:
- Basic-statistics GUI: R Commander is an R package providing an extensible GUI intended primarily for introductory statistics. See http://CRAN.R-project.org/package=Rcmdr.
Introduction

Working with R
Philosophy

In most other econometrics packages: an analysis leads to a large amount of output containing information on estimation, model diagnostics, specification tests etc.

In R:

- analysis is broken down into a series of steps,
- intermediate results are stored in objects,
- minimal output at each step (often none),
- objects can be manipulated and interrogated to obtain the information required (e.g., print(), summary(), plot()).

Fundamental design principle: “Everything is an object.”

Examples: vectors and matrices are objects, but also functions and even function calls ⇒ facilitates programming tasks.
Handling objects

List all objects in the global environment (i.e., the user’s workspace):

R> objects()

[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] "cps_lm" "cps_rq" "i" "j_lm"

More objects are available in the attached packages.

R> search()

[1] ".GlobalEnv" "package:KernSmooth"
[5] "package:AER" "package: survival"
[7] "package:splines" "package: strucchange"
[9] "package:sandwich" "package: lmtest"
[17] "package: utils" "package: datasets"
[19] "package: methods" "Autoloads"
[21] "package: base"
Handling objects

The global environment "\.GlobalEnv" is always at the first position.

Several attached packages including the base package at its end.

R> objects("package:base")

shows the names of more than thousand objects defined in base (including the function objects()).

Objects can easily be created by assigning a value to a name, using the assignment operator <-.
Handling objects

Creating objects:

```r
R> x <- 2
R> x
[1] 2
R> objects()
[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] "cps_lm" "cps_rq" "i" "j_lm" "x"
```

Removing objects with `remove()` or `rm()`:

```r
R> remove(x)
R> objects()
[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] "cps_lm" "cps_rq" "i" "j_lm"
```
Calling functions

For a function, `foo()` say:

- Typing an objects name at the prompt, `foo`, prints the object.
- For a function this prints the source code.
- If it is called with parentheses, `foo()`, it is a function call.
- If there are no arguments or all have defaults, `foo()` is a valid function call.
- A function call may use the arguments in any order, provided the name of the argument is given.
- If names of arguments are not given, R assumes they appear in the order of the function definition.
- If an argument has a default, it may be left out in a function call.
Calling functions

Example: The function `log()` has two arguments, `x` (a numeric scalar or vector), `base` (the base with respect to which logarithms are computed).

```r
R> log(x = 16, base = 2)
[1] 4
```

The following calls all yield equivalent output:

```r
R> log(16, 2)
R> log(x = 16, 2)
R> log(16, base = 2)
R> log(base = 2, x = 16)
```
Every object has a class that can be queried using class().

For each class, certain methods to generic functions can be available, e.g., summary() and plot().

Examples:

- “data.frame”: a list with a certain structure (preferred format for holding data),
- “lm”: linear-model objects (returned by lm()).
Classes and generic functions

`summary()` for

- “data.frame”: numeric summary (e.g., mean, quantiles, or frequency table) for each variable,
- “lm”: standard regression output (coefficients, standard errors, Wald tests, etc.).

`plot()` for

- “data.frame”: pairs of scatterplots,
- “lm”: basic diagnostic plots.
Quitting R

One exits R by using the `q()` function:

```r
R> q()
```

R asks whether to save the workspace:

- **n (no):** exit R without saving anything,
- **y (yes):** save all currently defined objects in `.RData` and the command history in `.Rhistory`, both in the working directory.
File management

Working directory:
- query with `getwd()`,
- change with `setwd()
- if available, `.RData` and/or `.Rhistory` are loaded upon startup,
- `dir()` lists available files.

More generally:
- directories can be listed with `dir()
- saved workspaces can be loaded using `load()
- R objects can be saved (in binary format) by `save()`.
Introduction

Getting Help
Help pages

Documentation: The help page for any function or data set can be accessed using either `?` or `help()`:

```
R> ?options
R> help("options")
```

Examples: At the bottom of a help page, there are typically practical examples of how to use that function. These can easily be executed:

```
R> example("options")
R> example("lm")
```
Searching for help

If the exact name of a command is not known, the functions to use are `help.search()` and `apropos()`.

`help.search()` returns help files with aliases or concepts or titles matching a “pattern” using fuzzy matching. For example, searching for the pattern “option” will yield a (long) list of help pages, including the function `options()` used above.

```
R> help.search("option")

options(base)    Options    Settings
```

`apropos()` lists all functions whose names include the pattern entered. As an illustration,

```
R> apropos("help")

[1] "help"       "help.request" "help.search" "help.start"
```
Vignettes

More advanced: Vignettes are PDF files generated from integrated files containing both R code and documentation in \LaTeX{} format \(\Rightarrow\) all commands can be extracted and executed, reproducing the analysis.

Typically less technical information and written more in the style of tutorials.

For an example, see

\begin{verbatim}
R> vignette("strucchange-intro", package = "strucchange")
\end{verbatim}

These slides and accompanying R scripts are actually written using the same tools.
Demos

A demo is an interface to run some demonstration R scripts. Type

R> demo()

for a list of available topics.

Examples: "graphics", "lm.glm".

For beginners, running

R> demo("graphics")

is recommended.
R also comes with a number of manuals:

- An Introduction to R
- R Data Import/Export
- R Language Definition
- Writing R Extensions
- R Installation and Administration
- R Internals
FAQs

CRAN hosts several collections of frequently asked questions (FAQs).
http://CRAN.R-project.org/faqs.html

R FAQ: useful information for all platforms (Linux, Mac, Unix, Windows).
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html

R Mac OS X FAQ: additional Mac-specific information.
http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html

R Windows FAQ: additional Windows-specific information.
http://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
The R Journal: online journal launched in 2009, following up on the R News newsletter launched in 2001, published about two times per year. Features include recent developments in R, a “programmer’s niche”, and examples analyzing data with R.
http://journal.R-project.org/

Journal of Statistical Software: open-access journal that publishes articles and code snippets (as well as book and software reviews) on the subject of statistical software and algorithms. It has a growing number of publications on R packages, a special volume on Econometrics in R was published in Volume 27 (2008).
http://www.jstatsoft.org/
Publications

Books: rapidly growing list of books on R or on statistics using R. Prominent examples include

Introduction

The Development Model
Development model

As R is an open-source project, its development model is quite different from many other econometrics software packages.

Extensibility: a key feature in R’s success is the extensibility through packages. These can contain everything that the base system contains:

- R code (obviously),
- code in compiled languages (such as C, C++, or Fortran),
- data sets, demo files, test suites, vignettes, or further documentation.

Every R user can easily become an R developer by submitting his or her packages to CRAN.
Development model

Base system: Unlike the CRAN packages, base R is maintained by the R core team:

- major releases (i.e., versions x.y.0) annually,
- free read access to the development version in the SVN repository.

Version control: SVN stands for Subversion, see http://subversion.apache.org/
Mailing lists

For communication between R users and developers, two means are particularly useful: CRAN packages (see above) and various mailing lists.

R-help: asking for help on using R.

R-devel: discussing issues related to the development of R.

Furthermore, bugs can be reported and feature requests made. The posting guide discusses some good strategies for doing this effectively. http://www.R-project.org/posting-guide.html

Special interest groups: SIGs are mailing lists for special topics, including a list devoted to finance and (financial) econometrics: R-SIG-Finance.
Introduction

A Brief History of R
History of S

1976 John Chambers and co-workers at Bell Labs begin work on a project that will become S (S1).

1981 Licenses for a new portable Unix version of S outside Bell Labs (S2, brown and blue book).

1988 Statistical software package S-PLUS based on S.

1992 Object orientation and statistical modeling toolbox included (S3, white book).

1993 Exclusively licensed to MathSoft (now Insightful).

2004 S implementation sold to Insightful.
History of R

1991 Ross Ihaka and Robert Gentleman begin work on a project that will ultimately become R.

1993 First binary copies of R on Statlib.

1995 R release of sources under the GPL.

1997 R development core team is formed.

1998 Comprehensive R Archive Network (CRAN).

1999 First DSC meeting in Vienna, first R core meeting.

2000 R 1.0.0 is released.

2001 R News launched.

2002 R Foundation established.

2004 First useR! conference in Vienna.

2004 R 2.0.0 is released.

2007 R-Forge server launched.

2013 R 3.0.0 is released.
R in econometrics

- Racine and Hyndman (2002), “Using R to Teach Econometrics”, *Journal of Applied Econometrics*, 17, 175–189. (Uses R 1.3.1.)
- Kleiber and Zeileis (2008), *Applied Econometrics with R*, Springer-Verlag, New York. (Uses R 2.7.0.)