

Unbiased Recursive Partitioning II:
A Parametric Framework Based on Parameter Instability Tests

Achim Zeileis
Torsten Hothorn
Kurt Hornik
http://www.ci.tuwien.ac.at/~zeileis/

Overview

- Model-based recursive partitioning
- Parametric models
- Parameter estimation
- Segmented models
- The recursive partitioning algorithm
- Tests for parameter instability
- Assessing numerical/categorical variables
- Illustrations
- Artificial data
- Boston housing data
- Summary

Model-based recursive partitioning

Starting point: Recursive partitioning algorithms (including conditional inference trees) learn a partition/segmentation from data and then fit a naive model in each terminal node, e.g., a mean, relative frequencies or a Kaplan-Meier curve.

Idea: Employ parametric models in each node.
Goal: Algorithm for constructing segmented parametric models by recursive partitioning.

Parametric models

Consider models $\mathcal{M}(Y, \theta)$ with (possibly vector-valued) observations $Y \in \mathcal{Y}$ and a k-dimensional vector of parameters $\theta \in \Theta$.

Given n observations $Y_{i}(i=1, \ldots, n)$ the model can be fit by minimizing some objective function $\psi(Y, \theta)$ yielding the parameter estimate $\hat{\theta}$

$$
\hat{\theta}=\underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} \Psi\left(Y_{i}, \theta\right) .
$$

Parameter estimation

Under mild regularity conditions it can be shown that the estimate $\hat{\theta}$ can also be computed by solving the first order conditions

$$
\sum_{i=1}^{n} \psi\left(Y_{i}, \widehat{\theta}\right)=0,
$$

where

$$
\psi(Y, \theta)=\frac{\partial \Psi(Y, \theta)}{\partial \theta}
$$

is the score function or estimating function corresponding to $\Psi(Y, \theta)$.

Parameter estimation

This type of estimators includes maximum likelihood (ML), ordinary least squares (OLS), Quasi-ML and further M-type estimators.

Example: $\mathcal{M}(Y, \theta)$ could be a multivariate normal model for $Y \sim \mathcal{N}(\mu, \Sigma)$ such that $\theta=(\mu, \Sigma)$.

Example: $\mathcal{M}(Y, \theta)$ could be a generalized linear model for $Y=(y, x)^{\top}$ such that

$$
g(\mathrm{E}(y))=x^{\top} \theta
$$

Segmented models

Idea: In many situations, it is unreasonable to assume that a single global model $\mathcal{M}(Y, \theta)$ can be fit to all n observations. But it might be possible to partition the observations with respect to covariates $Z=\left(Z_{1}, \ldots, Z_{l}\right)$ such that a fitting model can be found in each cell of the partition.

Goal: Learn partition via recursive partitioning with respect to $Z_{j} \in \mathcal{Z}_{j}(j=1, \ldots, l)$.

Segmented models

Example: Regression trees.
The parameter θ describes the mean of the univariate observations Y_{i} and is estimated by OLS or equivalently ML in a normal model. The variables Z_{j} are the regressors considered for partitioning.

Example: Changepoint or structural change analysis.
A (generalized) linear regression model with $Y_{i}=\left(y_{i}, x_{i}\right)^{\top}$ and regression coefficients θ is segmented with respect to a single variable Z_{1} (i.e., $l=1$), typically time.

Segmented models

Given a partition, the estimation of the parameters θ that minimize the corresponding global objective function $\sum_{b=1}^{B} \sum_{i \in I_{b}} \Psi\left(Y_{i}, \theta^{(b)}\right)$ can be easily achieved by computing the locally optimal parameter estimates $\widehat{\theta}^{(b)}$ in each segment b (with corresponding indices I_{b}).

If it is unknown, minimization of ψ is more complicated (if trivial partitions are excluded). But it is easily possible to optimally split the observations with respect to only a single variable Z_{1} into B segments. Typically $B=2$ is chosen.

Segmented models

A single optimal split into $B=2$ partitions can easily be computed in $O(n)$ by exhaustive search.

For $B>2$, when an exhaustive search would be of order $O\left(n^{B-1}\right)$, the optimal partition can be found using a dynamic programming approach of order $O\left(n^{2}\right)$ (Hawkins, 2001; Bai \& Perron, 2003) or via iterative algorithms (Muggeo, 2003).

Various algorithms for adaptively choosing the number of segments B are available, e.g., via information criteria.

The recursive partitioning algorithm

The generic recursive partitioning algorithm presented in Part I can be used almost directly.

The only difference is that now each node is associated with a parametric model.

Question: How should we assess the association of a fitted model with a covariate Z_{j} ?

Answer: Test for instability of the parameters of the model with respect to this variable Z_{j}.

The recursive partitioning algorithm

1. Fit the model once to all observations in the current node by estimating $\hat{\theta}$ via minimization of ψ.
2. Assess whether the parameter estimates are stable with respect to every ordering Z_{1}, \ldots, Z_{l}. If there is some overall instability, select the variable Z_{j} associated with the highest parameter instability, otherwise stop.
3. Compute the split point(s) that locally optimize ψ (either for a fixed number of splits, or choose the number of splits adaptively).
4. Split this node into daughter nodes and repeat the procedure.

Tests for parameter instability

Generalized M-fluctuation tests (Zeileis \& Hornik, 2003) can be used for assessing whether the parameter estimates $\hat{\theta}$ are stable over a certain variable or not.

The basic idea is to use an empirical fluctuation process of cumulative scores for a particular ordering of the observations

$$
W(t, \widehat{\theta})=\widehat{J}^{-1 / 2} n^{-1 / 2} \sum_{i=1}^{\lfloor n t\rfloor} \psi\left(Y_{i}, \widehat{\theta}\right) \quad(0 \leq t \leq 1)
$$

which is governed by a functional central limit theorem (FCLT). It converges to a Brownian bridge W^{0}.

Tests for parameter instability

A test statistic can be derived by applying a scalar functional $\lambda(\cdot)$ to the fluctuation process, the limiting distribution is just the same functional (or its asymptotical counterpart) applied to the limiting process $\lambda\left(W^{0}(\cdot)\right)$.

Advantage: The model just has to be estimated once. For testing, the scores of the fitted model $\hat{\psi}$ just have to be reordered for each variable.

Let $W_{j}(t)$ be the fluctuation process for the observations ordered by Z_{j}.

Assessing numerical variables

The most intuitive functional for assessing the stability with respect to a numerical partitioning variable Z_{j} is the $\sup L M$ statistic of Andrews (1993).

$$
\lambda_{\left.\operatorname{supLM}^{(} W_{j}\right)}=\max _{i=\underline{i}, \ldots, i}\left(\frac{i}{n} \cdot \frac{n-i}{n}\right)^{-1}\left\|W_{j}\left(\frac{i}{n}\right)\right\|_{2}^{2} .
$$

This gives the maximum of the single changepoint $L M$ statistics over all possible changepoints in $[\underline{i}, \bar{i}]$.

The limiting distribution is given by the supremum of a squared, k-dimensional tied-down Bessel process.

Assessing categorical variables

To assess the stability of a categorical variable with C levels, a χ^{2} statistics is most intuitive

$$
\lambda_{\chi^{2}\left(W_{j}\right)}=\sum_{c=1}^{C}\left|\frac{I_{c}}{n}\right|^{-1}\left\|\Delta_{I_{c}} W_{j}\left(\frac{i}{n}\right)\right\|_{2}^{2}
$$

because it is insensitive to re-ordering of the levels and the observations within the levels.

It essentially captures the instability when splitting the model into C groups.

The limiting distribution is χ^{2} with $k \cdot(C-1)$ degrees of freedom.

Pruning

The algorithm described so far employs a pre-pruning strategy, i.e., uses an internal stopping criterion: if no variable exhibits significant association, i.e., significant parameter instability, the algorithm stops.

Alternatively/additionally, a post-pruning strategy can be used. This seems particularly attractive if ML is used for parameter estimation. Then a ML tree can be grown which is consequently associated with a segmented ML model. This can be pruned afterwards using information criteria for example.

Example: Artificial data

Artificial data from a segmented univariate linear regression. The segmentation is explained by 2 numerical partitioning variables. Furthermore, 2 numerical and 2 categorical variables with additional "noise" are in the data set.

The data-generating mechanism is:

$$
\begin{aligned}
& a \leq 1: y=1+x+\varepsilon \\
& a>1, b \leq 1: \\
& a>1, b>1: y=2+x+\varepsilon \\
& a>\varepsilon
\end{aligned}
$$

where $x \sim \mathcal{U}(0,2)$ and $\varepsilon \sim \mathcal{N}(0,1)$.

Example: Artificial data

Example: Artificial data

Example: Artificial data

Example: Artificial data

```
R> fm <- mob(y ~ x | a + b + e + f + g + h, data = dat1)
```

Fluctuation tests of splitting variables:

	a	b	e	f	g	h
statistic	$2.310366 \mathrm{e}+01$	10.0350125	7.8502106	1.609714	3.8000510	2.7036527
p value	$3.576589 \mathrm{e}-04$	0.1142662	0.2584384	1.000000	0.4337418	0.6085756

Best splitting variable: a
Perform split? yes

Node properties:
) a <= 1.106652; criterion = 1, statistic = 23.104
) $a>1.106652$

R> plot(fm)

Example: Artificial data

Example: Artificial data

Artificial data from a segmented quadratic regression. The segmentation is explained by 2 categorical and 1 numerical variables, plus 4 additional "noise" variables.

The data-generating mechanism is:

$$
\begin{aligned}
& a=a_{1}, b=b_{2}: \\
& a=a_{1}, b \neq b_{2}: \\
& a \neq 2+4 \cdot x+0 \cdot x^{2}+\varepsilon, \\
& a \neq a_{1}, d \leq 1: \\
& a \neq a_{1}, d>1: \\
& y=1+3 \cdot x^{2}+\varepsilon, y=1.5+0 \cdot x+1.5 \cdot x^{2}+\varepsilon,
\end{aligned}
$$

where $x \sim \mathcal{U}(0,2)$ and $\varepsilon \sim \mathcal{N}(0,0.5)$.

Example: Artificial data

Example: Artificial data

Example: Artificial data

Example: Artificial data

Example: Boston housing data

Goal: Explain median value of houses in suburbs of Boston by various numerical covariates.

Here: Segment a linear regression with explanatory variables log(average number of rooms) and log(lower status percentage). All remaining variables are used as partitioning variables.

Example: Boston housing data

Summary

Model-based recursive partitioning:

- based on well-established statistical models,
- aims at minimizing a clearly defined objective function (and not certain heuristics),
- unbiased due to separation of variable and cutpoint selection,
- statistically motivated stopping criterion,
- employs general class of tests for parameter instability.

