

The Design and Analysis of Benchmark Experiments – Part I: Design

Achim Zeileis Torsten Hothorn Friedrich Leisch Kurt Hornik

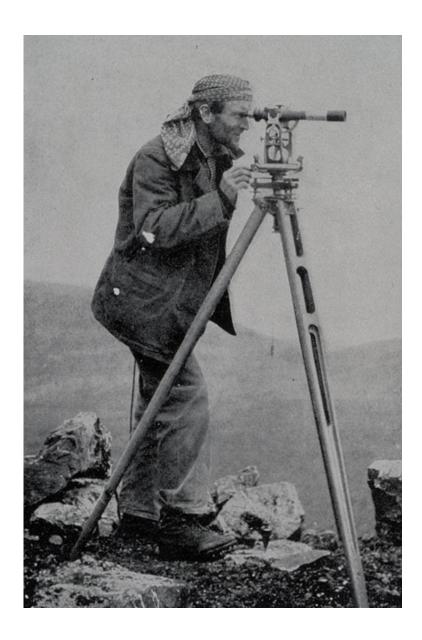
http://www.ci.tuwien.ac.at/~zeileis/

Overview

- What is a benchmark?
- * A framework for comparing perfomances
 - data generating processes
 - algorithms
 - performances
- Application to supervised learning
 - Simulation
 - Competition
 - Real World
- Simulation results
- Conclusions

Benchmarking has its root in land surveying:

A benchmark in this context is a mark, which was mounted on a rock, a building or a wall. It was a reference mark to define the position or the height in topographic surveying or to determine the time for dislocation. (Patterson, 1992)



In statistical learning:

comparison of the performance of learners or algorithms

Reference point:

data generating process

Analogy:

measure performances in a landscape of learning algorithms

But:

take variability into account

Major goal: identify best algorithm among set of candidates.

Typical approaches:

- * assess quality of algorithms by point estimates of some performance measure (e.g., MSE, misclassification),
- * use bootstrap sampling and cross-validation,
- if independent test samples are available: standard statistical inference,
- * else: specialized variance estimators and associated tests,

Framework

Conceptually different approach:

- * fix data generating process DGP,
- * draw independent learning samples from DGP

$$\mathcal{L} = \{z_1, \dots, z_n\},\$$

- * algorithm a: model fitting returns function $a(\cdot \mid \mathcal{L})$ for computing objects of interest,
- * use problem specific performance measure $p(a, \mathcal{L})$.

Framework

Obtain *independent* observations from performance distribution:

- * draw B independent learning samples from DGP: $\mathcal{L}^1, \dots, \mathcal{L}^B \sim DGP$,
- * train K different algorithms $a_k(\cdot \mid \mathcal{L}^b) \sim A_k(DGP)$,
- * apply scalar performance measure $p_{kb} = p(a_k, \mathcal{L}^b) \sim P_k = P_k(DGP)$.
- ⇒ standard statistical test procedures can be used for inference about performance.

$$H_0: P_1 = \cdots = P_K$$

Framework

An algorithm a_k is better than an algorithm $a_{k'}$ iff

$$\phi(P_k) < \phi(P_{k'}).$$

Typically: $\phi(P_k) = \mathsf{E}(P_k)$.

Test

$$H_0: P_k = P_{k'}$$
 vs. $H_1: P_k \neq P_{k'}$

using a test that can bring out departures $\phi(P_k) \neq \phi(P_{k'})$.

- *** Observations:** inputs and response z = (y, x),
- *** Algorithms:** predictors $a(x \mid \mathcal{L}) = \hat{y}$,
- **Performance:** expected loss $L(y, \hat{y})$.

- *** Observations:** inputs and response z = (y, x),
- *** Algorithms:** predictors $a(x \mid \mathcal{L}) = \hat{y}$,
- **Performance:** expected loss $L(y, \hat{y})$.

Example: Regression. Use quadratic loss $L(y, \hat{y}) = (y - \hat{y})^2$, then

$$p_{kb} = \mathsf{E}_{a_k} \mathsf{E}_{z=(y,x)} \left(y - a_k \left(x | \mathcal{L}^b \right) \right)^2.$$

Not yet specified: data generating process DGP.

1. Simulation:

The learning sample \mathcal{L} has n independent observations $z \sim Z$. Denote by: $\mathcal{L} \sim Z_n$.

Data generating process: $DGP = Z_n$.

Associated hypothesis:

$$H_0: P_1(Z_n) = \ldots = P_K(Z_n).$$

Performance is usually evaluated by empirical performance \hat{P}_k on an independent test sample $\mathcal{T} \sim Z_m$ with m large.

2. Competition:

Learning sample $\mathcal{L} \sim Z_n$ is provided but Z is unknown \Rightarrow use approximation \widehat{Z} instead.

Data generating process: $DGP = \hat{Z}_n$.

Performance is evaluated by empirical performance on a provided test sample $T \sim Z_m$.

Associated hypothesis:

$$H_0: \widehat{P}_1(\widehat{Z}_n) = \ldots = \widehat{P}_K(\widehat{Z}_n).$$

3. Real World:

A learning sample $\mathcal{L} \sim Z_n$ is available but no test sample \mathcal{T} .

Data generating process: $DGP = \hat{Z}_n$.

Problem: How should performance be computed? Some test sample needs to be "generated".

Evaluate performance by:

- * sample splitting \rightarrow Situation 2.
- * use learning sample $T = \mathcal{L}$
- * out-of-bag: for each bootstrap sample \mathcal{L}^b use the observations $\mathcal{L}\setminus\mathcal{L}^b$
- * cross-validation: e.g., average performance on folds

Associated hypothesis:

$$H_0: \widehat{P}_1(\widehat{Z}_n) = \ldots = \widehat{P}_K(\widehat{Z}_n).$$

Data generating process DGP:

Z is a simple regression model

$$y = 2x + \beta x^2 + \varepsilon,$$

where

- $X \sim U(0,5)$,
- * $\varepsilon \sim \mathcal{N}(0,1)$,
- n = 50.

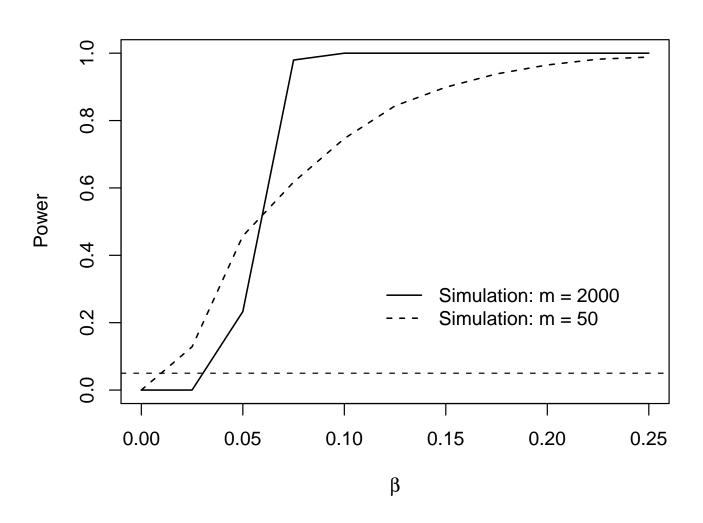
Loss: $L(y, \hat{y}) = (y - \hat{y})^2$.

Algorithms: two nested linear models

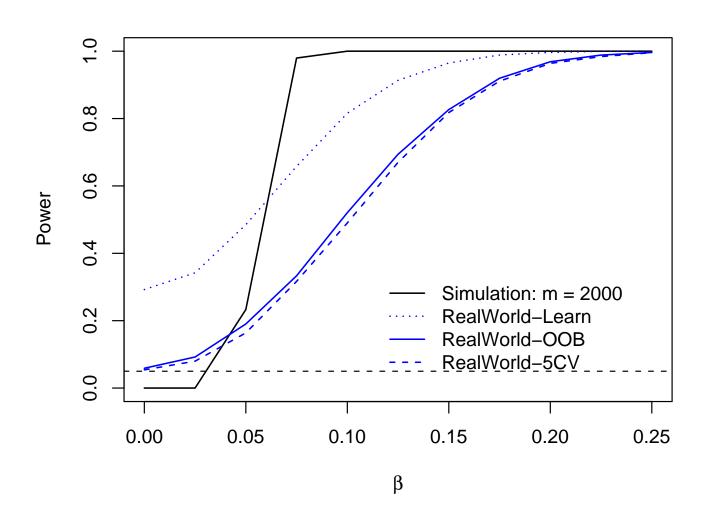
- * a_1 : linear regression with input x,
- * a_2 : quadratic regression with inputs x and x^2 .

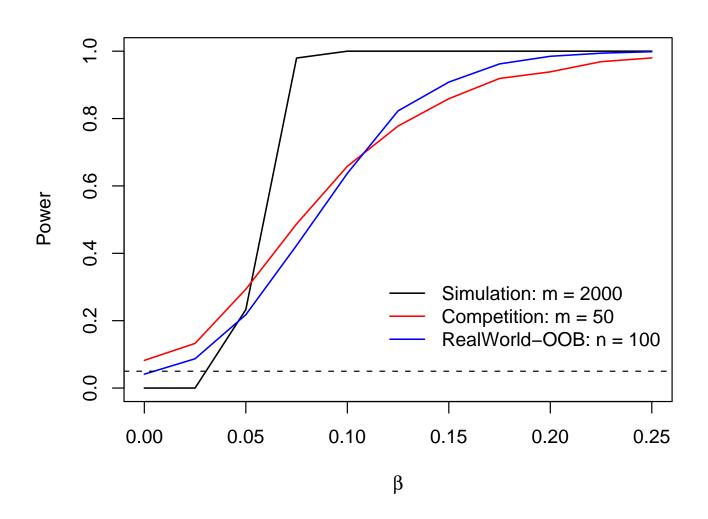
Note: a_1 only unbiased for $\beta = 0$, but with smaller variance.

Test: one-sided test for difference in expected performance based on B=250 learning samples. Estimate power by 5000 Monte Carlo replications.









Results indicate:

- using a single test sample favours over-fitting and reduces power,
- cross-validation works well, but is computationally expensive
- out-of-bag approach seems to work equally well, but is computationally cheaper.

Conclusions

- unified conceptual framework for benchmark experiments,
- * can be easily adapted to various situations,
- * do it yourself.

Just figure out what are the data-generating process, algorithms and performance measures,

* results of the experiment do not require specialized methods for the analysis: the full *standard statistical tool box* can be applied directly.