
R: A Free Software Project in Statistical
Computing

Achim Zeileis

http://statmath.wu-wien.ac.at/∼zeileis/

Achim.Zeileis@R-project.org

http://statmath.wu-wien.ac.at/~zeileis/
mailto:Achim.Zeileis@R-project.org


Overview

• A short introduction to some letters of interest
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– applied vs. computational statistics vs. stat. computing
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– exploratory analysis
– linear regression
– tree models

• Packages
• Summary



Some letters

R is an interactive computational environment for data analysis,
inference and visualization.

S is a language for data analysis and graphics, implemented in
the commercial software S-PLUS and the open-source software
R.

Z (aka Achim Zeileis) is a statistician at WU Wien spending a
considerable share of his time using and developing R:

• for research,
• for applied data analysis,
• for course administration,
• for Web page generation, CD covers, mp3 administration

. . . (but that’s another story).



Some letters: R

• R is an interactive computational environment for data anal-
ysis, inference and visualization.

• Developed for the Unix, Windows and Macintosh families of
operating systems by an international team.

• Released under the GPL (General Public License), similar to
the open-source operating system Linux.

• Highly extensible through user-defined functions and a fast-
growing list of add-on packages.

• Based on the S language but with a new underlying imple-
mentation.



Some letters: S

• S is a language for data analysis and graphics developed by
John Chambers and co-workers at Bell Labs (of AT&T, now
Lucent Technologies).

• Exclusively licensed (and eventually sold) to Insightful Corp.
as the basis for the commercial statistics system S-PLUS.

• Award-winning language which “has forever altered the way
how people analyze, visualize and manipulate data. . . ”
(ACM Software System Award 1998 to John Chambers).



Some letters: Z

Short bio:

1996–2000 University studies in Statistics, Universität
Dortmund, Germany

2000 Dipl.-Stat. (∼ M.Sc.) in Statistics
2000–2003 Research Assistant, SFB “Adaptive Informa-

tion Systems and Modelling in Economics
and Management Science”, Wirtschaftsuni-
versität Wien, Austria

2003 Dr. rer. nat. (∼ Ph.D.) in Statistics
since 2003 Assistant Professor, Department of Statistics

& Mathematics, Wirtschaftsuniversität Wien,
Austria



Some letters: Z

Interests as a student:

• Year 1: some interest in exploratory data analysis – tried to
learn SAS – failed miserably – decided software is not for me.

• Year 2–3: learned a lot about theoretical concepts in statis-
tics – did applied work only if necessary – used various com-
mercial software packages: SPSS, Minitab, S-PLUS, GLIM,
some SAS again, . . .

• Year 4: needed software for seminars and thesis: implement
concepts, run simulations, apply to real data – discovered
open-source software R – switched from Windows to Linux,
from Word to LATEX, from everything else to R – never looked
back.



Some letters: Z

Interests as a researcher:

• Statistical computing,

• Applied econometrics
(in particular: testing, monitoring and dating of structural
changes),

• Statistical learning
(in particular: tree-based models),

• Visualization & significance testing.



Statistics and computing

A large spectrum of statistics involve the use of computers and
software programs. Different parts of this spectrum with varying
emphasis are the following.

Applied statistics:

• task: understand structures in data and the underlying mech-
anisms.

• required: software that provides appropriate statistical tech-
niques for application to real data.

• tools: preprocessing, inference, visualization, reporting.
• extensibility: modify existing tools, customize analysis, define

work flows, automatization.



Statistics and computing

Computational statistics:

• task: solve computing-intensive statistical problems.
• examples: difficult optimization problems, Markov chain

Monte carlo algorithms.
• required: efficient implementation/programming language.



Statistics and computing

Statistical computing:

• task: turn theoretical concepts into software
• examples: implement a new statistical model so that it can

be easily applied to new data sets.
• required: flexible software system with programming lan-

guage.
• tools: object orientation, compiled code, re-usable compo-

nents.

Of course, these areas are not well separated but overlapping!
Software is always the bridge between theoretical concepts and
statistical practice.



Statistics and computing: Software

There is a broad range of statistical software packages, some of
the most popular are:

Excel most popular spreadsheet, only very basic statistical func-
tionality, some programming possible in Visual Basic.

SPSS “statistical” spreadsheet, standard statistical tool box
(some emphasis on social sciences), programming possible
in SPSS language.

SAS comprehensive package with numerous interfaces, some
emphasis on business solutions, programming in SAS macro
language.

S-PLUS built on top of S, adds graphical user interface (GUI),
spreadsheet, various extensions.

R command line interface (CLI), highly extensible, only special-
ized GUIs available.



Statistics and computing: Excel



Statistics and computing: SPSS



Statistics and computing: SAS



Statistics and computing: SAS



Statistics and computing: S-PLUS



Statistics and computing: R



Statistics and computing: Software

GUI CLI
learn easy harder

flexible not really very
repeat tasks tiring easy

reproduce results hard easy

GUIs are very popular with practitioners, but trained statisticians
usually will have to do at least some programming at a certain
point.

Reproducibility is crucial in scientific work, automatization in
many corporate applications. Hence, all large packages offer
some “command language” . . . S/R offers the most complete and
modern programming language.



The R project

History of S:

1976: John Chambers and co-workers at Bell Labs begin work
on a project that will become S (S1).

1981: Licenses for a portable Unix version of S outside Bell Labs
(S2).

1988: Statistical software package S-PLUS based on S.
1992: Object orientation and statistical modeling toolbox in-

cluded (S3).
1993: Exclusively licensed to MathSoft (now Insightful).
1998: New object orientation model introduced (S4).
2004: Sold to Insightful.



The R project

History of R:

1991: Ross Ihaka and Robert Gentleman begin work on a
project that will ultimately become R.

1993: First binary copies of R on Statlib.
1995: R release of sources under the GPL.
1997: R core group is formed.
1998: Comprehensive R Archive Network (CRAN).
1999: DSC meeting in Vienna, first R core meeting.
2000: R 1.0.0 is released.
2001: R Newsletter launched.
2002: R Foundation established.
2004: First useR! conference in Vienna.
2007: R-forge server launched.



The R project

Home of the R project is

http://www.R-project.org/

where manuals, FAQs, links, and many other informations are
available.

The R software (current version 2.4.0) can be obtained from

http://CRAN.R-project.org/

in source and binary form along with many extension packages.

http://www.R-project.org/
http://CRAN.R-project.org/


The R project

Free software: Open-source software like R does not cost
money (free as in beer ). But it takes time to learn, and as
time is money, this talk is mostly about free software in the
sense of free as in speach.

R is open source, everybody can read the source code,
hence you need not to rely on documentation to infer what
the software really does. More importantly, everybody can
use it, making research reproducible.

No owner? R is not in the public domain, you are given a license
(GPL) to run the software.



The R project

The base R system is maintained by the “R Development Core
Team” with members from New Zealand, Europe and North
America:

Douglas Bates, John Chambers, Peter Dalgaard, Robert Gentle-
man, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch,
Thomas Lumley, Martin Maechler, Duncan Murdoch, Paul Mur-
rell, Martyn Plummer, Brian Ripley, Duncan Temple Lang, Luke
Tierney, and Simon Urbanek.

But R would not be what it is without the support of a very large
and active user community around the world, both in academia
and the industry, who contributed by donating code, bug fixes,
documentation, packages, discussion on the mailing lists



The R project

The R user community communicates via means of mailing lists
(R-help, R-devel, R-bugs, SIGs) where questions can be asked,
problems discussed, bugs reported, solutions suggested.

Using the R language interactively allows for a smooth transi-
tion from using R to developing in R. Bundles of new functions,
manual pages, data sets, examples, demos, documentation can
be effectively shared in the R community via means of CRAN
packages.



Basic functionality

• an oversized pocket calculator.
• matrix-based language.
• full-featured programming language: (statistical) data struc-

tures, flow control, object orientation, interfaces to other lan-
guages, operating system interaction.

• statistical toolbox: exploratory data analysis, inference, (gen-
eralized) linear models, multivariate analsyis, time-series
analysis, . . .

• production-quality graphics.



Basic functionality

R> 1 + 1

[1] 2

R> 2^3

[1] 8

R> x <- c(2, 7)
R> x

[1] 2 7

R> 1/x

[1] 0.5000000 0.1428571



Basic functionality

R> y <- matrix(c(1, 2, 3, 4), ncol = 2)
R> y

[,1] [,2]
[1,] 1 3
[2,] 2 4

R> y %*% x

[,1]
[1,] 23
[2,] 32

R> solve(y)

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5



Basic functionality

Fundamental language design principle:

Everything in R is an object.

Every object has a class (e.g., numeric, factor, function, . . . ) and
methods for generic functions are provided (or can be defined).

Typically, methods for print(), summary(), or plot() are of-
fered.



Basic functionality

R is a functional language. Functions can in principle take arbi-
trary objects as their arguments and return arbitrary objects.

Not only vectors and matrices can be supplied and re-
turned/printed!

Objects can be complex and capture all necessary information:
e.g., time series, fitted linear models, . . .

Even functions can be passed as an argument to (or returned
by) another function.



Diabetes in native populations

Source: http://www.spiegel.de/ accessed 2006-11-13.

http://www.spiegel.de/


Diabetes in native populations

Data set from the UCI repository of machine learning databases:
A population of women who were at least 21 years old, of Pima
Indian heritage and living near Phoenix, Arizona, was tested
for diabetes according to WHO criteria. The preprocessed data
comprise 724 observations of the following variables:

Variable Description
pregnant number of pregnancies
glucose glucose concentration in an oral glucose tolerance test
pressure blood pressure (mm Hg)
mass body mass index (kg/m2)
pedigree diabetes pedigree function
age age in years
diabetes test for diabetes



Diabetes: Exploratory analysis

R> class(glucose)

[1] "numeric"

R> summary(glucose)

Min. 1st Qu. Median Mean 3rd Qu. Max.
44.0 99.0 116.0 121.6 142.2 197.0

R> class(diabetes)

[1] "factor"

R> summary(diabetes)

pos neg
175 325



Diabetes: Exploratory analysis

R> plot(diabetes)
R> hist(glucose)
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Diabetes: Exploratory analysis

R> plot(pressure ~ mass, data = pid)
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Diabetes: Exploratory analysis

R> plot(pressure ~ diabetes, data = pid)
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Diabetes: Exploratory analysis

R> plot(diabetes ~ glucose, data = pid)
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Diabetes: Linear regression

R> pid_lm <- lm(pressure ~ mass, data = pid)
R> pid_lm

Call:
lm(formula = pressure ~ mass, data = pid)

Coefficients:
(Intercept) mass

56.0272 0.5038

R> class(pid_lm)

[1] "lm"



Diabetes: Linear regression

R> summary(pid_lm)

Call:
lm(formula = pressure ~ mass, data = pid)

Residuals:
Min 1Q Median 3Q Max

-53.7381 -7.6641 -0.5782 7.7252 54.6869

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.02724 2.56295 21.860 < 2e-16 ***
mass 0.50383 0.07723 6.523 1.69e-10 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 12.25 on 498 degrees of freedom
Multiple R-Squared: 0.07873, Adjusted R-squared: 0.07688
F-statistic: 42.56 on 1 and 498 DF, p-value: 1.691e-10



Diabetes: Linear regression

R> plot(pressure ~ mass, data = pid)
R> abline(pid_lm, col = "blue")
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Diabetes: Tree models

Tree models employ a simple recursive partitioning algorithm:

• Select the explanatory variable x most associated with the
dependent variable y, or stop.

• Split the data into sub-groups which provide the best sepa-
ration of y.

• Repeat the procedure recursively in each of the new sub-
groups.

Tree-growing algorithms might differ in choice of association
measure, stopping criterion, split criterion or sub-group selec-
tion. All have in common that they result in a tree whose leafs
(terminal nodes) can be used for predictions.



Diabetes: Tree models

One of these algorithms is CTree (conditional inference trees)
provided by the function ctree() from package party.

R> library("party")
R> pid_ctree <- ctree(diabetes ~ glucose + pregnant + pressure +
+ mass + pedigree + age, data = pid)
R> plot(pid_ctree)

Another alternative are model-based trees (provided by mob())
that can incorporate parametric models in the nodes, e.g., gen-
eralized linear models.



Diabetes: Tree models
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Diabetes: Tree models
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Diabetes: Tree models

Fitted models can be used for prediction on new data, using the
generic function predict()

R> pred_ctree <- predict(pid_ctree, newdata = pid2)

and we can compare predictions with true observations

R> table(true = pid2$diabetes, pred = pred_ctree)

pred
true pos neg

pos 54 20
neg 37 113

leading to misclassification rates of 25.4% and 22.3%, respec-
tively.



Packages

One of the core strengths of R is its extensibility. Users of R can
become developers very easily and write their own packages.

A package can contain not only R code but also source code in
other languages (e.g., C, C++, FORTRAN, Java), documenta-
tion, data, . . .

CRAN currently hosts more than 800 packages (and counting).
They can be automatically installed an updated over the internet.



Packages

Installation can be done easily from within R, e.g., by

install.packages("party")

or better make that

install.packages("party", dependencies = TRUE)

because party relies on several other packages. After installa-
tion the package can be simply loaded via

library("party")

making its functions available.



Summary

• R is a general purpose environment for data analysis and
graphics with support for a wide variety of statistical tech-
niques.

• Using a language-based environment may feel uncomfort-
able if used to GUIs, but offers a lot more flexibility.

• Learn language while using the software.
• Full power of a modern programming language for imple-

menting new ideas.
• Open source (GPL), ideal for teaching.
• Works on all common operating system platforms.
• Reporting and replication easily via combination with LATEX.



Summary

More information on

http://www.R-project.org/

http://www.R-project.org/
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