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Abstract

Recursive partitioning algorithms separate a feature space into a set of disjoint rect-
angles. Then, usually, a constant in every partition is fitted. While this is a simple and
intuitive approach, it may still lack interpretability as to how a specific relationship be-
tween dependent and independent variables may look. Or it may be that a certain model is
assumed or of interest and there is a number of candidate variables that may non-linearly
give rise to different model parameter values. We present an approach that combines
generalized linear models with recursive partitioning that offers enhanced interpretability
of classical trees as well as providing an explorative way to assess a candidate variable’s
influence on a parametric model. This method conducts recursive partitioning of a gen-
eralized linear model by (1) fitting the model to the data set, (2) testing for parameter
instability over a set of partitioning variables, (3) splitting the data set with respect to
the variable associated with the highest instability. The outcome is a tree where each
terminal node is associated with a generalized linear model. We will show the method’s
versatility and suitability to gain additional insight into the relationship of dependent and
independent variables by two examples, modelling voting behaviour and a failure model
for debt amortization, and compare it to alternative approaches.

Keywords: model-based recursive partitioning, generalized linear models, model trees, func-
tional trees, parameter instability, maximum likelihood.

1. Introduction

In many fields, classic parametric models are still dominant in statistical modelling and often
rightly so. They demand some insight into the data generating process as well as a strong
theoretical foundation to be applicable and as such force a researcher to be clear about the
question she wants answered and to put a great deal of thought into collecting data and
setting up the statistical model. They have the undeniable advantage to be interpretable in
light of the research questions. Usually they pose restrictions on the relationship between the
explanatory variables and the target variables. A very common restriction is to define the
functional relationship between (transformations of) the independent and (transformations
of) the dependent variables as linear. This gives rise to many parametric models, such as the
classic linear model (Rao and Toutenburg 1997), generalized linear models (GLM, McCullagh
and Nelder 1989) or, somewhat more generally, maximum likelihood (ML) models with linear
predictors (LeCam 1990).

However, the linearity assumption for the coefficients of the predictor variables is precisely
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2 Gaining Insight with Recursive Partitioning of GLMs

what can sometimes appear to be too rigid for the whole data set, even if the model might fit
well in a subsample. Especially with large data sets or data sets where knowledge about the
underlying processes is limited, setting up useful parametric models can be difficult and their
performance may not be sufficient. This is why a number of flexible methods that only need
very few assumptions have recently been developed (sometimes collected under the umbrella
terms “data mining” and “machine learning”, Clarke, Fokoue, and Zhang 2009). Many of these
methods are able to incorporate non-linear relationships or find the functional relationship by
themselves and therefore can have higher predictive power in settings where classic models are
biased or even fail. However, they may leave the researcher puzzled as to what the underlying
mechanisms are, since many of them are either black box methods (e.g., random forests) or
have a high variance themselves (e.g., trees). See Hastie, Tibshirani, and Friedman (2009) for
a comprehensive discussion of some of the most popular of these methods and their advantages
and disadvantages over classic parametric models.

In this paper we present an approach that integrates classic generalized linear models and
maximum likelihood models with a linear predictor with a popular data mining method,
recursive partitioning or trees. Trees have become a widely researched method since their
first inception by Morgan and Sonquist (1968), see e.g., Breiman, Friedman, Olshen, and
Stone (1984), Quinlan (1993), Hothorn, Hornik, and Zeileis (2006), Zhang and Singer (2010).
Their biggest advantage is often seen in being simple to interpret and easy to visualize and at
the same time allowing to incorporate high-order interactions and exhibiting higher predictive
power than classic approaches. Over the last 20 years, effort went into combining parametric
regression models with recursive partitioning (Chaudhuri, Lo, Loh, and Yang 1995). These
approaches were sometimes coined hybrid, model or functional trees (Gama 2004) and include
methods such as M5 (Quinlan 1993), SUPPORT (Chaudhuri, Huang, Loh, and Yao 1994),
GUIDE (Loh 2002), LMT (Landwehr, Hall, and Eibe 2005) and LOTUS (Chan and Loh
2004). A recent proposal is model-based recursive partitioning (MOB, Zeileis, Hothorn, and
Hornik 2008) which provides a unified framework for fitting, splitting and pruning based on
M-estimation (including least squares and maximum likelihood as special cases).

Building upon the MOB framework, in what follows we explicitly present and discuss recursive
partitioning of generalized linear and related models. The remainder of the paper is as follows:
In Section 2 we discuss recursive partitioning of generalized linear models, from the basic idea
of MOB in Section 2.1 and generalized linear models in Section 2.2 to the specific algorithm in
Section 2.3. In Section 2.4 we discuss the extension to models with linear predictors that do
not strictly belong to the class of GLM. In Section 3 we illustrate the usage of the algorithm for
two data sets and how additional insight can be gained from this hybrid approach. Section 4
contains a comparative investigation into similarities and difference in applicability, properties
and performance of the presented approach with alternative approaches from the literature.
We conclude with a general discussion in Section 5.

2. Recursive partitioning of generalized linear models

2.1. Basic idea

Model-based recursive partitioning (Zeileis et al. 2008) looks for a piece-wise (or segmented)
parametric model Mp(Y,{9}),b=1,..., B that may fit the data set at hand better than a
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global model M(Y, ), where Y are observations from a space ). The existence of the real
p-dimensional parameter vector in each segment 9, € Oy is assumed and their collection is
denoted as {¥}. The partition {By},b = 1,..., B of the space Z = Z; x --- x Z; spanned
by the [ covariates Z;,7 = 1,...,l gives rise to B segments within the data for which local
parametric models My(Y,9),b = 1,..., B may fit better than the global model. All these
local models have the same structural form, they only differ in terms of ¥,. Minimizing
the objective function Zle > ier, Y(Yi,Up) (with the corresponding indices I,,b=1,..., B)
over all conceivable partitions {B,} will result in the set of vectors of parameter estimates
{19;,}. Technically this is difficult to achieve and a greedy forward search of selecting only one
covariate in each step is suggested to approximate the optimal partition. In what follows,
we will focus on generalized linear models (McCullagh and Nelder 1989) as the node model
M(Y,9) and briefly extend it to other maximum likelihood models with linear predictors.

2.2. Generalized linear models

Let Y = (y,x) denote a set of a response y and p-dimensional covariate vector x = (z1,...,xp)
with expected value E(y) = u. For i = 1,...,n independent observations, the distribution of
each y; is an exponential family with density (Aitkin, Francis, Hinde, and Darnell 2009)

f (i 0i, ) = exp{[yits — v(0:)]/& + T(vi, )} (1)

Here, the parameter of interest (natural or canonical parameter) is 0;, ¢ is a scale parameter
(known or seen as a nuisance) and v and 7 are known functions. The n-dimensional vectors
of fixed input values for the p explanatory variables are denoted by x1,...,x,. We assume
that the input vectors influence (1) only via a linear function, the linear predictor, n; =
Bo + B1xi1 + - - + Bpxip upon which 6; depends. As it can be shown that § = (7/)~1(u), this
dependency is established by connecting the linear predictor 7 and 6 via the mean (Venables
and Ripley 2002). More specifically, the mean p is seen as an invertible and smooth function
of the linear predictor, i.e.,

g(w) =norpu=g~"(n) (2)
The function g(-) is called the link function. If the function connects p and € such that p = 6,

then this link is called canonical and has the form g = (7/)~!. Mean and variance for the n
observations are given by

E(y:) = i ='(6:)  Var(yi) = ¢7"(6:) = Vi, (3)

with  and ” denoting the first and second derivatives respectively. Considering the GLM
n; = g(pi) = B'x;, the log-likelihood for n observations is given by Aitkin et al. (2009)

n

(0,6:Y) =Y [yibi —v(0)]/o+ > T(yir ). (4)
=1

i=1
The score functions for B are then Aitkin et al. (2009)

LB, ¢;Y)

S(B,y:i) = 93

= Z(yi — 1i)%i/Vig' (i), ()
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and the information matrix is,

I(B) _ 821(,6, ¢; Y)
opos’
= =) xixi/Vig? = > (i — m)xixi(Vigl + Vig))/Vig®, (6)
with ¢, = ¢'(1i), V/ = g:ﬁ and g/ = ngl(L’;i). In classic GLM the observed and expected

information matrix has a block-diagonal structure so the cross-derivatives of B and ¢ are
zero. Also, the structure of (5) shows that the MLE for 3 can be obtained independently of
the nuisance parameter.

Asymptotically, the estimated parameter vector B shows the same properties as other ML
estimators (McCullagh and Nelder 1989) and is

(B—=B) ~Nps1(0.Z(8) ), (7)

under standard regularity conditions.

2.3. Recursive partitioning algorithm

For GLM as described earlier, the algorithm of Zeileis et al. (2008) becomes:

1. Fit a generalized linear model (2) to all observations in the current node b. Hence, 8,
is estimated by minimizing the negative of the log-likelihood (4). This can be achieved
by setting the score function (5) to zero (which is admissible under mild regularity
conditions) to yield the estimated parameter vector Bb.

2. Assess stability of the score function evaluated at the estimated parameter, §; = S (Bb, Yi)
with respect to every possible ordering of the values of each partitioning covariates
Zj,j = 1,...,1 with generalized M-fluctuation tests (Zeileis and Hornik 2007). This
yields a measure of instability of the parameter estimates for each covariate. If there
is significant instability for one or more Z;, select the Z; associated with the highest
instability. Here the p-value of the fluctuation test is used as a measure of effect size,
the lower the p-value the higher the associated instability. If no significant instability
is found, the algorithm stops. Please note that the significance level for the fluctuation
tests has to be corrected for multiple testing to keep the global significance level, which
can be achieved by a simple Bonferroni correction (Hochberg and Tamhane 1987).

3. After a splitting variable has been selected, the split points are computed by locally
optimizing — Zle [(By, #; Yiljicr,)) with 1) denoting the indicator function. In prin-
ciple this can be done for any number K — 1 of fixed or adaptively chosen splits that is
less or equal to the number of observations in the current node. However, we restrict
ourselves to binary splits, i.e., only one split point is chosen. This means we minimize
—U(B1, b5 vilpen)) — U(Ba, #5Yiljicr,)) for two rival segmentations with corresponding
indices I1 and I by an exhaustive search over all pairwise comparisons of possible
partitions.

4. This is then repeated recursively for each daughter node until no significant instability
is detected or another stopping criterion is reached.
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Parameter stability tests Step 2 in the algorithm above needs some additional details.
As mentioned above, the parameter stability of the individual score function contributions
with respect to the splitting variable Z; is assessed by means of generalized M-fluctuation
tests (Zeileis and Hornik 2007) for any ordering of the values of Z;,0(Z;;). For a discus-
sion of the empirical fluctuation process of the cumulative deviations of the score function
S(,@b, y;) with respect to o(Z;;), Wj(t, ,@), and its asymptotical properties we refer to Zeileis
and Hornik (2007) and Zeileis (2005). Depending on the nature of the covariate, we make use
of two specific M-fluctuation tests for testing the null hypothesis of parameter stability for
the empirical fluctuation process, A(W;(-)) = A(W?) where X is a scalar functional and Wy is
a Brownian bridge. For continuous Z; the supLM statistic (Andrews 1993) is used and for
categorical covariates (factors) we employ the x? statistic by Hjort and Koning (2002). The
SupL M statistics is defined as
i
i ()

where [z,7] is the interval over which the potential instability point is shifted (typically defined
by requiring some minimal segment size 2 and 7 = N —1). It is the maximization of single-shift
LM statistics for all possible breakpoints in [z,7]. It has as its limiting distribution a squared,
k-dimensional tied-down Bessel process (Zeileis et al. 2008). For categorical covariates we use

7
\A%”9<n>

where I, is the set of indices of observations in category c,c = 1,...,C and A; W is the
increment of the empirical fluctuation process over the observations in category c. This
test statistic is invariant to reordering of and within categories and captures instability for
splitting data according to C' categories. It has as its limiting distribution a x2-distribution
with df = k(C' —1).

2

, (8)

2

. N —1
7 N —1
)\supLM(Wj) = max ( . >

1=17,...,40 \ T n

2

, (9)

2

Ll
n

C
/\x2(Wj) = Z
c=1

2.4. Beyond the GLM

One important property of standard GLM is that the parameter 6 (or the parameter vector
of the linear predictor) and the scale parameter ¢ are orthogonal (McCullagh and Nelder
1989). Estimates of parameters of the linear predictor ,@ are therefore (almost) independent
of estimates of d; under suitable limiting conditions (White 1982). Additionally, GLM assume
that the explanatory variables do not affect the scale parameter ¢ at all (Aitkin et al. 2009).
However, it is possible to extend the methodology used here beyond the standard GLM to
incorporate (i) other distributions with non-orthogonal parameters such as the exponential
distribution, the Weibull distribution or the extreme value distribution, or mixtures of expo-
nential families such as the negative binomial distribution with unknown dispersion parameter
and (ii) to use a linear predictor for the scale parameter for which parameter stability can
also be assessed. In both cases, the node model M(Y,9) and the score functions will change.
This has an effect on the asymptotic distribution of B, since we need to consider that we may
deal with nuisance parameter estimation as well. See e.g., Aitkin et al. (2009) for inference
with nuisance parameters. Apart from that however, the algorithm above still applies exactly
the same way as long as an M-estimation approach (Huber 2009) such as maximum likelihood
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6 Gaining Insight with Recursive Partitioning of GLMs

is used for parameter estimation. This is because model fitting and the parameter stability
tests and hence the algorithm employ M-estimation and the according asymptotics.

3. Gaining insight

3.1. Improved explanation with additional information

Due to its explorative character, model-based recursive partitioning can reveal patterns hidden
within data modelled with GLM or provide further explanation of surprising or counter-
intuitive results by incorporating additional information from other covariates. The tree-like
structure allows the effects of these covariates to be non-linear and highly interactive as
opposed to assuming a linear influence on the linked mean.

To illustrate, we use a data set from the 2004 general election in Ohio, USA. It was the pres-
idential election of George W. Bush vs. John F. Kerry which took place on November 2nd,
2004 and saw Bush emerging as the winner with 34 more electoral seats than his adversary.
Our sample consists of 19634 people from Ohio. We have aggregate voting records of each
person, such as the overall number of times a person voted as well as the number of elections
she was eligible to vote. Additionally, the data set includes a number of demographic, be-
havioural and institutional variables, such as each voter’s age, gender, the party composition
of the household (“partyMix”), the voter’s rank (“householdRank”, here the lower the number
the higher the rank) and position in the household (“householdHead”), among others. We are
interested in modelling the turnout of the 2004 general election on an individual level, i.e.,
has the person voted or not (“gen04”).

In campaigning theory and voter targeting (e.g., Malchow 2008), past voting behaviour of a
person is considered to be the strongest predictor of future voting behaviour. It is usually
assumed that the more often a person went voting in the past, the more likely she is to do
so in the upcoming election. Statistically this is a logistic regression problem with a binary
dependent variable and therefore fits into the GLM framework. The number of attended
elections is used as the predictor variable. It is important to note though, that the raw count
of attended elections may be misleading because a higher count does not need to be the result
of a person’s general disposition to be more likely to vote. We therefore use the percentage
of attended elections out of all elections a person was eligible to take part in to correct for
possible bias. Figure 1 shows a spine plot of the data. It can be seen that the relationship
is not monotonic but appears to be quadratic. This is not in accordance with intuition or
the literature on voter targeting. One would expect a higher likelihood to vote for those who
have a higher percentage of attended elections.

We fitted a global logistic regression model M (Y, ) with a quadratic effect of the predictor
variable,

g(1) = Bo + Bz + Paa? (10)

where z is the percentage of attended elections (“percentAttended”). The estimated model
parameters and goodness-of-fit values of the global model are displayed in Table 1. Interpola-
tions of the predicted values were added to the spine plot in Figure 1. The initial observation
could be confirmed by the model, the quadratic term turns out to be significant.

But why would people with a very high general attendance rate have a similarly low attendance
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Figure 1: Spine plot of relative voting frequencies against the percent of attended elections
out of all elections a person was eligible to. The solid black line is the interpolated prediction
from a logistic regression model with a quadratic term for the predictor “percentAttended”.

rate in the 2004 election as people who usually will attend elections rarely? And what people
are they? We employ recursive partitioning of the logistic regression model in (10) to see if
additional variables can shed more light on this phenomenon. We use a significance level of a =
0.05 for the generalized M-fluctuation tests and force the minimum number of observations
within each node to be at least 1060 (a fraction of about 8% of the overall data). The resulting
tree is depicted in Figure 2 and the parameter estimates of the local models for the terminal
nodes are given in Table 1.

Model Node Bo (se) b1 (se) B2 (se) n Dev AIC
Global T 046 (0.03) 11.87 (0.29) —17.32 (0.48) 19634 21948 21954
Segmented 2 oo (—.—) 0.00 (—.—) 0.00 (—.—) 2180 0 6
5 256 (0.38) 021 (1.87) —6.53 (2.19) 2358 2126 2132

7042 (0.47) 14.09 (2.56) —21.63 (3.22) 1277 808 814

8  1.05(0.41) 9.06(2.17) —15.36 (2.69) 1610 1170 1176

10 —0.32 (0.08) 7.59 (1.17) —4.16 (3.01) 1638 1991 1997

13 —0.70 (0.06) 15.19 (0.77) —19.10 (1.91) 4267 4602 4608

14 016 (0.09) 1223 (1.23) —14.10 (3.04) 2222 1970 1976

15 0.06 (0.14) 16.98 (1.35) —17.82 (2.54) 4082 1565 1571

Table 1: Parameter estimates (standard errors in brackets) and goodness-of-fit statistics for
the global logistic regression model and the terminal nodes of the piece-wise logistic regression
model for the Ohio voter data. For legibility, Bl and Bg are given in units of the relative
frequency. Please note that there are only non-voters in segment 2.
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Figure 2: The resulting tree structure after partitioning the logistic regression model with linear predictor By + 12 + Box? where x
is denoting the relative frequency of attended elections, “percentAttended”. The terminal nodes display spine plots of the observed
relative frequencies against the attended percentage for each partition with the solid lines connecting the predicted values from the

logistic regression model.
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The result from the partitioning algorithm (o = 0.05 for the fluctuation tests) shows what
or who may be responsible for the quadratic relationship between the percent of attended
elections and the probability to vote. First there is a terminal node with people who did not
vote at all. Please note that within this node we find (quasi-)complete separation®(Albert
and Anderson 1984). Second, the relationship is driven by the 5245 people whose household
consists of members who are affiliated solely with the Democratic Party (node 5) and to a
lesser extent by those affiliated solely with the Republican party (node 7) or whose household
consists only of democrats and republicans (node 8). In other words, there are no independent
voters in these households. Especially the segment of people whose household is composed
entirely of Democrats (n; = 2358) contribute to the overall quadratic relationship seen in
Figure 1. They show declining voting probability for people with a high general individual
turnout and quite strongly so. While those people with a small to medium percentage of gen-
eral attendance have fairly high voting probabilities that slightly increase for higher predictor
values, those with a general attendance rate of 0.39 or more (nearly half of the segment)
experience a sheer drop of voting probability.

For the other two segments, those whose household consists entirely of Republicans or of a
mix of Republicans and Democrats (n7 = 1277 and ng = 1610) this picture is less striking.
Here, an attendance rate of about 0.1 to 0.4 is associated with the highest voting probability,
whereas very rare voters (z < 0.1) and frequent voters (z > 0.4) have a similarly high
voting probability that is slightly less than for the other people in the segment. Nodes 7
and 8 differ in the assigned rank in the household. The difference between these two nodes
lies in the slightly higher overall voting probability and a higher probability for those with an
attendance percentage between 25% and 40% for those with household ranks 1 and 2 (node 7).

On the other hand, the segments in terminal nodes 10, 13,14 and 15 indeed show a mono-
tonically increasing voting probability for an increase of the predictor variable. This is in
accordance with intuition and literature on political campaigning. Here, having at least one
household member who identifies herself as “independent” is the key difference to the segments
with an inverse U-shaped voting probability relationship with the percentage of attended elec-
tions. By using model-based recursive partitioning with additional covariate information, we
are able to find an explanation as to why a quadratic effect has to be included into the logistic
regression model. We can single out the observations that are responsible for this phenomenon
and show that there are segments in which the assumed monotonic relationship is actually
present.

3.2. Identifying segments with poor or good fit

Another area in which model-based recursive partitioning can be helpful is in identifying
segments of the data for whom an a priori assumed model fits well. It may be that overall
this model has a poor fit but that this is due to some contamination (for example merging
two separate data files or systematic errors during data collection at a certain date). By using
the described algorithm the data set might be partitioned in a way that enables us to find
the segments that have poor fit and find segments for which the fit may be rather good (see
also Juutilainena, Koskimékia, Laurinena, and Roninga 2011 for an alternative for regression
analysis).

'In this node the ML estimator does not exist. The algorithm has the positive effect of separating these
observations from the rest, hence estimation in other nodes works well which might otherwise not be the case.
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To illustrate this, we use data of debt amortization rates as a function of the duration of the
enforcement. It can be expected that the longer the enforcement lasts, the higher amortization
rate should be achieved. What is special about these data is that they came from two sources
and were merged into a single data set. The merged data set consisted of n = 165 observations,
with 75 observations from file “0” and 90 observations from file “1”.

The structure of the statistical problem here is similar to a “time-to-event” analysis. We
consider the amortization rate relative to the original claim as the metric variable whose
hazard function we want to model. Failure to pay more, default, insolvency, bankruptcy or
meeting the obligation are considered as the event “stopped paying”. Additionally, we have
the possibility of right censored observations if a person was lost to follow up. This lead us
to using a Weibull Regression model which is an example of the type of models described
in Section 2.4. Here, the scale parameter and the parameters of the linear predictor are not
orthogonal and have to be estimated simultaneously.

Formally, following Venables and Ripley (2002), we model the hazard function A(r), with r
denoting a realization of the random variable of achieved amortization rate, R, which takes
the form of

h(r) = Xar® ! = ar®* lexp(aB' x) (11)

for the Weibull distribution. The parameter A is modelled as an exponential function of the

o
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Figure 3: Scatterplot of duration of the enforcement and the achieved amortization rate until
the event “failure to pay more” happened. The solid line represents the predicted values from
the global Weibull regression model. Observations from file “0” are plotted as circles, those
from file “1” as triangles.
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~ ~

Model Node Bo (se) b1 (se) Scale (sd) n log-lik
Global T 165(0.12)  0.01 (0.00)  0.17 (0.06) 165  76.9
Segmented 3 —231(0.33) 0.03(0.01) 0.48(0.11) 65 42.4

4 1.95(0.09)  0.01(0.00) —0.48(0.09) 79  76.8
5 —0.53 (0.22) —0.00 (0.01) —0.34 (0.19) 21 —4.6

Table 2: Parameter estimates (standard errors in brackets) and goodness-of-fit statistics for
the global Weibull model and the terminal nodes of the segmented Weibull model for the debt
amortization data.

covariates x. In a loglinear model formulation this becomes
1
log(R) = —log\ + —loge (12)
e

with € being a disturbance term that is independent of & and w.l.0.g. exponentially distributed.
In this particular example, & consists of an intercept and the duration of the enforcement.

A visualization of the data can be found in Figure 3. The point type corresponds to the
different files, a circle for file “0” and the triangle for file “1”. Additionally we include the
predicted values from the global Weibull regression model. The results of the model fitting
can be seen in Table 2.

What we can see here is that the model does not fit well. The log-likelihood for the regression
model is 76.9 and for the intercept only model it is 75.1 which is not a significant difference
at @ = 0.05 (p = 0.054). Apart from that it looks as though the Weibull regression is
not really appropriate for the whole data set. However, one can see that a subset of the
data may be appropriately modelled with the proposed relationship if it were not for the
observations that have quite high amortization rates for a low enforcement duration. There
are at least two possible explanations for such a lack of fit: (i) explanatory variables that were
not considered in the model (misspecification) and (ii) data contamination. In this analysis it
is quite likely that (i) has some effect. Hence we use information from other covariates in the
subsequent recursive partitioning and gauge their influence. Inspection of Figure 3 however
reveals something else. Observations that have high amortization rates for low duration time
are mainly from file “0”. Additionally the distribution of the enforcement duration in file
“1” is more skewed (skewness 1.96 vs. 1.39) and has a much longer right tail. The same
holds for the amortization rate. It looks as if merging of the two data sets could have led
to a contamination as they are probably not comparable. We partition these based on the
Weibull regression model from (11). As additional covariates that are used for partitioning
we have the person’s gender, liability at the begin of the enforcement, the current liability,
the number of securities a person has as well as a person’s collateralization ratio. We also
include a dummy variable to flag which file the observation was from. The significance level
for the parameter test is again 0.05.

The resulting tree can be found in Figure 4 and the estimated model in Table 2. We see
that both suspicions from above can be confirmed. First, there is an additional variable,
collateralization ratio, that seems to be relevant. Its inclusion leads to a segment where the
influence of the duration is not significant. This is partly due to the small sample size in
this node, but we can also see that the regression coefficient has a negative sign. It does
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Figure 4: The recursively partitioned Weibull regression model of amortization rate explained
by the duration of the enforcement. For each terminal node there is a scatterplot with the
solid line representing the predicted values from the local model.

not appear as if there would be a positive relationship that we just do not detect but rather
that there is no positive relationship at all. This makes sense, as the collateralization ratio
is a measure of how many and how well diversified the securities of a person are and how
high their value is. A person with a high collateralization ratio (two cars for example) may
be able to amortize her debt very fast or at least it may not depend on the duration of the
enforcement. It seems rather likely that a person with a high collateralization ratio who does
not amortize her debt rather soon may have problems with or may refuse payment regardless
of enforcement duration.

Second, for those with a collateralization ratio of less than 0.11, the algorithm points to a dif-
ference in the two data sources. For one data set, file “1”, the Weibull regression actually fits
rather well (node 4, log-likelihood of 76.8). Additionally, we have a significant positive influ-
ence of the explanatory variable. Please note however, that the coefficient and corresponding
p-value is highly influenced by an outlier with amortization rate greater than 1. Removing
this value leads to a much weaker association that is barely significant on a 5% level®. In

2If a semi-parametric Cox model is fitted, there is no significant influence.
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node 3, for which all observations stem from file “0”, we see an ill fit of the Weibull model with
a log-likelihood of 45.1. It even looks as if the (significant) regression line is splitting the data
in this node into two groups rather than explaining them. There seems to be heterogeneity
in the data in this segment that cannot be explained by the regression model.

What we can see from this analysis however is that recursive partitioning of models can help us
identify segments in our data for which the model may either fit well or may be inappropriate.
Here, merging the data from file “0” with those in file “1” leads to some contamination of the
merged data set. This contamination masks the acceptable fit for the subset of observations
from file “1”, a fact that is not necessarily clear from the non-segmented analysis. Most
probably those two data sets were obtained individually and on different occasions or for
different studies. They just happen to have similar variables in them. This goes to show once
again that planning a study involves more than just collecting data.

4. Comparison to similar approaches

A number of model tree algorithms have been proposed in recent years. Table 3 gives an
overview of different model tree algorithms, properties of the tree induction, which node
models they can fit and the available software (R, R Development Core Team 2011, Weka,
Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten 2009, or author binaries) to fit
them.

In the machine learning literature, tree algorithms with models in each node have been around
at least since the M5 algorithm of Quinlan (1993) (see also Wang and Witten 1997 for the “ra-
tional reconstruction” M5’) for linear models in nodes. Another algorithm is LMT (Landwehr
et al. 2005), which allows trees with a boosted logistic node model for binary or multino-
mial responses. Gama (2004) proposed an abstract framework coined “functional trees”, for
building tree algorithms with univariate or multivariate splits and node models.

Several model tree algorithms were also suggested in the statistical literature, for example
SUPPORT (Chaudhuri et al. 1994, 1995), which originally suggested smoothed or unsmoothed
piece-wise polynomial models, and was subsequently extended to GLM-type and survival
models (Ahn and Chen 1997; Choi, Ahn, and Chen 2005; Ahn and Loh 1994; Ahn 1994b,a,
1996b,a). Many of those model tree algorithms encompassed two novel ideas: (i) unbiasedness
in the split variable selection, and (ii) separation of modelling and splitting variables. Two
prominent examples are GUIDE (Loh 2002, 2009) and LOTUS (Chan and Loh 2004). While
the former provides capabilities for fitting models to Gaussian responses, quantile regression
(Chaudhuri and Loh 2002), Poisson models (Loh 2008), proportional hazard models and
longitudinal models, the latter uses similar ideas for modelling binary responses. With the
MLRT algorithm (Su, Wang, and Fan 2004), some effort also went into embedding regression
trees into a rigorous statistical framework based on the likelihood as an objective function
which can easily be extended to model trees (a similar idea for a very specific context has
been proposed by Ichinokawa and Brodziak (2010)).

Conceptually, the MOB algorithm used in the present paper belongs to the statistically mo-
tivated algorithms and combines most advantages of the aforementioned algorithms. Like
GUIDE or LOTUS, it uses unbiased split selection and allows for separation of node model
and splitting variables. Similar to MLRT), it uses a rigorous statistical framework of employing
the same objective function to induce the tree structure and fit the node models. Compa-
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rable to SUPPORT, MOB pre-prunes the trees. Furthermore, MOB provides functionality
for many different type of node models that even exceeds the versatility of SUPPORT and
GUIDE. Analyzed within the “functional tree” framework, MOB with more than a single
explanatory variable in the node model or with interactions as splitting variables can be seen
as employing multivariate splits that allow for oblique partitioning which according to Gama
(2004) is an advantage especially for large data sets. Moreover, the MOB algorithm can
straightforwardly be extended to feature variable selection in the node model, post-pruning
of the tree or smoothing of the piece-wise function (e.g., with Chandler and Johnson 2012).

4.1. Voting data revisited

To compare the performance of the presented approach to other algorithms, we reanalyze the
Ohio voter data set 3.1 with the LMT and the LOTUS.

We fit LMT with Weka (Hall et al. 2009) for which we employ the RWeka interface (Hornik,
Buchta, and Zeileis 2009). The trees are restricted to only allow for binary splits. As LMT
does not allow for separation between variables employed for the node model and for splitting
respectively, all prediction variables (including the square of “percentAttended”) are supplied
to the algorithm. This leads to a single root note (without any splits) and hence a global
logistic model with 33 parameters. For the same data, MOB uses a tree with 7 splits and
3 parameters in the node model. LMT selects all those variables that are selected by the
MOB plus some additional variables, leading to the large global logistic model. The overall
classification accuracy of LMT for the training sample is 0.843 whereas the MOB has a
classification accuracy of 0.840. Hence, the LMT is less parsimonious (33 vs. 24 = 3 x 8
parameters) while the predictive accuracy on the learning sample is only slightly higher (0.843
vs. 0.840). Additionally, the quadratic relationship between attendance percentage and voting
probability is not as easily intelligible as compared to the MOB.

With the LOTUS binary, we fit a model with an analogous setup for node model and splitting
variables compared to the MOB as specified in Section 3.1. A maximum number of 1060
observations per node is specified and we opt for no variable selection for the node model.
Everything else is set to the LOTUS default values. The resulting pruned tree (0-SE) has 12
splits and each node model has 3 estimated parameters. Hence MOB fits a more parsimonous
model tree (3 x 13 = 39 parameters for LOTUS vs. 3 x 8 = 24 parameters for MOB).
At the same time MOB achieves higher classification accuracy on the training sample (0.84
vs. 0.76). As is the case with LMT, splitting variables selected by LOTUS partly coincide
with those selected by MOB. On the one hand, both algorithms select “householdRank” and
“partyMix” quite often for splitting (MOB five times, LOTUS five times and high up in the
tree hierarchy). On the other hand, the variables “dontPhone”, “compOwner”, “income” and
“educationLevel” are chosen for splitting only by the LOTUS (and deeper down the tree
hierarchy). The biggest difference of the LOTUS to the MOB tree is that the first split is
due to observations labeled “unknown” and “noneRorD” for “partyMix”. This leads to a left
subtree with 5 additional leaves for the LOTUS. MOB selects the same variable but only
splits off observations that have a value of “unknown”, which are not partitioned further.
To a depth of 3, the right subtrees after the first split for MOB and LOTUS are more or
less similar in terms of splitting variables and split points and therefore explanation of the
quadratic relationship is comparable for both methods.

Thus, all algorithms achieve a more or less similar classification accuracy. They all agree on
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16 Gaining Insight with Recursive Partitioning of GLMs

“percentAttended” and its square, “partyMix” and “householdRank” to be important variables.
LMT chooses a large global regression model with a high predictive accuracy. MOB and
LOTUS use a much simpler logistic model, but can achieve comparable accuracy to LMT
through splits (especially MOB). For this, MOB needs a lower number of splits than LOTUS
which makes the MOB results easier to interpret.

5. Conclusion

In this paper, we introduced recursive partitioning of generalized linear and related models
as a special case of model-based recursive partitioning. We tried to illustrate how the algo-
rithmic approach may lead to additional insight for a a priori assumed parametric model,
especially if the underlying mechanisms are too complex to be captured by the GLM. As
such, model-based recursive partitioning can automatically detect interactions, non-linearity,
model misspecification, unregarded covariate influence and so on. As an exploratory tool,
it can be used for complex and large data sets for which it has a number of advantages.
On the one hand, compared to a global GLM, a MOB model tree can alleviate the problem
of bias and model misspecification and provide a better fit. On the other hand, compared
to tree algorithms with constants, the specification of a parametric model in the terminal
nodes can add extra stability and therefore reduce the variance of the tree methods. Being
a hybrid of trees and classic GLM-type models, the performance of MOB models usually lies
between those two poles: They tend to exhibit higher predictive power than classic models
but less than non-parametric trees (Zeileis et al. 2008). They add some complexity compared
to classical model because of the splitting process but are usually more parsimonous than
non-parametric trees. They show a slightly higher variance than a global model in bootstrap
experiments, but much less than non-parametric trees (even pruned ones). Compared to other
model tree algorithms, MOB often exhibits comparable predictive accuracy while at the same
time being more parsimonous than direct competitors. Results from MOB trees are often
easy to communicate and visualize. Additionally, MOB is currently the most versatile model
tree algorithm and can be rigorously justified from a statistical point of view. We believe
that the exploratory use of recursive partitioning of GLM-type models, particularly with the
presented approach, is fruitful for researchers dealing with models with linear predictors to
detect possible hidden structure and get a better grasp of what is really happening in the
data at hand, especially if modelling with classical statistical methods reaches its limitations.
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