

Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch

http://eeecon.uibk.ac.at/~zeileis/

Overview

- Motivation and challenges
- R package exams
- Exercises
- Exams
 - Combination of exercises
 - PDF output
 - HTML output
 - XML for Moodle or OLAT
- Discussion

Motivation and challenges

Motivation:

- Introductory statistics and mathematics courses for business and economics students at WU Wien and Universität Innsbruck.
- Courses are attended by more than 1,000 students per semester.
- Several lecturers teach lectures and tutorials in parallel.
- Need for integrated teaching materials: Presentation slides, collections of exercises, exams, etc.

Challenges:

- Scalable exams: Automatic generation of a large number of different exams, both written and online.
- Associated self-study materials: Collections of exercises and solutions from the same pool of examples.
- Joint development: Development and maintenance of a large pool of exercises in a multi-author and cross-platform setting.

R package exams

Design principles of package exams:

- Each exercise template (also called "exercise" for short) is a single Sweave file (.Rnw) interweaving R code for data generation and LATEX code for describing question and solution.
- Exams can be generated by randomly drawing different versions of exercises from a pool of such Sweave exercise templates. The resulting exams can be rendered into various formats including PDF, HTML, Moodle XML, or QTI 1.2 (for OLAT or OpenOLAT).
- Solutions for exercises can be multiple/single-choice answers, numeric values, short text answers, or a combination thereof (cloze).

Exercises

Exercise templates: Sweave files composed of

- R code chunks (within <<>>= and @) for random data generation.
- Question and solution descriptions contained in LATEX environments of corresponding names. Both can contain R code chunks again or include data via \Sexpr{}.
- Metainformation about type (numeric, multiple choice, ...), correct solution etc. In LATEX style but actually commented out.

Simple geometric example:

- Computation of the distance between two points *p* and *q* in a Cartesian coordinate system (via the Pythagorean formula).
- Template dist.Rnw contained in **exams** package.
 - R> library("exams")
 - R> exams2pdf("dist.Rnw")

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))</pre>
q <- c(sample(4:5, 1), sample(1:5, 1))</pre>
sol <- sqrt(sum((p - q)^2))
0
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{question}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2 (Pythagorean formula).
Hence d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
  \sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}
   = \sum r(sol, digits = 3)$.
[...]
\end{solution}
%% \extype{num}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exname{Euclidean distance}
%% \extol{0.01}
```

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))</pre>
q <- c(sample(4:5, 1), sample(1:5, 1))</pre>
sol <- sqrt(sum((p - q)^2))
0
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{auestion}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2 (Pythagorean formula).
Hence d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
  \sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}
   = \sum r(sol, digits = 3)$.
[...]
\end{solution}
%% \extype{num}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exname{Euclidean distance}
%% \extol{0.01}
```

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))
q <- c(sample(4:5, 1), sample(1:5, 1))
sol <- sqrt(sum((p - q)^2))
@
```

```
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{question}
```

```
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
$d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2$ (Pythagorean formula).
Hence $d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
    \sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}
    = \Sexpr{round(sol, digits = 3)}$.
[...]
\end{solution}
%% \extpye{num}
%% \extpye{num}
%% \extople(solution{Sexpr{round(sol, digits = 3)}}
%% \extople(solution{Sexpr{round(sol, digits = 3)}}
%% \extople(solution{Sexpr{round(sol, digits = 3)}})
%% \extople(solution{Sexpr{round(sol, digits = 3)})
%% \extople(solution{Sexpr{round(sol, digits = 3)})})
%% \extople(solution{Sexpr{round(sol, digits = 3)}))
%% \ex
```

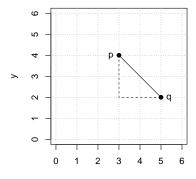
```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))
q <- c(sample(4:5, 1), sample(1:5, 1))</pre>
sol <- sqrt(sum((p - q)^2))
0
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{auestion}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2 (Pythagorean formula).
Hence d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
  \sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}
   = \sum r(sol, digits = 3)$.
[...]
\end{solution}
%% \extype{num}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exname{Euclidean distance}
%% \extol{0.01}
```

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))
q <- c(sample(4:5, 1), sample(1:5, 1))</pre>
sol <- sqrt(sum((p - q)^2))
0
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{auestion}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2 (Pythagorean formula).
Hence d = \sqrt{p_1 - q_1}^2 + (p_2 - q_2)^2 =
  \sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}
   = \Sexpr{round(sol, digits = 3)}$.
[...]
\end{solution}
%% \extype{num}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exname{Euclidean distance}
%% \extol{0.01}
```

Exercises: LATEX output of Sweave("dist.Rnw")

```
\begin{question}
What is the distance between the two points
p = (3, 4) and q = (5, 2)
in a Cartesian coordinate system?
\end{question}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2 (Pythagorean formula).
Hence d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
  sqrt{(3 - 5)^2 + (4 - 2)^2}
   = 2.828.
\includegraphics{dist-002}
\end{solution}
%% \extype{num}
%% \exsolution{2.828}
%% \exname{Euclidean distance}
%% \extol{0.01}
```

Exercises: PDF output of exams2pdf("dist.Rnw")


Problem

What is the distance between the two points p = (3, 4) and q = (5, 2) in a Cartesian coordinate system?

Solution

The distance *d* of *p* and *q* is given by $d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2$ (Pythagorean formula).

Hence
$$d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} = \sqrt{(3 - 5)^2 + (4 - 2)^2} = 2.828.$$

х

Exams: Combination of exercises

Idea: An exam is simply a list of exercise templates. For example, using statistics exercise templates contained in **exams**.

```
R> myexam <- list(
+ "boxplots",
+ c("confint", "ttest", "tstat"),
+ c("anova", "regression"),
+ "scatterplot",
+ "relfreq"
+ )
```

Draw random exams:

- First randomly select one exercise from each list element.
- Generate random numbers/input for each selected exercise.
- Combine all exercises in output file(s) (PDF, HTML, ...).

Exams: Combination of exercises

Interfaces: Generate multiple exams via exams2pdf(), exams2html(), exams2moodle(), exams2qti12(),...

Workhorse function: Internally, all interfaces call xexams() that handles (temporary) files/directories and carries out four steps.

- Weave: Each of the selected exercise .Rnw files is weaved into a .tex file. Default: The standard Sweave() function.
- Pead: Each resulting .tex file is read into an R list with question, solution, and metainformation. Default: read_exercise().
- Transform: Each of these exercise-wise list objects can be transformed, e.g., by converting LATEX text to HTML. Default: No transformation.
- Write: The (possibly transformed) lists of exercises, read into R for each exam object, can be written out to one ore more files per exam in an output directory. Default: No files are written.

Exams: PDF output

exams2pdf():

- The write step embeds all questions/solutions into (one or more) master LATEX template(s).
- LATEX templates control whether solutions are shown, what the title page looks like, etc.
- Compilation of each exam via pdfLTEX (called from within R).

A single exam is popped up in a PDF viewer:

```
R> exams2pdf(myexam, template = "exam")
```

Multiple exams are written to an output directory:

```
R> odir <- tempfile()
R> set.seed(1090)
R> exams2pdf(myexam, n = 3, dir = odir,
+ template = c("exam", "solution"))
```

Exams: PDF output

R University Statistics Exam 2013-07-07 Exam 10 00001	Statistics Exam: 00001 2 1. In Pigers 1. The distribution of a workship years by the samples 3 and 5 are represented by paged backsta, Witch of a statisticary addressing as a connect? (Common?) The same method as well and connect of addressing and connect? (Common?) The same method as well and connect of addressing and connect? (Common?) The same method as well and connect of addressing and connect? (Common?) The same method as well and connect of addressing and connect of connect.
bana:	
Student ID:	
Spature.	
1. (a) (b) (c) (d) (e)	Figure 1: Parallel boxplots.
	<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><text></text></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>
	 Pigure 2 aboves a scatterplot. Which of the billowing assuments are connect?

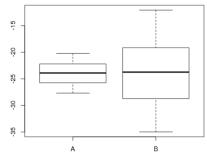
Exams: HTML output

exams2html():

- In the *transform* step, LATEX text is converted to HTML using Ian H. Hutchinson's **TtH** (TEX to HTML) package.
- Mathematical notation is either represented using MathML (ttm), requiring a suitable browser (e.g., Firefox), or plain HTML (tth).
- No LATEX installation needed, but also limited to LATEX commands supported by TtH.
- Links to dynamically generated data can be easily included, e.g., \url{mydata.rda}.
- The *write* step embeds everything into HTML templates and writes out one HTML file per exam.

A single exam is popped up in a browser, multiple exams are written to an output directory:

```
R> set.seed(1090)
R> exams2html(myexam, n = 3, dir = odir)
```


Exams: HTML output

<u>File E</u> dit <u>V</u> iew History <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		
Exam 1 +		~
<pre>file:///tmp/RtmpjjlbQz/file2c8d10dbc901/plain1.html</pre>	ි 🗸 🕲 📴 DuckDuckGo	۵ 🖗

Exam 1

1. Question

In Figure the distributions of a variable given by two samples (A und B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either about correct or clearly wrong.)

- a. The location of both distributions is about the same.
- b. Both distributions contain no outliers.
- c. The spread in sample A is clearly bigger than in B.
- d. The skewness of both samples is similar.
- e. Distribution A is about symmetric.

Exams: Moodle XML


exams2moodle():

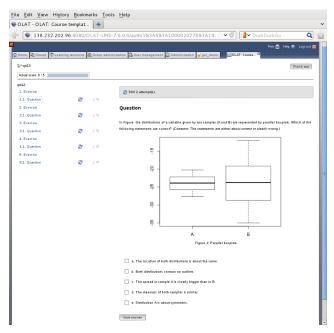
- As for HTML output, all LATEX text is *transformed* to HTML (plus MathML).
- Rather than writing out one file per exam, a single **Moodle** XML file encompassing all exams is produced.
- All supplementary materials (graphics, data, etc.) are embedded into the HTML code directly using Base64 encoding.
- The resulting .xml file can be easily imported into a question bank in **Moodle** and then be used within a **Moodle** quiz.

Multiple replications are written to a single XML file in the output directory:

```
R> set.seed(1090)
R> exams2moodle(myexam, n = 3, dir = odir)
```

Exams: Moodle XML

Exams: QTI 1.2 for OLAT


exams2qti12():

- As for HTML output, all LATEX text is *transformed* to HTML (plus MathML).
- Rather than writing out one file per exam, a single .zip archive is produced, containing the QTI 1.2 XML file plus supplementary materials (graphics, data, etc.) if any.
- Base64 encoding is used for graphics by default, but not for other supplements.
- QTI 1.2 is an international standard for e-learning exams.
- The .zip files can be easily imported into **OLAT** (or **OpenOLAT**) when configuring an exam.

Multiple replications are written to a single zipped XML file in the output directory:

```
R> set.seed(1090)
R> exams2qti12(myexam, n = 3, dir = odir)
```

Exams: QTI 1.2 for OLAT

Discussion

Package exams:

- Framework for automatic generation of simple (mathematical or statistical) exams and associated self-study materials.
- Based on independent exercises in Sweave format which can be compiled into exams (or other collections of exercises).
- Version 1 (Grün and Zeileis 2009) only supported PDF output, version 2 (Zeileis, Umlauf, Leisch 2012) adds an extensible toolbox for various output formats including HTML, Moodle XML, and QTI 1.2 (for OLAT).
- Contributing to the pool of exercises only requires knowledge of Sweave and minimal markup for metainformation.
- Hosted on R-Forge, providing a support forum: http://R-Forge.R-project.org/projects/exams/

Discussion

At Universität Innsbruck:

- Mathematics course with **OLAT** support (summer/winter term 2012/13 combined: more than 3,000 participants).
- Team of about 10 persons (professors, lecturers, student assistants) contribute to the pool of exercises.
- During the semester, several online tests (and self tests) are carried out in OLAT (via exams2qti12) using numerical and multiple-choice exercises.
- Two written exams (via exams2pdf) are carried out using single-choice exercises. Results are scanned by university services and processed by some optical character recognition.

References

Zeileis A, Grün B, Leisch F, Umlauf N (2013). *exams: Automatic Generation of Exams in R.* R package version 1.9-5. URL http://CRAN.R-project.org/package=exams

Zeileis A, Umlauf N, Leisch F (2012). "Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond." *Working Paper 2012-27*, Working Papers in Economics and Statistics, Research Platform Empirical and Experimental Economics, Universität Innsbruck. URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2012-27.

Grün B, Zeileis A (2009). "Automatic Generation of Exams in R." *Journal of Statistical Software*, **29**(10), 1–14.

URL http://www.jstatsoft.org/v29/i10/