

Technische Universität Wien
Vienna
University of Technology

Extended Mosaic and Association Plots for Visualizing (Conditional) Independence

Overview

㐘 The independence problem in 2－way contingency tables
－Standard approach：χ^{2} test
＊Alternative approach：max test
潾 Visualizing the independence problem
＊Association plots
－Mosaic plots
橉 Extensions
＊Visualization \＆significance testing
＊HCL instead of HSV colors
＊Multi－way tables and conditional independence
＊Implementation in grid
潾 The vcd package

The independence problem

Standard approach：

䒜 Analyze the relationship between two categorical variables based on the associated 2－way contingency table．
粦 Measure the discrepancy between observed frequencies $\left\{n_{i j}\right\}$ and expected frequencies under independence $\left\{\widehat{n}_{i j}\right\}$ by the Pearson residuals：

$$
r_{i j}=\frac{n_{i j}-\widehat{n}_{i j}}{\sqrt{\widehat{n}_{i j}}}
$$

䙮 Use the Pearson X^{2} statistic for testing：

$$
X^{2}=\sum_{i j} r_{i j}^{2}
$$

which has an asymptotic χ^{2} distribution．

The independence problem

Alternative approach（es）：

溇 There are many conceivable functionals $\lambda(\cdot)$ which lead to reasonable test statistics $\lambda\left(\left\{r_{i j}\right\}\right)$ ．

漛 In particular：

$$
M=\max _{i j}\left|r_{i j}\right|
$$

Then，every residual exceeding the critical value c_{α} violates the null hypothesis at level α ．

漛 Instead of relying on unconditional limiting distributions，per－ form a permutation test，either by simulating or computing the conditional permutation distribution of $\lambda\left(\left\{r_{i j}\right\}\right)$ ．

The independence problem

Relationship between hair color and eye color among 328 female students:

	Eye color				
Hair color	Brown	Blue	Hazel	Green	Total
Black	36	9	5	2	52
Brown	81	34	29	14	158
Red	16	7	7	7	37
Blond	4	64	5	8	181
Total	137	114	46	31	328

$$
\begin{array}{rl}
X^{2}=112.30 & p=0 \\
M=6.76 & p=0
\end{array}
$$

The independence problem

Home and away goals in the Bundesliga in 1995:

	Away goals						
Home goals	0	1	2	3	4	5	6
0	26	16	13	5	0	1	0
1	19	58	20	5	4	0	1
2	27	23	20	5	1	1	1
3	14	11	10	4	2	0	0
4	3	5	3	0	0	0	0
5	4	1	0	1	0	0	0
6	1	0	0	1	0	0	0

$$
\begin{array}{rl}
X^{2}=46.07 & p=0.121 \\
M=2.87 & p=0.355
\end{array}
$$

Visualization

Association plot: display for the Pearson residuals $\left\{r_{i j}\right\}$ and the raw residuals $\left\{n_{i j}-\widehat{n}_{i j}\right\}$ in an rectangular array.

Mosaic plot: display in which the sizes of the mosaic tiles is proportional to the observed frequencies $\left\{n_{i j}\right\}$.

Visualization

Visualization

Visualization

Visualization

Visualization

Visualization

Eye

HSV colors

Colors are commonly used to enhance these plots. In particular, Friendly (1994) suggested shadings for mosaic displays.

HSV colors

Colors are commonly used to enhance these plots. In particular, Friendly (1994) suggested shadings for mosaic displays.

In R these are implemented based on HSV colors.

The HSV color space is one of the most common implementations of color in many computer packages. Hue, saturation and value range in $[0,1]$.

HSV colors

The hue is typically used to code the sign of the residuals.

HSV colors

The hue is typically used to code the sign of the residuals.

HSV colors

Friendly's extended mosaic displays use the saturation to code the absolute size of the residuals.

HSV colors

Friendly's extended mosaic displays use the saturation to code the absolute size of the residuals.

HSV colors

Value is currently not used for coding, always set to 1 .

saturation = 1

HSV colors

Value is currently not used for coding, always set to 1 .

HSV colors

Eye

HSV colors

Eye

Visualization \& testing

HomeGoals

Visualization \& testing

Intuition: colored cells convey the impression that there is significant dependence. Currently, this is not true.

Visualization \＆testing

Intuition：colored cells convey the impression that there is sig－ nificant dependence．Currently，this is not true．

Approach 1：use the 90% and 99% critical values for the max statistic M instead of 2 and 4 ．

Advantage：
篓 color \Leftrightarrow significance
蔡 highlights the cells which＂cause＂the dependence（if any）．

Disadvantage：
漛 does not work for the χ^{2} test（or any other functional $\lambda(\cdot)$ ）．

Visualization \& testing

Approach 2: Use value to code the result of a significance test for independence.

saturation = 1

Visualization \& testing

Approach 2: Use value to code the result of a significance test for independence.

Visualization \& testing

Eye

Visualization \& testing

Eye

Visualization \& testing

HomeGoals

Visualization \& testing

HomeGoals

HCL colors

Disadvantages of HSV colors：

䊉 device dependent，
潾 not copierproof，
粦 flashy colors good for drawing attention to a plot，but hard to look at．

HCL colors

Disadvantages of HSV colors：

粦 device dependent，
潾 not copierproof，
粦 flashy colors good for drawing attention to a plot，but hard to look at．

Alternative：use HCL colors instead（see Ihaka，2003）．

HCL colors are defined by hue（in［0，360］），chroma and lumi－ nance（in $[0,100]$ ）．HCL space essentially looks like a double cone．

HCL colors

Eye

HCL colors

Eye

HCL colors

HomeGoals

HCL colors

HomeGoals

Multi-way tables

Principal idea of the mosaic plot:

缐 subdivision of tiles according to (conditional) probabilities
\rightarrow can also be used for n-way tables

The same idea does not apply to association plots.

Multi-way tables

Multi-way tables

Complete independence: $A \Perp B \Perp C$

Multi-way tables

Joint independence: $(A, C) \Perp B$

Multi-way tables

Conditional independence: $B \Perp C \mid A$

Multi-way tables

Correspondence:

滕 conditioning in the model (\rightarrow shading of residuals)

滕 conditioning in the visual display
\rightarrow can also be done in Trellis-like layout

This idea does also work for association plots.

Multi-way tables

Multi-way tables

Admit

Multi-way tables

Admit

Multi-way tables

Conditioning in the plot:

R> assocplot(Admit ~ Gender | Dept, data = UCBAdmissions)

Multi-way tables

Conditioning in the plot:

R> assocplot(Admit ~ Gender | Dept, data = UCBAdmissions)

Conditioning in the model:

R> fm <- loglm(~ (Admit + Gender) * Dept, data = UCBAdmissions)
R> assocplot(fm)

Implementation in grid

The graphics engine grid overcomes the old R concept of plots with a plot region surrounded by a margin．grid is

粦 based on generic drawing regions（viewports），
粦 allows for plotting to relative coordinates，
潾 is also the basis for an implementation of Trellis graphics called lattice．
（see Murrell，2002）
Thus，the new implementation of mosaic and association plots makes them easily reusable，e．g．，in Trellis－like layouts．

Implementation in grid

Furthermore，graphics parameters for the rectangles，e．g．，

粦 fill color，
蒌 line type，
潾 line color，
can be specified for each cell individually by the user．Each graphics parameter can be an object of the same dimensionality as the original table．
\rightarrow new shadings can easily be implemented．

The vcd package

New methods will be available in the package vcd for visualizing categorical data．

Currently only in development version．The released version is available from the Comprehensive R Archive Network
http://CRAN.R-project.org/
and it already offers some functionality for

瞵 fitting \＆graphing of discrete distributions，
粎 plots for independence and agreement，
橉 visualization of log－linear models．

