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What is a structural change? TU

Consider the linear regression model

yi = x; B; + uy (t=1,...,n),

where at time 4.
[1 y; — dependent variable,
(] x; — vector of k regressors,

(1 B; — vector of k unknown regression coefficients,

[ u; — error term.



What is a structural change?

U

The null hypothesis is

Ho: B; =00 (i=1,...,n),
which will be tested against the alternatives
Hy: not Hg

or

x . o Ba (1§Z§ZO)
M 52_{63 (i <i<mn)’

respectively.



What is R? TU

R is a software package for statistical computing—the GNU im-
plementation of the programming language S.

http://www.R-project.org/
All the functions and methods for testing for structural change
introduced here are implemented in the package strucchange
availabe from the Comprehensive R Archive Network (CRAN):

http://cran.R-project.org/

Authors: Achim Zeileis, Friedrich Leisch, Bruce Hansen, Kurt
Hornik, Christian Kleiber, Andrea Peters.


http://www.R-project.org/
http://cran.R-project.org/

F tests TU

F' tests are designed for the single shift alternatvie HJ.

(i) for known (potential) shift point: Chow-Test
Two separate regressions are fitted for the subsamples defined
by 79 and the resulting residuals

é= (s, ap)"
are compared with the residuals from the model without a shift
by an F' test:
_ (a'a-e'e)
0 ele/(n—2k)

F;



F tests TU

(ii) for unknown shift point: supF test

Compute the test statistics F; for all possible shift points in an
interval [4,7] and reject the null hypothesis if any of these F
statistics is improbably large.

alternatively: aveF and expF' test

Reject the null hypothesis if the average or the exp functional
of the F' statistics is improbably large. These tests have certain
optimality properties (Andrews & Ploberger, 1994).
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F tests

Measurements of the annual flow of the Nile at Ashwan
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F tests

U

R> fs <- Fstats(Nile
R> plot(fs)
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F tests

R> fs <- Fstats(Nile ~ 1)
R> plot(fs)

R> lines(breakpoints(fs))
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F tests TU

Additionally to these graphical methods significance tests can be
carried out using the function sctest():

R> sctest(fs)

supF test

data: fs

sup.F = 75.9298, p-value = 2.220e-16
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F tests

Measurements of the annual flow of the Nile at Ashwan
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Generalized fluctuation tests 1TU

Generalized fluctuation tests are especially useful, if one has no
particular alternative (Hq) in mind. This framework ...

i

. Includes formal significance tests but its philosophy is basi-
cally that of data analysis as expounded by Tukey. Essentially,
the techniques are designed to bring out departures from con-
stancy in a graphic way instead of parametrizing particular types
of departure in advance and then developing formal significance
tests intended to have high power against these particular alter-
natives.” (Brown, Durbin, Evans, 1975)



Generalized fluctuation tests 1TU

L[] empirical fluctuation processes reflect fluctuation in

[J residuals (common OLS residuals or recursive residuals =
1-step prediction error)

] coefficient estimates

[1 theoretical limiting process is known

[1 choose boundaries which are crossed by the limiting process
only with a known probability «.

(1 if the empirical fluctuation process crosses the theoretical
boundaries the fluctuation is improbably large = reject the
null hypothesis.



Generalized fluctuation tests 1TU

Processes based on OLS residuals:

i = yi—xz p
OLS-based CUSUM process:

|nt]
1
wi) = —3 @ (0<t<1).



Generalized fluctuation tests 1TU

Processes based on OLS residuals:

. T 5
i = y—a fM

OLS-based CUSUM process:

OLS-based MOSUM process:

1 (LntJthJ

MO(tlh) = P~ 3 faz> (0<¢t<1-—h).

i=|nt]+1



Generalized fluctuation tests
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R> ols <- efp(Nile ~ 1, type = "OLS-CUSUM")
R> plot(ols)

OLS-based CUSUM test
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Generalized fluctuation tests
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R> ols <- efp(Nile ~ 1, type = "OLS-CUSUM")
R> plot(ols)

R> lines(breakpoints(fs))

OLS-based CUSUM test
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Generalized fluctuation tests 1TU

As for the F' statistics significance tests can be carried out using
the function sctest():

R> sctest(ols)

OLS-based CUSUM test

data: ols

SO0 = 2.9518, p-value = 5.409e-08



The GLM TU

Consider the generalized linear model (GLM) with n independent
observations from an exponential family

y; ~ F(u;,¢) with E[y;] = u; and dispersion ¢.

The following regression relationship is assumed:

g(ui) = =B (i=1,...,n),

where g(-) is a known link function and 3; is a vector of regression
coefficients.

The null hypothesis remains

Ho: B; = pBo.



Quantile residuals TU

Dunn & Smyth (1996) suggest quantile residuals for GLMs:

(i) F continuous: The quantile residuals are defined as:

ri = O HF(ylin )},
and are asymptotically standard normal.



Quantile residuals TU

Dunn & Smyth (1996) suggest quantile residuals for GLMs:

(i) F continuous: The quantile residuals are defined as:

ri = O HF(ylin )},
and are asymptotically standard normal.

(ii) F discrete: To obtain asymptotic normality the quantile
residuals have to be randomized:

Ty — Cb_l(u’i)a
where u; is a uniform random variable on (g;, p;] with
gi = lim F(y|f;, ¢),
YTy

F (ys)i2i, )]

Pi



Illegitimate births TU

Veichtlbauer, Hanser, Zeileis, Leisch (2002) analyze the annual
number of legitimate and illegitimate births in GroBarl between
1700 and 1900.

Question: Did moral regulations have any effect on the propor-
tion of illegitimate births?

Two models are compared: a binomial model explaining the
illegitimate births just by political influences or additionally by
moral regulations (and the number of marriages in the previous
year).



Illegitimate births
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lllegitimate Births in Grossarl
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Illegitimate births
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lllegitimate Births in Grossarl
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Illegitimate births TU

R> rqr <- gefp(baptisms ~ politics, type = "RQR-CUSUM", family = binomial)
R> plot(rqr)

Randomized Residuals CUSUM test
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Illegitimate births
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R> rqr <- gefp(baptisms ~ politics, type = "RQR-CUSUM", family = binomial)

R> plot(rqr)

R> lines(gefp(baptisms ~ politics + morals + lag.marriages,

type = "RQR-CUSUM", family = binomial))

Randomized Residuals CUSUM test
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lllegitimate Births in Grossarl
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Score-based processes TU

Instead of capturing the fluctuation in residuals or estimates,
fluctuation processes can also be based on Maximum Likelihood
(ML) scores (Hjort & Koning, 2002):

|nt]
Wa) = ——Q(B) Y2 logl/(ylf) (O<t<1),
NG =
where
1 & !/
Q(B) = —=> logL"(yB).
ni=1

Then W,, converges in distribution to a vector of k independent
Brownian bridges.



Score-based processes TU

For a Poisson regression model with the canonical log link this
leads to

[ nt]
1 _ .
Wn(t) = ﬁ Q12 Z;{yz — exp(xz-Tﬁ)}xz-,
where
Q = ! > exp(z; B)z;xz; .
"i=1

If regressing only on a constant (i.e., x; = 1), this is equivalent
to a fluctuation process based on Pearson residuals.



Boston Homicides TU

Cooper, Piehl, Braga, Kennedy (2001) investigate the monthly
number of youth homicides in Boston: Does the “Boston Gun
Project” have any effect on the number of youth homicides?

The project was launched in the mid-1990s due to concern about
the growing numbers of youth involved in homicides.



Boston Homicides
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Monthly Youth Homicide Count in Boston
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Boston Homicides TU

R> sco <- gefp(BostonHomicide ~ 1, type = "Score-CUSUM", family = poisson)

R> plot(sco)

Score—-based CUSUM test
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Boston Homicides TU

R> sco <- gefp(BostonHomicide ~ 1, type = "Score-CUSUM", family = poisson)

R> plot(sco)

Score—-based CUSUM test
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