Universität Innshruck

Flexible Generation of E-Learning Exams and Beyond

Achim Zeileis
http://eeecon.uibk.ac.at/~zeileis/

Overview

- Motivation and challenges
- R package exams
- Exercises
- Exams
- Combination of exercises
- PDF output
- HTML output
- Moodle, OLAT, ARSnova, ...
- Discussion

Motivation and challenges

Motivation:

- Introductory statistics and mathematics courses for business and economics students at WU Wien and Universität Innsbruck.
- Courses are attended by more than 1,000 students per semester.
- Several lecturers teach lectures and tutorials in parallel.
- Need for integrated teaching materials: Presentation slides, collections of exercises, exams, etc.
- Different types assessments from the same pool of exercises: Written exams, online tests, live quizzes, etc.

Motivation and challenges

Challenges: Based on the same pool of exercises...

- Scalable exams: Automatic generation of a large number of different exams.
- Flexible rendering: Output for written exams or online learning management systems, etc.
- Associated self-study materials: Collections of exercises along with solutions.
- Joint development: Development and maintenance in a multi-author and cross-platform setting.

R package exams

Tools chosen:

- R for random data generation and computations.
- LATEX for mathematical notation.
- LATEX or Markdown for text formatting
- Sweave or knitr/rmarkdown for tying everything together.

Exercises:

- Dynamic templates if R code is used for randomization.
- Each exercise is a single file (either .Rnw or .Rmd).
- Contains question and (optionally) the corresponding solution.

R package exams

Answer types:

- Single choice and multiple choice.
- Numeric values.
- Text strings (typically short).
- Combinations of the above (cloze).

Output:

- PDF - either fully customizable or standardized with automatic scanning/evaluation.
- HTML - either fully customizable or embedded into any of the standard formats below.
- Moodle XML.
- QTI XML standard (version 1.2 or 2.1), e.g., for OLAT/OpenOLAT.
- ARSnova, TCExam, LOPS, ... (Blackboard under development).

Exercises

Exercise templates: .Rnw or .Rmd files composed of

- R code chunks for random data generation.
- .Rnw: Within <<>>= and @.
- .Rmd: Within `\({ }^{\prime}\) ‘r\} and \({ }^{\prime}\)`.
- Question and solution descriptions contained in sections with corresponding names.
- .Rnw: \begin/\end pairs for \{question\}/\{solution\}. $\{question\}/\{solution\}. }$
- .Rmd: Question/Solution sections with \#\#\#\#\#\#\# markup.
- Metainformation about extype (numeric, multiple choice, ...), correct exsolution, a short exname, etc.
- .Rnw: \extype\{mchoice\}, \exsolution\{01001\},...
- .Rmd: extype: mchoice, exsolution: 01001,....
- Question and basic metainformation is mandatory - everything else optional. All parts can contain R code chunks or data.
- .Rnw: \Sexpr\{...\}.
- .Rmd: `r ...`.

Exercises

Simple geometric example:

- Computation of the distance between two points p and q in a Cartesian coordinate system (via the Pythagorean formula).
- Template dist.Rnw and dist.Rmd contained in exams package.

```
Illustration:
R> library("exams")
R> exams2pdf("dist.Rnw")
```


Exercises: dist.Rnw

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))
q <- c(sample(4:5, 1), sample(1:5, 1))
sol <- sqrt(sum((p - q)^2))
@
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{question}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
$d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2$ (Pythagorean formula).
Hence $d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
    \sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}
    = \Sexpr{round(sol, digits = 3)}$.
[...]
\end{solution}
%% \extype{num}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exname{Euclidean distance}
%% \extol{0.01}
```


Exercises: dist.Rnw

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))
q<- c(sample(4:5, 1), sample(1:5, 1))
sol <- sqrt(sum((p - q)^2))
@
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{question}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
$d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2$ (Pythagorean formula).
Hence $d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
    \sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}
    = \Sexpr{round(sol, digits = 3)}$.
[...]
\end{solution}
%% \extype{num}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exname{Euclidean distance}
%% \extol{0.01}
```


Exercises: dist.Rnw

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))
q<- c(sample(4:5, 1), sample(1:5, 1))
sol <- sqrt(sum((p - q)^2))
@
```

\begin\{question\} }
What is the distance between the two points
$\$ p=(\backslash \operatorname{Sexpr}\{p[1]\}, \backslash \operatorname{Sexpr}\{p[2]\}) \$ \operatorname{and} \$ q=(\backslash \operatorname{Sexpr}\{q[1]\}, \backslash \operatorname{Sexpr}\{q[2]\}) \$$
in a Cartesian coordinate system?
\end\{question\} }
\begin\{solution\} }
The distance $\$ \mathrm{~d} \$$ of $\$ \mathrm{p} \$$ and $\$ \mathrm{q} \$$ is given by
$\$ d^{\wedge} 2=\left(p_{-} 1-q_{-} 1\right)^{\wedge} 2+\left(p_{-} 2-q_{-} 2\right)^{\wedge} 2 \$(P y t h a g o r e a n$ formula).
Hence $\$ \mathrm{~d}=\backslash \operatorname{sqrt}\left\{\left(p_{-} 1-q_{-}\right)^{\wedge} 2+\left(p_{-} 2-q_{-}\right)^{\wedge} 2\right\}=$
$\backslash \operatorname{sqrt}\left\{(\backslash \operatorname{Sexpr}\{p[1]\}-\backslash \operatorname{Sexpr}\{q[1]\})^{\wedge} 2+(\backslash \operatorname{Sexpr}\{p[2]\}-\backslash \operatorname{Sexpr}\{q[2]\})^{\wedge} 2\right\}$
$=\backslash \operatorname{Sexpr}\{r o u n d($ sol, $\operatorname{digits}=3)\} \$$.
[...]
\end\{solution\} }
$\%$ \extype\{num\}
$\% \%$ \exsolution\{\Sexpr\{round(sol, digits = 3) \}\}
$\% \%$ \exname\{Euclidean distance\}
$\%$ \extol\{0.01\}

Exercises: dist.Rnw

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))
q<- c(sample(4:5, 1), sample(1:5, 1))
sol <- sqrt(sum((p - q)^2))
@
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{question}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
$d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2$ (Pythagorean formula).
Hence $d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
    \\operatorname{sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}}
    = \Sexpr{round(sol, digits = 3)}$.
[...]
\end{solution}
```

```
%% \extype{num}
```

%% \extype{num}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exname{Euclidean distance}
%% \exname{Euclidean distance}
%% \extol{0.01}

```
%% \extol{0.01}
```


Exercises: dist.Rnw

```
<<echo=FALSE, results=hide>>=
p <- c(sample(1:3, 1), sample(1:5, 1))
q<- c(sample(4:5, 1), sample(1:5, 1))
sol <- sqrt(sum((p - q)^2))
@
\begin{question}
What is the distance between the two points
$p = (\Sexpr{p[1]}, \Sexpr{p[2]})$ and $q = (\Sexpr{q[1]}, \Sexpr{q[2]})$
in a Cartesian coordinate system?
\end{question}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
$d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2$ (Pythagorean formula).
Hence $d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
    \sqrt{(\Sexpr{p[1]} - \Sexpr{q[1]})^2 + (\Sexpr{p[2]} - \Sexpr{q[2]})^2}
    = \Sexpr{round(sol, digits = 3)}$.
[...]
\end{solution}
%% \extype{num}
%% \exsolution{\Sexpr{round(sol, digits = 3)}}
%% \exname{Euclidean distance}
%% \extol{0.01}
```


Exercises: LitEX output of Sweave("dist.Rnw")

```
\begin{question}
What is the distance between the two points
$p = (3, 4)$ and $q = (5, 2)$
in a Cartesian coordinate system?
\end{question}
\begin{solution}
The distance $d$ of $p$ and $q$ is given by
$d^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2$ (Pythagorean formula).
Hence $d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2} =
    \sqrt{(3 - 5)^2 + (4 - 2)^2}
    = 2.828$.
\includegraphics{dist-002}
\end{solution}
%% \extype{num}
%% \exsolution{2.828}
%% \exname{Euclidean distance}
%% \extol{0.01}
```


Exercises: PDF output of exams2pdf ("dist.Rnw")

- Problem

What is the distance between the two points $p=(3,4)$ and $q=(5,2)$ in a Cartesian coordinate system?

Solution

The distance d of p and q is given by $d^{2}=\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}$ (Pythagorean formula).
Hence $d=\sqrt{\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}}=\sqrt{(3-5)^{2}+(4-2)^{2}}=2.828$.

Exams: Combination of exercises

Idea: An exam is simply a list of exercise templates. For example, using statistics exercise templates contained in exams.

```
R> myexam <- list(
+ "boxplots.Rnw",
+ c("confint.Rnw", "ttest.Rnw", "tstat.Rnw"),
+ c("anova.Rnw", "regression.Rnw"),
+ "scatterplot.Rnw",
+ "relfreq.Rnw"
+ )
```


Draw random exams:

- First randomly select one exercise from each list element.
- Generate random numbers/input for each selected exercise.
- Combine all exercises in output file(s) (PDF, HTML, ...).

Exams: Combination of exercises

Interfaces: exams2pdf(), exams $2 h t m l(), ~ e x a m s 2 m o o d l e()$, exams2qti12(), exams2nops(), exams2arsnova(),...

Workhorse function: Internally, all interfaces call xexams () that handles (temporary) files/directories and carries out four steps.
(1) Weave: Each .Rnw/.Rmd exercise is weaved into a .tex/.md file. Default: xweave() which calls Sweave() or knit ().
(2) Read: Each resulting .tex/.md file is read into an R list with question, solution, metainformation. Default: read_exercise().
(3) Transform: Each of these exercise-wise list objects can be transformed, e.g., by converting ${ }^{14} T_{E} X$ text to HTML or Markdown to $\angle A T_{E} X$ etc. Default: No transformation.
(4) Write: The (possibly transformed) lists of exercises can be written out to one ore more files per exam in an output directory. Default: No files are written.

Exams: Transformers

Transformer functions:

- For ${ }^{A T} T_{E} X$ to HTML: Ian H. Hutchinson's TtH ($T_{E} X$ to HTML) package (tth in R). Mathematical notation is either represented using MathML (ttm), requiring a suitable browser (e.g., Firefox or Safari), or plain HTML (tth).
- Alternatively: John MacFarlane's pandoc package (rmarkdown in R) with various options for rendering mathematical notation (including MathML).
- For Markdown to HTML or LATEX: pandoc only.
- In either case: No $\mathbb{L A}_{\mathrm{E}} \mathrm{X}$ installation needed, but also limited to LATEX commands supported by TtH or pandoc, respectively.
- Links to dynamically generated data can be easily included, e.g., \url\{mydata.rda\} (.Rnw) or [mydata.rda] (mydata.rda) (.Rmd).

Exams: PDF output

exams2pdf():

- The write step embeds all questions/solutions into (one or more) master ${ }^{L A} T_{E X}$ template(s).
- ${ }^{L A} T_{E} X$ templates control whether solutions are shown, what the title page looks like, etc.
- Compilation of each exam via pdf $A T_{E} X$ (called from within R).

A single exam is popped up in a PDF viewer:
R> exams2pdf(myexam, template = "exam")
Multiple exams are written to an output directory:
R> odir <- tempfile()
R> set.seed (1090)
R> exams2pdf(myexam, $n=3$, dir $=$ odir,

+ template $=c($ "exam", "solution"))

Exams: PDF output

```
R University
Statistics Exam 2015-12-02
Student ID:
```


Signature:

1. In the following tigure the distributions of a variable given by two samples (A und B) are 1. In the following tigure the distributions of a variable given by two samples (A und B) are
represented by parallel boxplots. Which of the tollowing statements are correct? (Comment: The statements are either about correct or clearly wrong.)

(a) The location of both dstributions is about the same.
(b) Both distributions contain no outliers.
(C) The spread in sample A is clearly bigger than in B .
(d) The skewness of both samples is simlar
(e) Distribution A is about symmetric.
2. A machine tills milk into 500ml packages. It is suspected that the machine is not working correcty and that the amount of milk tilled ditfers from the setpoint $\mu_{0}-500$. A sample of 226 packages tiled by the machine are collected. The sample mean \bar{y} is equal to 499.7 rest the hypothesis that the ancunt The absolute value of the t test statistic?

-

3. For 49 firms the number of employees X and the amount of expenses for continuing edrcation Y (in EUR) were recorded. The statistical summary of the data set is given by:

	Variable X	Variable Y
Mean	58	232
Variance	124	1606

The correlation between X and Y is equal to 0.65 .
Estimate the expected amount of money spent for continuing education by a tirm with 60 employees using least squares regression.
4. The following tigure shows a scatterplot. Which of the tollowing statements are correct?

Exams: PDF output (NOPS)

exams2nops():

- Calls exams2pdf() internally.
- Standardized and internationalized $\triangle A_{E} T_{E}$ template is generated on the fly.
- Intended for single-choice and multiple-choice questions.
- Can be scanned and evaluated automatically within R.
- Limited support for open-ended questions that have to be marked by a person.

A single exam is popped up in a PDF viewer, multiple exams are written to an output directory:
R> set.seed (1090)
R> exams2nops(myexam [-(2:3)], $\mathrm{n}=3$, dir = odir)

Exams: PDF output (NOPS)

Exam: 15120200001

1. In the following figure the distributions of a variable given by two samples (A und B) are represented by parallel boxplots. Which of the tolowing statements are correct? (Comment: The statements are either about correct or clearly wrong.)

(a) The location of both distributions is about the same.
(b) Both distributions contain no outliers.
(c) The spread in sample A is clearly bigger than in B .
(d) The shewness of both samples is similar
(e) Distribution A is about symmetric.
2. The following tigure shows a scatterpiot. Which of the following statements are correct?

(a) The slope of the regression line is about 1 .
(b) The standard deviation of Y is at least 6 .

Exams: HTML output

exams2html():

- In the transform step, LATEX/Markdown text is converted to HTML using either TtH or pandoc.
- The write step embeds everything into HTML templates and writes out one HTML file per exam.
- Also useful for quickly checking whether an exercises is processed correctly.

A single exam is popped up in a browser, multiple exams are written to an output directory:
R> set.seed (1090)
$\mathrm{R}>$ exams 2 html (myexam, $\mathrm{n}=3$, dir = odir)

Exams：HTML output

File Edit View History Bookmarks Tools Help
Qxam 1
\square file：／／／tmp／RtmpjjlbQz／file2c8d10dbc901／plain1．html
－（c）\because 『コン DuckDuckGo
合

Exam 1

1．Question
In Figure the distributions of a variable given by two samples（ A und B ）are represented by parallel boxplots．Which of the following statements are correct？（Comment：The statements are either about correct or clearly wrong．）

Figure 1：Parallel boxplots．
a．The location of both distributions is about the same．
b．Both distributions contain no outliers．
c．The spread in sample A is clearly bigger than in B ．
d．The skewness of both samples is similar．
e．Distribution A is about symmetric．

Exams: Moodle XML

exams2moodle():

- All LATEX/Markdown text is transformed to HTML.
- Rather than writing out one file per exam, a single Moodle XML file encompassing all exams is produced.
- All supplementary materials (graphics, data, etc.) are embedded into the HTML code directly using Base64 encoding.
- The resulting .xml file can be easily imported into a question bank in Moodle and then be used within a Moodle quiz.

Multiple replications are written to a single XML file in the output directory:
R> set.seed (1090)
R> exams2moodle(myexam, $\mathrm{n}=3$, dir $=$ odir)

Exams: Moodle XML

R exams course

You are logged in as Nikolaus Umlauf(Logout)
Home Rexams 20 November - 26 November JSS Quiz Preview

Exams: QTI

exams2qti12()/exams2qti21():

- All $\operatorname{AT} T_{E X}$ X/Markdown text is transformed to HTML.
- Rather than writing out one file per exam, a single .zip archive is produced, containing the QTI XML specification (version 1.2 or 2.1) plus supplementary materials (graphics, data, etc.) if any.
- Base64 encoding is used for graphics by default, but not for other supplements.
- QTI (question and test interoperability) is an international standard for e-learning exams.
- The .zip files can be easily imported into various learning management systems, e.g., OLAT/OpenOLAT.

Multiple replications are written to a single zipped XML file in the output directory:

R> set.seed (1090)
R> exams2qti12 (myexam, $\mathrm{n}=3$, dir $=$ odir)

Exams: QTI

Exams: ARSnova

exams2html():

- In the transform step, ${ }^{L A} T_{E} X$ text is converted to Markdown using pandoc.
- The write step embeds everything into a JSON format and writes out one JSON file per exam.
- The JSON file can be imported in ARSnova to create a new session.
- Alternatively, questions can be imported into an existing ARSnova session via RCurl.
- No proper support for numeric exercises, yet (but under development by ARSnova team).

Multiple exams are written to an output directory:

```
R> set.seed(1090)
R> exams2arsnova(myexam[-(2:3)], n = 3, dir = odir)
```


Exams: ARSnova

Discussion

Package exams:

- Framework for automatic generation of simple (mathematical or statistical) exams and associated self-study materials.
- Based on independent exercises in .Rnw/.Rmd format which can be compiled into exams (or other collections of exercises).
- Version 1 (Grün and Zeileis 2009) only supported PDF output, version 2 (Zeileis et al. 2014) added a toolbox for various output formats, recent versions add support for Markdown and pandoc.
- Contributing to the pool of exercises only requires knowledge of Sweave/knitr and minimal markup for metainformation.
- For a first session employ exams_skeleton() which copies demo scripts, exercises, and templates into a working directory.
- Hosted on R-Forge, providing a support forum: http://R-Forge.R-project.org/projects/exams/

Discussion

At Universität Innsbruck:

- Large-scale courses with OpenOLAT support.
- Team of about 5-10 persons (professors, lecturers, student assistants) contribute to the pool of exercises.
- During the semester, several online tests (and self tests) are carried out in OpenOLAT (via exams2qti12) using numerical and multiple-choice exercises.
- Written exams (via exams2nops) are carried out using single-choice exercises. Results are scanned (via nops_scan) and automatically evaluated (via nops_eval). Individual HTML reports are uploaded for each student into OpenOLAT.

References

Zeileis A, Grün B, Leisch F, Umlauf N (2015). exams: Automatic Generation of Exams in R. R package version 2.1-0.
URL http://CRAN.R-project.org/package=exams
Zeileis A, Umlauf N, Leisch F (2014). "Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond." Journal of Statistical Software, 58(1), 1-36. doi:10.18637/jss.v058.i01

Grün B, Zeileis A (2009). "Automatic Generation of Exams in R." Journal of Statistical Software, 29(10), 1-14. doi:10.18637/jss.v029.i10

