Score-Based Tests of Measurement Invariance with Respect to Continuous and Ordinal Variables

Achim Zeileis, Edgar C. Merkle, Ting Wang
http://eeecon.uibk.ac.at/~zeileis/

Overview

- Motivation
- Framework
- Score-based tests
- Continuous variables
- Ordinal variables
- Categorial variables
- Software
- Illustrations

Motivation

Psychometric models: Typically measure latent scales based on certain manifest variables, e.g., item response theory (IRT) models or confirmatory factor analysis (CFA).

Crucial assumption: Measurement invariance (MI). Otherwise observed differences in scales cannot be reliably attributed to the latent variable that the model purports to measure.

Parameter stability: In parametric models, the MI assumption corresponds to stability of parameters across all possible subgroups.

Inference: The typical approach for assessing MI is

- to split the data into reference and focal groups,
- assess the stability of selected parameters (all or only a subset) across these groups
- by means of standard tests: likelihood ratio (LR), Wald, or Lagrange multiplier (LM or score) tests.

Motivation

Problems:

- Subgroups have to be formed in advance.
- Continuous variables are often categorized into groups in an ad hoc way (e.g., splitting at the median).
- In ordinal variables the ordering of the categories is often not exploited - assessing only if at least one group differs from the others.
- When likelihood ratio or Wald tests are employed, the model has to be fitted to each subgroup which can become numerically challenging and computationally intensive.

Motivation

Idea:

- Generalize the LM test.
- Thus, the model only has to be fitted once under the MI assumption to the full data set.
- Catpure model deviations along a variable that is suspected to cause MI violations.
- Exploit ordering to assess if there is (at least) one split so that the model parameters before and after the split differ.
- The split does not have to be known or guessed in advance.

Illustration: CFA for artificial data.

- Model with two latent scales (verbal and math).
- Three manifest variables for each scale.
- Violation of MI for the math loadings along the age of the subjects.

Motivation: CFA for age ≤ 16

Motivation: CFA for age > 16

Framework

Model: Based on log-likelihood $\ell(\cdot)$ for p-dimensional observations \boldsymbol{x}_{i} $(i=1, \ldots, n)$ and k-dimensional parameter $\boldsymbol{\theta}$.

Estimation: Maximum likelihood.

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{n} \ell\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right) .
$$

Equivalently: Solve first order conditions

$$
\sum_{i=1}^{n} \boldsymbol{s}\left(\hat{\boldsymbol{\theta}}_{;} \boldsymbol{x}_{i}\right)=0
$$

where the score function is the partial derivative of the casewise likelihood contributions w.r.t. the parameters θ.

$$
\boldsymbol{s}\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)=\left(\frac{\partial \ell\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)}{\partial \theta_{1}}, \ldots, \frac{\partial \ell\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)}{\partial \theta_{k}}\right)^{\top}
$$

Framework

Assumption: Distribution/likelihood of \boldsymbol{x}_{i} depends only on the latent scales (through the parameters $\boldsymbol{\theta}$) - but not on any other variable v_{i}.
Alternative view: Parameters $\boldsymbol{\theta}$ do not depend any such variable v_{i}. Hence assess for $i=1, \ldots, n$

$$
\begin{aligned}
& H_{0}: \boldsymbol{\theta}_{i}=\boldsymbol{\theta}_{0} \\
& H_{1}: \boldsymbol{\theta}_{i}=\boldsymbol{\theta}\left(v_{i}\right) .
\end{aligned}
$$

Special case: Two subgroups resulting from one split point ν.

$$
H_{1}^{*}: \boldsymbol{\theta}_{i}= \begin{cases}\boldsymbol{\theta}^{(A)} & \text { if } v_{i} \leq \nu \\ \boldsymbol{\theta}^{(B)} & \text { if } v_{i}>\nu\end{cases}
$$

Tests: LR/Wald/LM tests can be easily employed if pattern $\boldsymbol{\theta}\left(v_{i}\right)$ is known, specifically for H_{1}^{*} with fixed split point ν.

Framework

For unknown split points: Compute LR/Wald/LM tests for each possible split point $v_{1} \leq v_{2} \leq \cdots \leq v_{n}$ and reject if the maximum statistic is large.

Caution: By maximally selecting the test statistic different critical values are required (not from a χ^{2} distribution)!

Illustration: Assess all $k^{*}=19$ model parameters from the artificial CFA example along the continuous variable age (v_{i}).

Framework

Framework

Note: For the maxLM test the parameters $\hat{\boldsymbol{\theta}}$ only have to be estimated once. Only the model scores $\boldsymbol{s}\left(\hat{\boldsymbol{\theta}} ; \boldsymbol{x}_{i}\right)$ have to be aggregated differently for each split point.

More generally: Consider a class of tests that assesses whether the model "deviations" $\boldsymbol{s}\left(\hat{\boldsymbol{\theta}} ; \boldsymbol{x}_{i}\right)$ depend on v_{i}. This can consider only a subset k^{*} of all k parameters/scores or try to capture other patterns than H_{1}^{*}.

Score-based tests

Fluctuation process: Capture fluctuations in the cumulative sum of the scores ordered by the variable v.

$$
\boldsymbol{B}(t ; \hat{\boldsymbol{\theta}})=\hat{\boldsymbol{I}}^{-1 / 2} n^{-1 / 2} \sum_{i=1}^{\lfloor n \cdot t\rfloor} \boldsymbol{s}\left(\hat{\boldsymbol{\theta}} ; \boldsymbol{x}_{(i)}\right) \quad(0 \leq t \leq 1)
$$

- $\hat{\boldsymbol{l}}$ - estimate of the information matrix.
- t - proportion of data ordered by v.
- $\lfloor n \cdot t\rfloor$ - integer part of $n \cdot t$.
- $x_{(i)}$ - observation with the i-th smallest value of the variable v.

Functional central limit theorem: Under H_{0} convergence to a (continuous) Brownian bridge process $\boldsymbol{B}(\cdot ; \hat{\boldsymbol{\theta}}) \xrightarrow{d} \boldsymbol{B}^{0}(\cdot)$, from which critical values can be obtained - either analytically or by simulation.

Score-based tests: Continuous variables

Test statistics: The empirical process can be viewed as a matrix $\boldsymbol{B}(\hat{\boldsymbol{\theta}})_{i j}$ with rows $i=1, \ldots, n$ (observations) and columns $j=1, \ldots, k$ (parameters). This can be aggregated to scalar test statistics along continuous the variable v.

$$
\begin{aligned}
D M & =\max _{i=1, \ldots, n} \max _{j=1, \ldots, k}\left|\boldsymbol{B}(\hat{\boldsymbol{\theta}})_{i j}\right| \\
C v M & =n^{-1} \sum_{i=1, \ldots, n} \sum_{j=1, \ldots, k} \boldsymbol{B}(\hat{\boldsymbol{\theta}})_{i j}^{2} \\
\max L M & =\max _{i=i, \ldots, \bar{i}}\left\{\frac{i}{n}\left(1-\frac{i}{n}\right)\right\}^{-1} \sum_{j=1, \ldots, k} \boldsymbol{B}(\hat{\boldsymbol{\theta}})_{i j}^{2}
\end{aligned}
$$

Critical values: Analytically for DM. Otherwise by direct simulation or further refined simulation techniques.

Score-based tests: Continuous variables

DM, $\mathbf{k}^{\star}=3$

DM, $\mathbf{k}^{\star}=19$

Score-based tests: Continuous variables

CvM, $\mathrm{k}^{*}=3$

CvM, $\mathrm{k}^{*}=19$

Score-based tests: Continuous variables

$\max L M, \mathbf{k}^{*}=3$

\max LM, $\mathbf{k}^{\boldsymbol{*}}=19$

Score-based tests: Ordinal variables

Test statistics: Aggregation along ordinal variables v with m levels.

$$
\begin{aligned}
W D M_{0} & =\max _{i \in\left\{i_{1}, \ldots, i_{m-1}\right\}}\left\{\frac{i}{n}\left(1-\frac{i}{n}\right)\right\}^{-1 / 2} \max _{j=1, \ldots, k}\left|\boldsymbol{B}(\hat{\boldsymbol{\theta}})_{i j}\right|, \\
\max L M_{0} & =\max _{i \in\left\{i_{1}, \ldots, i_{m-1}\right\}}\left\{\frac{i}{n}\left(1-\frac{i}{n}\right)\right\}^{-1} \sum_{j=1, \ldots, k} \boldsymbol{B}(\hat{\boldsymbol{\theta}})_{i j}^{2},
\end{aligned}
$$

where i_{1}, \ldots, i_{m-1} are the numbers of observations in each category.
Critical values: For $W D M_{o}$ directly from a multivariate normal distribution. For max $L M_{0}$ via simulation.

Score-based tests: Categorical variables

Test statistic: Aggregation within the m (unordered) categories of v.

$$
L M_{u o}=\sum_{\ell=1, \ldots, m} \sum_{j=1, \ldots, k}\left(\boldsymbol{B}(\hat{\boldsymbol{\theta}})_{i_{i j} j}-\boldsymbol{B}(\hat{\boldsymbol{\theta}})_{i_{\ell-1} j}\right)^{2}
$$

Critical values: From a χ^{2} distribution (as usual).
Asymptotically equivalent: LR test.

Software

R packages:

- strucchange implements this general framwork for parameter instability tests.
- Object-oriented implementation that can be applied to many model classes, including lavaan objects for CFA models.
- Other psychometric models that cooperate with strucchange are provided in psychotools, e.g., IRT models (Rasch, partial credit, rating scale), Bradley-Terry models for paired comparisons, and multinomial processing tree models.
- Model-based recursive partitioning based on the general parameter instability tests are provided in partykit.
- Adaptation to psychometric models in psychotree.

CFA: Youth gratitude

Question: Does measurement invariance hold across age groups when an adult gratitude scale is applied to youth subjects?

Source: Froh et al. (2011, Psychological Assessment). "Measuring Gratitude in Youth: Assessing the Psychometric Properties of Adult Gratitude Scales in Children and Adolescents."

Data:

- GQ-6 gratitude scale with five Likert scale items of seven points each.
- Application to $n=1401$ youth aged 10-19 years (six age groups).
- Assess the factor loadings of a one-factor model.

CFA: Youth gratitude

Packages:

```
R> library("lavaan")
R> library("strucchange")
```

Data: Omitting incomplete cases.

```
R> data("YouthGratitude", package = "psychotools")
R> compcases <- apply(YouthGratitude[, 4:28], 1,
+ function(x) all(x %in% 1:9))
R> yg <- YouthGratitude[compcases, ]
```

Estimation: One-factor CFA with loadings restricted to be equal across age groups.

```
R> gq6_cfa <- cfa("f1 =~ gq6_1 + gq6_2 + gq6_3 + gq6_4 + gq6_5",
+ data = yg, group = "agegroup", meanstructure = TRUE,
+ group.equal = "loadings")
```


CFA: Youth gratitude

Measurement invariance tests:

```
R> sctest(gq6_cfa, order.by = yg$agegroup, parm = 1:4,
+ vcov = "info", functional = "WDMo", plot = TRUE)
M-fluctuation test
data: gq6_cfa
f(efp) = 2.9129, p-value = 0.0591
R> sctest(gq6_cfa, order.by = yg$agegroup, parm = 1:4,
+ vcov = "info", functional = "maxLMo", plot = TRUE)
M-fluctuation test
data: gq6_cfa
f(efp) = 11.163, p-value = 0.09624
```

Both tests reflect only moderate parameter instability across age groups and do not show significant violations of measurement invariance at 5% level.

CFA: Youth gratitude

M-fluctuation test

CFA: Youth gratitude

M-fluctuation test

IRT: Examining exams

Question: Does measurement invariance hold in a Rasch model for single-choice exam results?

Source: Mathematics for first-year business and economics students at Universität Innsbruck. Online tests (conducted in OpenOLAT) and written exams for 500-1,000 students per semester.

Data: Individual results from an end-term exam.

- 729 students (out of 941 registered).
- 13 single-choice items with five answer alternatives, covering the basics of analysis, linear algebra, financial mathematics.
- Two groups with partially different item pools (on the same topics). Individual versions of items generated via exams.
- Correctly solved items yield 100% of associated points. Items without correct solution can either be unanswered (0%) or with an incorrect answer (-25%). Only considered as binary here.

IRT: Examining exams

Packages:

R> library("psychotools")
R> library("psychotree")
Data: Load, select first group, and exclude extreme scorers.
R> load("MathExam.rda")
R> mex <- subset (MathExam, group == 1 \& nsolved > 0 \& nsolved < 13)

IRT: Examining exams

R> plot(mex\$solved)

IRT: Examining exams

R> plot(mex\$credits)

IRT: Examining exams

```
R> mex_rasch <- raschmodel(mex$solved)
R> plot(mex_rasch, type = "profile")
```


IRT: Examining exams

R> plot(mex_rasch, type = "piplot")
Person-Item Plot

IRT: Examining exams

Measurement invariance tests:

```
R> sctest(mex_rasch, order.by = jitter(mex$tests),
+ vcov = "info", functional = "maxLM", plot = TRUE)
M-fluctuation test
data: mex_rasch
f(efp) = 39.8, p-value = 0.003047
R> mex$otests <- cut(mex$tests, breaks = c(0, 14:24, 26),
+ ordered = TRUE, labels = c("<= 14", 15:24, ">= 25"))
R> sctest(mex_rasch, order.by = mex$otests,
+ vcov = "info", functional = "maxLMo", plot = TRUE)
M-fluctuation test
data: mex_rasch
f(efp) = 35.543, p-value = 0.003717
```

Clear violation of measurement invariance: Students that performed poorly in the previous online tests have a different item profile.

IRT: Examining exams

M-fluctuation test

IRT: Examining exams

M-fluctuation test

IRT: Examining exams

R> mex_tree <- raschtree (solved ~ otests + attempt + semester + study,

+ data $=$ mex, vcov $=$ "info", ordinal = "L2")

Paired comparisons: Modeling topmodels

Question: Does measurement invariance hold for a Bradley-Terry preference scaling of attractiveness?

Source: Strobl, Wickelmaier, Zeileis (2010, Journal of Educational and Behavioral Statistics). "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning."

Data:

- Paired comparisons of attractiveness for Germany's Next Topmodel 2007 finalists: Barbara, Anni, Hana, Fiona, Mandy, Anja.
- Survey with 192 respondents at Universität Tübingen.
- Available covariates: Gender, age, familiarty with the TV show.
- Familiarity assessed by yes/no questions: (1) Do you recognize the women?/Do you know the show? (2) Did you watch it regularly?
(3) Did you watch the final show?/Do you know who won?

Paired comparisons: Modeling topmodels

Paired comparisons: Modeling topmodels

Paired comparisons: Modeling topmodels

Recursively partitioned preferences: Standardized ranking from Bradley-Terry model.

	Barbara	Anni	Hana	Fiona	Mandy	Anja
3	0.19	0.17	0.39	0.11	0.09	0.05
5	0.17	0.12	0.26	0.23	0.10	0.11
6	0.27	0.21	0.16	0.19	0.06	0.10
7	0.26	0.06	0.15	0.16	0.16	0.21

Summary

- General score-based test framework for assessing measurement invariance in parametric psychometric models.
- Assessment is along some variable v which can be continuous, ordinal, or categorical.
- Tests can be seen as generalizations of the Lagrange multiplier test.
- Computation of critical values might require simulation from certain stochastic processes (Brownian bridges).
- Easy-to-use implementation available in R package strucchange.
- Can be re-used in model-based recursive partitioning in R packages partykit and psychotree.

Acknowledgments: This work was supported by National Science Foundation grant SES-1061334.

References

Merkle EC, Zeileis A (2013). "Tests of Measurement Invariance without Subgroups: A Generalization of Classical Methods." Psychometrika, 78(1), 59-82.
doi:10.1007/s11336-012-9302-4
Merkle EC, Fan J, Zeileis A (2014). "Testing for Measurement Invariance with Respect to an Ordinal Variable." Psychometrika, 79(4), 569-584.
doi:10.1007/s11336-013-9376-7
Wang T, Merkle EC, Zeileis A (2014). "Score-Based Tests of Measurement Invariance: Use in Practice." Frontiers in Psychology, 5(438). doi:10.3389/fpsyg. 2014.00438

Strobl C, Julia Kopf, Zeileis A (2015). "Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model." Psychometrika. 80(2), 289-316. doi:10.1007/s11336-013-9388-3

Strobl C, Wickelmaier F, Zeileis A (2011). "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning." Journal of Educational and Behavioral Statistics, 36(2), 135-153. doi:10.3102/1076998609359791

Zeileis A, Hothorn T, Hornik K (2008). "Model-Based Recursive Partitioning." Journal of Computational and Graphical Statistics, 17(2), 492-514.
doi:10.1198/106186008X319331

