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Abstract. Random forests have become a widely-used predictive model in many
scientific disciplines within the past few years. Additionally, they are increasingly
popular for assessing variable importance, e.g., in genetics and bioinformatics. We
highlight both advantages and limitations of different variable importance scores
and associated testing procedures. For the test of Breiman and Cutler (2008), we
investigate the statistical properties and find that the power of the test depends
both on the sample size and the number of trees in an undesirable way that nullifies
any significance judgments. Moreover, the specification of the null hypothesis of this
test is discussed in the context of correlated predictor variables.
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1 Introduction

Within the past few years, random forests (Breiman (2001)) have become a
popular and widely-used tool for non-parametric regression in many scien-
tific areas such as genetics, bioinformatics, clinical medicine and psychology.
Random forests are typically found to have high predictive accuracy and are
applicable even in high dimensional problems, as well as problems involv-
ing correlated predictor variables and high-order interactions. Recently, their
variable importance measures have also been suggested for the selection of rel-
evant predictor variables in the analysis of microarray data, DNA sequencing
and many other applications (cf. e.g., Lunetta et al. (2004), Arun and Lang-
mead (2005), Bureau et al. (2005), Huang et al. (2005), Diaz-Uriarte and
Alvarez de Andrés (2006), Qi et al. (2006) ,Ward et al. (2006)). Most random
forest implementations offer two different variable importance measures (plus
class-wise versions of the latter): the Gini importance, based on the Gini gain
split selection criterion, and the permutation accuracy importance. However,
Strobl et al. (2007) show that, when predictor variables vary in their scale
of measurement or their number of categories, the Gini importance is biased

This is a preprint of an article published in P. Brito (ed.) COMPSTAT 2008 –
Proceedings in Computational Statistics, volume II, 59–66. Physica Verlag,
Heidelberg, Germany. ISBN 978-3-7908-2083-6.



2 Strobl, C. and Zeileis, A.

in favor of, e.g., predictor variables with many categories. As opposed to
that, the permutation importance is reliable when the ensembles of trees are
built on subsamples drawn without replacement instead of bootstrap samples
drawn with replacement (Strobl et al. (2007)). Therefore, in the following we
will only consider the permutation importance.

A key advantage of the random forest permutation importance, as com-
pared to univariate screening methods, is that it covers the impact of each
predictor variable individually as well as in multivariate interactions with
other predictor variables. For example, Lunetta et al. (2004) find that ge-
netic markers relevant in interactions with other markers or environmental
variables can be detected more efficiently by means of random forests than
by means of univariate screening methods like Fisher’s exact test. Random
forests can also be applied when predictor variables are highly correlated.

Currently, most applications of the random forest permutation impor-
tance rely on a merely descriptive ranking of the potential predictor vari-
ables with respect to their importance: The few top-ranked predictors are
selected for further exploration, where the number of selected variables is
chosen arbitrarily or with respect to subject matter. A different approach for
variable selection with random forests is introduced by Diaz-Uriarte and Al-
varez de Andrés (2006), who suggest a backward elimination strategy based
on the variable importance scores that takes under consideration the pre-
diction accuracy: The underlying rationale is that the prediction accuracy
will remain almost constant when irrelevant predictor variables are excluded,
while it drops when relevant ones are excluded.

While in statistical modelling the aim may often be to select a model as
sparse as possible, it is of equal interest in many applied sciences to be able
to identify all predictor variables that are associated with the response, even
if some of them are correlated. The question of interest here is to decide for
each variable whether or not its importance is significantly greater than zero.
A statistical test for this question is suggested by Breiman and Cutler (2008).
At first sight it looks like this test could aid the decision which or how many
of the top-ranked variables have significant importance and can be consid-
ered relevant. However, in the following we will present statistical reasoning
and simulation results illustrating that the suggested test is not appropri-
ate for statements of significance. Moreover, we will explore the unclear null
hypothesis of the suggested test and give an outlook on a new permutation
scheme for variable importance in random forests that better represents the
null hypothesis of zero importance of a given variable.

2 Testing random forest variable importance

The rationale of the random forest permutation accuracy importance is the
following: By randomly permuting the predictor variable Xj , its original as-
sociation with the response Y is broken. When the permuted variable Xj ,
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together with the remaining non-permuted predictor variables, is used to
predict the response for the out-of-bag observations, the prediction accuracy
(i.e. the number of observations classified correctly) decreases substantially
if the original variable Xj was associated with the response. Thus, a reason-
able measure for variable importance is the difference in prediction accuracy
before and after permuting Xj , averaged over all trees:

Let B
(t)

be the out-of-bag sample for a tree t, with t ∈ {1, . . . ,ntree}.
Then the variable importance for one tree is
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value of variable j, i.e. with xi,πj = (xi,1, . . . , xi,j−1, xπj(i),j , xi,j+1, . . . , xi,p
)
.

(Note that VI (t)(xj) = 0 by definition, if variable Xj is not in tree t.) The
raw variable importance score for each variable is then computed as the mean
importance over all trees:

VI (xj) =
∑ntree
t=1 VI (t)(xj)

ntree

Because the individual importance scores VI (t)(xj) are computed from
ntree independent bootstrap samples, a simple test for the relevance of vari-
able Xj can be constructed based on the central limit theorem for the mean
importance VI (xj). If each individual variable importance VI (t) has standard
deviation σ, the mean importance from ntree replications has standard error
σ/
√

ntree. Therefore, under the null hypothesis of zero variable importance,
the z-score

ṼI (xj) =
VI (xj)

σ̂√
ntree

is asymptotically standard normal. Hence, when the z-score ṼI (xj) exceeds
the α-quantile of the standard normal distribution, the null hypothesis of zero
importance for variable Xj is rejected. This approach has been suggested
by Breiman and Cutler (2008) for testing the variable importance. Note,
however, that in the computation of the z-score averaging and scaling is not
conducted with respect to the sample size n but to the number of trees in
the ensemble ntree (cf. also Lunetta et al. (2004)).

2.1 Investigating the power of the current test

To investigate the power of the test suggested by Breiman and Cutler (2008),
that is outlined in the previous section, a simulation study was conducted.
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The experimental parameters that were varied are (a) the relevance of the
predictor variable, (b) the sample size, and (c) the number of trees in the
forest. For each combination of experimental parameters 1000 replications
were run. In each replication a data set with the respective relevance and
sample size was generated, a random forest with the respective number of
trees was fit to the data, and the z-score was computed as described in the
previous section. The test decision, i.e. whether or not the null hypothesis was
rejected, was stored in every replication. The relative frequency of rejections
of the null hypothesis (out of the 1000 replications) serves as an estimator
for the power of the test in each combination of experimental parameters. In
Figure 1 the empirical power is displayed as a function of the experimental
parameters.

For a deeper understanding of the underlying mechanism we also display
the curves for the unstandardized mean importance VI , the standard error
of the mean and the z-score ṼI (all averaged over 1000 replications). In each
iteration, a data set of sample size n = 100, 200 or 500 is generated that
includes five predictor variables of which only one binary variable is relevant.
Within the categories of this variable the binary response class is sampled
from a binomial distribution with class probability 0.5 ± ρ, where ρ is the
relevance parameter (ρ = 0, 0.05, . . . , 0.5) as indicated on the abscissas of
Figure 1. The parameter settings for the random forests were given by the
varying number of trees (ntree = 100, 200 or 500) and a fixed number of
two preselected variables per split. The simulation was conducted with the
function randomForest (from the package of the same name by Breiman et al.
(2007), Liaw and Wiener (2002) give an introduction), which is the reference
implementation of random forests in the R system for statistical computing
(R Development Core Team (2007)).

As depicted in the bottom row of Figure 1 the power of the test against
the null hypothesis of zero importance shows the following irritating behav-
ior: The power does increase with the relevance of the predictor variable as
expected for any reasonable power curve. However, the power also does in-
crease with the number of trees in the forest (the curves are shifted to the
left, resulting in higher power for low relevance values), meaning that the
power here depends on a tuning parameter that can be arbitrarily chosen by
the user. This effect is due to the construction of the test statistic where, un-
like in the standard test for the mean under normality, averaging and scaling
is not with respect to a given sample size n but to the number of trees as
outlined above. Even more dramatically, we find that the power does depend
on the sample size—however not as expected for any reasonable test, where
the power is supposed to increase with increasing sample size, but to the
contrary: For large sample sizes (as compared to the number of trees) the
power is zero.

To explore in more detail the mechanism responsible for this odd behavior
we will follow the construction of the z-score, that is derived from the mean
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Fig. 1. Mean variable importance, standard error of mean, z-score and power as
functions of relevance for sample size 100 (solid), 200 (dashed), and 500 (dash-
dotted) and different numbers of trees.

importance by division through the standard error of the mean. The top
row of Figure 1 shows that the unstandardized mean importance VI for one
predictor variable increases with the relevance of the predictor variable and
with the sample size as expected. There is no effect of the number of trees
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on the average importance—at least not when the number of trees is chosen
sufficiently large to guarantee a stable estimate of the mean importance. This
increase in the relevance and the sample size is desirable and exactly what
we would have expected for any statistic to be employed in a test against
the null hypothesis of zero importance. Therefore, the standard error of the
mean, which is used for scaling, must be responsible for the odd behavior
of the z-scores: The numerator of the fraction for the standard error of the
mean, the standard deviation, also increases with the relevance and with
the sample size, and does not depend on the number of trees either. (The
increase in the sample size is due to the resulting increase in the out-of-bag
sample size that again extends the range of possible changes in the prediction
accuracy induced by permuting the predictor variable. The dependence on
the relevance is caused by a mechanism in the tree-building process: In many
trees of the ensemble a variable with a low relevance may not be included at
all, and produce an importance score of exactly zero, which diminishes the
variation of the importance.) As a result of the division by the square root
of the number of trees, however, an additional dependence on the number of
trees is induced in the standard error of the mean, such that it decreases in
the number of trees as depicted in the second row of Figure 1. Note also that
the curves for the different sample sizes vary more strongly for the standard
error of the mean than for the mean importance.

When finally the z-score is computed by means of standardizing the mean
importance with the standard error of the mean, the rationale of this stan-
dardization is to account for the fact that the mean importance is an average
over all trees in the ensemble—it does, however, not account for the effect
of the sample size. The fact that the dependence of the mean importance on
the sample size is less pronounced than that of its standard error causes an
inversion of the importance pattern with respect to the sample size in the
z-scores: We find in the third row of Figure 1 that the z-score decreases in
the sample size but increases with the number of trees. This finally leads to
the pattern for the power curves that we found in the bottom row of Figure 1:
Only for high numbers of trees the overall level of the scaled importance is
high enough for all sample sizes to ever reject the null hypothesis, while for
lower numbers of trees the curves for the high sample sizes never exceed the
threshold for rejecting the null hypothesis and result in a power of zero. This
behavior is undesired and is an artefact of the scaling, that induces a depen-
dence on the number of trees but at the same time inverts the dependence on
the sample size. We therefore summarize the results of our simulation study
that the mean variable importance VI shows the increase in the relevance
and sample size that would be desired for a test for the null hypothesis of
zero importance, while the scaled variable importance and the resulting test
behave oddly.
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2.2 Specifying the null hypothesis

Another issue when considering the test for the random forest permutation
importance suggested by Breiman and Cutler (2008) is the very fundamental
question: Exactly what null hypothesis is being tested? In the previous sec-
tions for simplicity we referred to the null hypothesis as “importance equal to
zero”. This implies some kind of independence between the predictor variable
whose importance is being tested and the response. However, it is unclear
what kind of independence is being tested. The currently employed permu-
tation scheme, where only the values of the variable of interest are permuted
while the values of the response variable and the other predictors are held con-
stant, does mimic the elimination of the predictor variable when predicting
the response—however, at the same time it destroys all correlations between
the variable of interest and the other covariates. Unlike standard permuta-
tion test of the global null hypothesis that the response is not correlated with
any of the predictor variables, where the response is permuted against the
complete predictor matrix and all associations within the predictor matrix
are retained, the current random forest approach tests the rather unintuitive
null hypothesis that the predictor of interest is not correlated with either one
of the response or covariates. In cases where predictor variables may be cor-
related this permutation scheme might not reflect the actual null hypothesis
of interest. This topic is investigated in more detail and a new, conditional
permutation importance measure is suggested in Strobl et al. (2008).

3 Conclusion and outlook

We conclude that, in principle, a test for the random forest permutation
importance could help identify relevant predictor variables. However, the re-
sults of our simulation studies also show that, in its current form, the test
of Breiman and Cutler (2008) has prohibitively undesirable properties: The
power of the test does not increase with the sample size, as would be expected
for any reasonable statistical test, but rather remains zero for large sample
sizes as compared to the number of trees. On the other hand the power does
increase with the number of trees, which is a parameter that can be arbitrar-
ily chosen by the user. This means that any statement of significance made
with the current test for random forest variable importance is nullified.

Another issue, that is relevant in the context of correlated predictor vari-
ables, is the question whether the null hypothesis that is being tested in the
current test is the one that reflects our understanding of the impact of a
predictor variable on the response. A conditional permutation scheme that
better reflects the null hypothesis of interest is suggested in Strobl et al.
(2008).

Further research will address the issue of an adequate test statistic and
rejection area for this null hypothesis. For high numbers of variables multiple
testing issues will also have to be taken into consideration.
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