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Abstract

We present a case study demonstrating that without data and code archives repro-
ducibility is more the exception than the rule, especially if modern, complex algorithms
are employed. Specifically, we show that stochastic extensions of OLS, as required in
some combinatorial optimization problems arising in high-breakdown robust regression,
can be difficult to replicate in the absence of detailed information on tuning parameters
and further computational issues.

Keywords: combinatorial optimization, least squares, replication, robust regression, stochastic
algorithm.

1. Introduction

Zaman, Rousseeuw, and Orhan (2001), in a paper aimed at popularizing robust regression
techniques among economists, apply the least trimmed squares (LTS) and minimum covari-
ance determinant (MCD) methods (Rousseeuw 1984) to three economic data sets. Specifically,
they reanalyze an augmented Solow model applied to OECD countries (Nonneman and Van-
houdt 1996), a time series regression explaining US stock returns (Benderly and Zwick 1985),
and a growth study for a cross section of 61 countries (De Long and Summers 1991).
Here “robust” means resistant to extreme (i.e., outlying or influential) observations; specifi-
cally, the methods used here can withstand up to 50% contamination in large samples. The
LTS estimator is typically implemented via running a large number of OLS regressions (with
certain adjustments) on random subsets of the data, thus it may be considered as a stochastic
extension of the standard OLS method. Similarly, the MCD estimator is implemented via
estimating covariances for a large number of random subsets, again with certain adjustments.
In the following, we attempt to replicate the results of Zaman et al. (2001), in the narrow
sense of exact numerical replication using the same data and methodology. It emerges that, in
the absence of the exact code and function calls used by the original authors, this seemingly
simple task requires a substantial amount of reverse engineering. This ties in with the recent
interest in reproducible research in economics and the suggestion of mandatory data and code
archives (see, e.g. Anderson, Greene, McCullough, and Vinod 2008). In the case at hand, the
absence of archived code virtually prevented the reproduction of published results.
We use the R system for statistical computing (R Development Core Team 2008), version 2.8.1,
and the implementations of LTS and MCD in the R package MASS (Venables and Ripley
2002), version 7.2-45. Both are freely available from the Comprehensive R Archive Network
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at http://CRAN.R-project.org/. The exact function calls for replicating our analysis are
available in Appendix A.

2. Replication

The approach of Zaman et al. (2001) consists of running OLS on a subset of the data. This
subset does not contain certain outlying observations and is determined utilizing two robust
methods: First, the LTS estimator (Rousseeuw 1984) is used for flagging all observations with
large residuals. In a second step, in order to not exclude too many such points (not all of which
are dangerous), Zaman et al. (2001) suggest to also consider the leverages of the observations,
determined via the robust minimum covariance determinant (MCD) method (Rousseeuw 1984,
1985). The final analysis then excludes only those observations with simultaneously large LTS
residuals and high leverages (called bad leverage points) from a subsequent OLS regression,
while those observations with large LTS residuals but low leverages (called vertical outliers)
are retained in the regression. See Zaman et al. (2001) and the references therein for further
details; a convenient recent survey of high-breakdown methodology is available in Hubert,
Rousseeuw, and van Aelst (2008).

2.1. Computational issues

All the robust methods employed here are governed by hyperparameters, typically providing
trimming parameters or cutoffs in certain algorithms. The end result of the computations
often depends, to a considerable extent, on the selection of these parameters.

A first issue is the choice of trimming parameters in the optimization problems under consid-
eration. More specifically, LTS minimizes the criterion

q∑
i=1

(r2)i:n

where (r2)i:n denotes the ith smallest out of n squared residuals. The parameter q determines
the amount of trimming and thus the degree of robustness of the resulting estimator. Setting
q to b(n+k+ 1)/2c yields maximal robustness (where k is the number of regressors including
the constant term), but any value between b(n + k)/2c and n is admissible. For the MCD
estimator, which minimizes the determinant of the covariance matrix for a subsample of size
q, the choice q = b(n + k)/2c yields maximal robustness (Hubert et al. 2008). For assuring
reproducibility, these trimming parameters need to be provided, but they are not available in
the paper under investigation.

Both problems essentially represent combinatorial optimization problems, and thus are some-
what distinct from the optimization problems typically encountered in econometrics. One way
of solving the LTS optimization problem consists of running all

(n
q

)
OLS regressions utilizing

q observations. Similarly, the MCD estimate can, in principle, be obtained by an exhaustive
search over all subsets of size q. Unfortunately, this is rarely feasible in real-world applications
as it would require to consider a vast number of subsamples. Instead, stochastic algorithms
exploring large numbers of OLS regressions or sample covariances for random samples of size
p ≤ q are used, with certain refinements. Specifically, the algorithms FastLTS and FastMCD
(see Rousseeuw and van Driessen 1999; Hubert et al. 2008) have been suggested which start
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out from random samples of size p = k. Note that this does not guarantee that the global
minima are found. From a replication perspective, one would at least want to assure that the
same solutions are found (before, potentially, investigating whether these are good, or even
optimal, solutions). Thus, a thorough description of the computational strategy is needed.
Typically, a good summary of this is the code employed for the analyses (including starting
values and, in the case of stochastic searches, preferably also random seeds). Below, we use
implementations of LTS and MCD that are available in the MASS package (Venables and
Ripley 2002): function lqs() includes an implementation of LTS and function cov.rob()
implements MCD by means of the FastMCD algorithm. It is worth noting that here these
algorithms find the global optima in at least two out of three applications (where the sample
sizes are small enough to check by exhaustive searches).
A final but important issue consists in the choice of cutoffs that determine the subset on
which to run OLS, namely the “good” observations. As noted above, the observations with
simultaneously large LTS residuals and high leverages are excluded, where “large” is typically
defined in terms of certain χ2 quantiles (Hubert et al. 2008), e.g.,

√
χ2

1;0.975 = 2.24 for the LTS

residuals and
√
χ2

k−1;0.975 for the leverages. Obviously, providing both cutoffs (at least in the
underlying code, but preferably also in the printed paper) is essential to assure reproducibility
of analyses employing these methods. However, Zaman et al. (2001) just provide the cutoff
used for the LTS residuals. It was chosen as 2.5, a common rule of thumb replacing

√
χ2

1;0.975.

In the absence of code, we can just guess that the
√
χ2

k−1;0.975 quantile was used for the robust
distances.
We now discuss all three examples in turn, proceeding by increasing sample size of the original
data sets.

2.2. Nonneman and Vanhoudt regression

We begin with the Solow model for OECD countries originally considered by Nonneman and
Vanhoudt (1996), a regression of per capita (of working age) GDP growth on per capita
GDP in 1960 (Y0), the average annual ratio of domestic investment to real GDP (Sk) and
annual population growth plus 5% (N), for a cross section of 22 OECD countries. As for all
other data sets, we are able to successfully replicate the plain OLS regression coefficients and
associated standard errors as well as the OLS regression after omitting those observations
indicated by Zaman et al. (2001).
However, we encountered problems with the LTS residuals and the robust leverages given
in their paper. First, their robust leverages appear to have arisen from a local optimum.
We are able to reproduce their results by setting a suitable random seed (found by reverse
engineering) and just taking a single solution. For these leverages the value of the criterion
(i.e., the determinant of the covariance matrix) equals −12.64 (on a log scale), while an
exhaustive search over all

(22
13

)
possible subsets yields a global minimum at −13.21.

Second, we could not reproduce the LTS residuals for the usual recommendation of q =
b(n+ k+ 1)/2c = b(22 + 4 + 1)/2c = 13. Fortunately, in view of the modest sample size of 22
observations it is feasible to run all

(22
q

)
OLS regressions for any trimming parameter q, and

thus solve the problem exactly. Our computations suggest that q = 16 was used: running all(22
16

)
= 74613 OLS regressions employing samples of size 16 yields exactly the results described

by Zaman et al. (2001). Thus Canada, Turkey and New Zealand are the bad leverage points
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Table 1: Robust regression coefficients (and standard errors) for Nonneman and Vanhoudt
growth regression with q = 22 (OLS without omitting observations), q = 16 (omitting Canada,
Turkey, New Zealand) and q = 13 (omitting Canada, USA, Turkey, Australia).

Variable q = 22 q = 16 q = 13

Constant 2.976 4.715 3.776
(1.022) (1.166) (1.282)

log(Y0) −0.343 −0.412 −0.451
(0.056) (0.054) (0.057)

log(Sk) 0.650 0.518 0.703
(0.202) (0.179) (0.191)

log(N) −0.573 −0.124 −0.650
(0.290) (0.352) (0.419)

with LTS residuals equaling 4.21, −6.14, and −3.17, and corresponding suboptimal robust
distances of 7.25, 9.36, and 5.98.

To complement these findings, we compared the above results to those obtained from utilizing
the exact MCD estimator (i.e., the estimator based on an exhaustive search). Fortunately,
the results are essentially identical: the same observations are selected as bad leverage points
(now with robust distances of 5.14, 4.50, and 7.20), and hence the final robust OLS regression
is the same.

It is also of interest to check how these results are affected if we use q = 13 in the LTS
regression, the value of the trimming parameter yielding maximal robustness. It turns out
there are slight changes, in that the bad leverage points are now Canada, USA, Turkey and
Australia. Thus Canada and Turkey are still excluded; in addition, USA and Australia are
flagged while this is no longer true for New Zealand. The final regression exhibits the same
regressors as statistically significant as the regression based on LTS using 16 data points, but
the coefficients are somewhat different (see Table 1). The largest change is associated with
the coefficient on population growth which is, however, insignificant as before.

In summary, our reanalysis detects a local optimum in the MCD and apparent use of a
non-standard trimming parameter in the LTS optimization problem.

2.3. Benderly and Zwick regression

In the Benderly and Zwick time series regression explaining US stock returns from 1954 to
1981, it is again feasible to run all

(28
16

)
= 30421755 OLS regressions and thus solve the LTS

problem exactly. We note that the authors of the original nonrobust OLS analysis (Benderly
and Zwick 1985) already described some form of model instability in the sample period,
suggesting that the stable period is 1956–1976.

Using the default trimming parameters q = b(n + k + 1)/2c = b(28 + 3 + 1)/2c = 16 and
q = b(n+k)/2c = b(28 + 3)/2c = 15 for the LTS and MCD problems, we are able to replicate
the bad leverage points. However, neither the robust residuals nor the robust distances agree.
Specifically, the LTS residuals for the bad leverage points (the years 1979 and 1980) are 2.69
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and 2.68 and thus fairly close, but not identical, to the values 2.60 and 2.82 given by Zaman
et al. (2001), potentially pointing to a slightly inferior LTS fit. (Note that a differing q, as
was the case in the preceding regression, cannot explain these deviations—we tried all qs!)
Regarding the robust distances, we obtain 4.24 and 4.2 in contrast to the values 3.65 and
3.55 given by Zaman et al. (2001). Interestingly, the latter are perfectly reproducible for the
trimming q = b(n + k + 1)/2c = b(28 + 3 + 1)/2c = 16, the value of q used for the LTS
estimator. Fortunately, all conclusions drawn from this and, in particular, the resulting OLS
regression (after omitting the observations for 1979 and 1980) are unaffected.

However, it is worth noting that with these data, there is the only deviation with respect
to the OLS results for the full data set, in that we obtain a different R2 and F statistic.
Specifically, Zaman et al. (2001) report R2 = 0.56 and F = 10.5, while we obtain R2 = 0.496
and F = 12.306. We have been unable to identify the source of these discrepancies. In
contrast, the corresponding results for the OLS regression after robust preprocessing, namely
R2 = 0.65 and F = 21.04, are in perfect agreement with those reported by Zaman et al.
(2001).

In summary, our reanalysis cannot reproduce the LTS residuals for the two bad leverage
points and the leverages only if we employ a slightly larger trimming parameter; also, the R2

and F statistic of an OLS regression appear to be in error.

2.4. De Long and Summers regression

We conclude with the computationally most demanding example. Specifically, in the growth
study using the De Long and Summers (1991) data it is no longer feasible to determine
the exact solution via an exhaustive search, as this would require running no fewer than(61
33

)
= 191724747789809255 (i.e., some 200 quadrillion) regressions in total. Hence, we must

confine ourselves to an approximate LTS estimator in this example. We use one million
random samples of size q (we tried larger values up to one billion samples, with virtually
identical results).

A problem with this example is that here Zaman et al. (2001) appear to employ a different
strategy, in that only LTS residuals are considered but not the leverages. This is implicit
from the terminology used there because only a “vertical outlier” is excluded from the final
regression. However, more casual reading of the paper might suggest a uniform approach
(i.e., excluding only “bad leverage points”) was employed throughout. To illustrate, Figure 1
provides a plot of LTS residuals vs. robust MCD distances for this regression. This plot
reveals that, according to the strategy of the preceding examples, no bad leverage points
exist. With a value of −5.20, Zambia by far has the largest LTS residual in absolute size
while its robust distance, 2.20, is not unusually large, thus suggesting not to exclude this
observation according to the strategy followed in the preceding two examples. On the other
hand, a mechanical analysis excluding all vertical outliers would also omit Cameroon in view
of its absolute LTS residual of 2.95 exceeding 2.5. In addition, there are two borderline cases
with residuals in the vicinity of 2.5 and moderately large robust distances, namely Chile and
Spain. Both would not be excluded under the previously followed strategy; however, they
would be flagged as bad leverage points, again in a fairly mechanical analysis, if one used the
cutoff

√
χ2

1;0.975 = 2.24 (solid lines) for the LTS residuals, as recommended by Hubert et al.
(2008). In spite of these robust diagnostics, Zaman et al. (2001) prefer to run OLS excluding
only the largest vertical outlier Zambia.
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Figure 1: Robust LTS residuals vs. robust MCD distances for De Long and Summers regres-
sion, with highlighted outliers. Dashed lines at ±2.5, solid lines at ±

√
χ2

1; 0.975 (horizontal)

and
√
χ2

4; 0.975 (vertical).

We add that Huber-style M estimators, which are robust to vertical outliers but not to bad
leverage points, also yield large residuals for Zambia and Cameroon and virtually identical
results as an OLS regression excluding these observations. This suggests that, in this example,
high-breakdown methods are not required – of course, the whole point of high-breakdown
techniques is that one does not have to know this in advance! We note that Zambia would
also be flagged by classical, but non-robust leave-one-out regression diagnostics, among them
Cook’s distances.

3. Conclusions

The preceding section revealed substantial difficulties with replicating the robust regression
results of Zaman et al. (2001), partly due to insufficient computational detail in the original
analysis.

Our findings are of interest for at least two reasons: First, they highlight that even method-
ology reasonably close to plain OLS, in our case a stochastic algorithm making use of a large
number of OLS regressions, is not always easy to replicate. A detailed description of chosen
settings is therefore needed. Naturally, this is in conflict with the scarcity of available jour-
nal space, but there would seem to be an easy way out: put this information into an online
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supplement, namely the data and code archive of the journal.
This leads to our second point: our results would seem to support the recent proposals of
mandatory data and code archives, see, e.g., Anderson et al. (2008), McCullough, McGeary,
and Harrison (2006), McCullough, McGeary, and Harrison (2008), and the references therein.
With such an archive, our exercise would have been much easier: although code would have
been in a different programming language and presumably been long obsolete, it would at
least have been clear how hyperparameters were selected and thus to what extent resulting
differences could be attributed to such settings. However, Economics Letters currently has no
archive. Unfortunately, this is not the first incident regarding a paper from that journal that
proved difficult to replicate. Recently, Davis (2007) encountered problems with a paper aimed
at measuring pro-poor growth, apparently due to inconsistent growth spell classifications by
the original author. Since the original data were available to Davis as well as to us, these
incidents underline that the existence of a data archive alone would not have helped – only
the exact code will enable researchers to fully replicate earlier results. We suggest Economics
Letters introduces a data and code archive as soon as possible.
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A. R code

This appendix provides the full R code to replicate our replication study.

Initially, the MASS package (Venables and Ripley 2002) is loaded and the number of displayed
digits is reduced:

R> library("MASS")

R> options(digits = 4)

A.1. Data

All three data sets are provided in space-separated plain text format (with column and row
names). They can be easily read into R via

R> nv <- read.table("NonnemanVanhoudt.dat")

R> bz <- read.table("BenderlyZwick.dat")

R> dls <- read.table("DeLongSummers.dat")

A.2. High-breakdown robust regression

The following code chunk defines a convenience function robreg() implementing the strategy
described by Zaman et al. (2001).

robreg <- function(formula, data, cutoff = NULL,

quantile = NULL, psamp = NULL, nsamp = "exact",

method = "mcd", dist_nsamp = "exact")

{

## OLS results

fm_ols <- lm(formula, data)

## default: choose psamp = quantile

n <- length(residuals(fm_ols))

k <- length(coef(fm_ols))

if(is.null(cutoff)) cutoff <- c(2.5, sqrt(qchisq(0.975, k-1)))

if(is.null(quantile)) quantile <- floor((n + k + c(1, 0))/2)

if(is.null(psamp)) psamp <- quantile[1]

## LTS results with robust residuals

fm_lts <- lqs(formula, data,

quantile = quantile[1], psamp = psamp, nsamp = nsamp)

rr <- residuals(fm_lts)/fm_lts$scale[2]

rr_nok <- abs(rr) > cutoff[1]

## robust leverage via MCD (or MVE)

X <- model.matrix(fm_ols)[,-1]

rc <- cov.rob(X, method = method,

quantile = quantile[2], nsamp = dist_nsamp)

Copyright© 2009 IOS Press and the authors
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rd <- sqrt(mahalanobis(X, rc$center, rc$cov))

rd_nok <- rd > cutoff[2]

## ROBUST results

nok <- rr_nok & rd_nok

fm_rob <- lm(formula, data[!nok,])

rval <- list(ols = fm_ols, lts = fm_lts, robust = fm_rob,

robcov = rc, robresid = rr, robdist = rd,

bad_leverage = nok, psamp = psamp, method = method,

nsamp = list(lts = nsamp, dist = dist_nsamp),

quantile = list(lts = quantile[1], dist = quantile[2]),

cutoff = list(lts = cutoff[1], dist = cutoff[2]))

return(rval)

}

Given a description of a regression model by a formula and data, it first fits the OLS re-
gression. Then it fits the LTS regression minimizing the sum of squares of the quantile[1]
smallest residuals (default: b(n+k+1)/2c) using the function lqs() from package MASS. By
default all possible samples (nsamp = "exact") of size psamp = quantile[1] are searched
assuring that the LTS minimization problem is solved exactly. Subsequently, it computes the
robust leverages via cov.rob(); by default the MCD estimator is computed with quantile[2]
set to b(n + k)/2c. For cov.rob() the argument nsamp = "exact" means that all

(n
k

)
sub-

samples of size p = k (often called “elemental sets”) will be searched. Next, those observations
with scaled LTS residuals greater than cutoff[1] (default: 2.5) and robust leverages greater
than cutoff[2] (default:

√
χ2

k−1;0.975) are then flagged as bad leverage points and excluded
in a final OLS regression. A list of all (intermediate and final) results is returned.

A.3. Nonneman and Vanhoudt regression

The Zaman et al. (2001) MCD covariance estimate appears to correspond to a local optimum.
It can be reproduced by setting a suitable random seed and just taking a single solution.
Furthermore, while the usual recommendation of q = 13 seems to have been used for the
MCD estimate, q = 16 apparently has been employed in the LTS regression. The code chunk

R> set.seed(2)

R> nv_fit <- robreg(log(gdp85/gdp60) ~ log(gdp60) + log(invest) +

+ log(popgrowth + .05), data = nv, quantile = c(16, 13), dist_nsamp = 1)

reproduces the results of Zaman et al. (2001):

R> nv_fit$robresid[nv_fit$bad_leverage]

Canada Turkey New Zealand
4.206 -6.144 -3.167

R> nv_fit$robdist[nv_fit$bad_leverage]

Copyright© 2009 IOS Press and the authors
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Canada Turkey New Zealand
7.251 9.361 5.976

However, it would have been more natural to take q = 13 (the default in robreg()) for both
LTS and MCD and perform exhaustive searches for both problems:

R> nv_fit2 <- robreg(log(gdp85/gdp60) ~ log(gdp60) + log(invest) +

+ log(popgrowth + .05), data = nv)

This confirms that MCD indeed did not find the optimum in the first setting: there, the value
of the objective function is

R> nv_fit$robcov$crit

[1] -12.64

while with an exhaustive search we obtain

R> nv_fit2$robcov$crit

[1] -13.21

Fortunately, the suboptimal MCD estimate does not change the results qualitatively: Com-
bining the exact LTS estimate for q = 16 and the exact MCD estimate for q = 13 identifies
the same bad leverage points as indicated in Zaman et al. (2001), namely

R> nv_fit$robresid[abs(nv_fit$robresid) > 2.5 & abs(nv_fit2$robdist) > 3.06]

Canada Turkey New Zealand
4.206 -6.144 -3.167

where 3.06 =
√
χ2

3;0975.

However, if we follow the usual recommendation and use q = 13 also for LTS, the results
change slightly, in that Canada, USA, Turkey, Australia are now selected as the bad leverage
points:

R> nv_fit2$robresid[nv_fit2$bad_leverage]

Canada USA Turkey Australia
9.073 6.236 -4.027 4.518

R> nv_fit2$robdist[nv_fit2$bad_leverage]

Canada USA Turkey Australia
5.144 4.503 7.203 4.504

Copyright© 2009 IOS Press and the authors
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A.4. Benderly and Zwick regression

For these data, using the default settings

R> bz_fit <- robreg(returns ~ growth + inflation, data = bz)

reproduces the bad leverage points obtained by Zaman et al. (2001). However, neither the
LTS residuals nor the MCD leverages match their published values:

R> bz_fit$robresid[bz_fit$bad_leverage]

1979 1980
2.688 2.679

R> bz_fit$robdist[bz_fit$bad_leverage]

1979 1980
4.237 4.203

The LTS residuals are quite close but the leverages are clearly different. However, using
q = 16 instead of the default recommendation q = b(n + k)/2c = b(28 + 3)/2c = 15, we are
able to exactly reproduce the robust leverages:

R> bz_fit2 <- robreg(returns ~ growth + inflation, data = bz,

+ quantile = c(16, 16))

R> bz_fit2$robdist[bz_fit2$bad_leverage]

1979 1980
3.651 3.551

A.5. De Long and Summers regression

We employ an approximate LTS estimate using one million random samples of size q, setting
a random seed for making the result reproducible:

R> set.seed(4003)

R> dls_fit <- robreg(gdp ~ lfg + gap + eqp + neq, data = dls,

+ nsamp = 1e6, cutoff = c(3.5, 0))

The cutoffs are modified here because it seems that Zaman et al. (2001) have only looked at
the LTS residuals but not the leverages. For considering both, a scatterplot of LTS residuals
vs. MCD distances is useful. The code chunk

R> dls_rob <- with(dls_fit, cbind(robdist, robresid))

R> plot(dls_rob, pch = 19, xlab = "Leverage (Robust MCD Distances)",

+ ylab = "Residuals (Robust LTS Residuals)")
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R> abline(h = c(-1, 1) * sqrt(qchisq(0.975, df = 1)))

R> abline(v = sqrt(qchisq(0.975, df = dls_fit$ols$rank - 1)))

R> abline(h = c(-1, 1) * 2.5, lty = 2)

R> dls_out <- abs(dls_rob[,2]) > sqrt(qchisq(0.975, df = 1))

R> text(dls_rob[dls_out,], rownames(dls_rob)[dls_out],

+ pos = c(4, 4, 2, 4, 4, 4))

gives Figure 1. The coordinates of the outliers using the cutoff
√
χ2

1;0.975 (i.e., the coordinates
of the points outside the region defined by the solid horizontal lines) are:

R> dls_rob[dls_out,]

robdist robresid
Cameroon 1.763 2.948
Chile 5.558 -2.369
Jamaica 2.000 -2.334
Spain 5.644 2.356
Zambia 2.198 -5.196
Zimbabwe 2.483 -2.471
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