
Parties, Models, Mobsters
A New Implementation of Model-Based Recursive Partitioning in R

Achim Zeileis, Torsten Hothorn

http://eeecon.uibk.ac.at/~zeileis/

http://eeecon.uibk.ac.at/~zeileis/

Overview

Model-based recursive partitioning
A generic approach
Example: Bradley-Terry trees

Implementation in R
Building blocks: Parties, models, mobsters
Old implementation in party
All new implementation in partykit

Illustration

Model-based recursive partitioning

Models: Estimation of parametric models with observations yi (and
regressors xi), parameter vector θ, and additive objective function Ψ.

θ̂ = argmin
θ

∑
i

Ψ(yi , xi , θ).

Recursive partitioning:

1 Fit the model in the current subsample.
2 Assess the stability of θ across each partitioning variable zj .
3 Split sample along the zj∗ with strongest association: Choose

breakpoint with highest improvement of the model fit.
4 Repeat steps 1–3 recursively in the subsamples until some

stopping criterion is met.

Model-based recursive partitioning

Parameter instability tests:

Based on empirical estimating functions (or score/gradient
contributions): Ψ′(yi , xi , θ̂).

Under parameter stability: Ψ′ fluctuates randomly around its
expectation zero.

Under parameter instability: Systematic departures from zero in
subsamples.

Hence fluctuation can be captured across numeric partitioning
variables or within levels of categorical partitioning variables.

Bonferroni correction for testing across multiple partitioning
variables.

Bradley-Terry trees

Questions: Which of these
women is more attractive?
How does the answer depend on
age, gender, and the familiarity
with the associated TV show
Germany’s Next Topmodel?

Bradley-Terry trees

age
p < 0.001

1

≤ 52 > 52

q2
p = 0.017

2

yes no

Node 3 (n = 35)

●
●

●

●
●

●

B Ann H F M Anj

0

0.5

gender
p = 0.007

4

male female

Node 5 (n = 71)

●

●

●

●

● ●

B Ann H F M Anj

0

0.5
Node 6 (n = 56)

●

●

●

●

●

●

B Ann H F M Anj

0

0.5
Node 7 (n = 30)

●

●

● ● ●

●

B Ann H F M Anj

0

0.5

Implementation: Building blocks

Workhorse function: mob() for

data handling,

calling model fitters,

carrying out parameter instability tests and

recursive partitioning algorithm.

Required functionality:

Parties: Class and methods for recursive partytions.

Models: Fitting functions for statistical models (optimizing suitable
objective function).

Mobsters: High-level interfaces (lmtree(), bttree(), . . .) that
call lower-level mob() with suitable options and methods.

Implementation: Old mob() in party

Parties: S4 class ‘BinaryTree’.

Originally developed only for ctree() and somewhat “abused”.

Rather rigid and hard to extend.

Models: S4 ‘StatModel’ objects.

Intended to conceptualize unfitted model objects.

Required some “glue code” to accomodate non-standard interface
for data handling and model fitting.

Mobsters:

mob() already geared towards (generalized) linear models.

Other interfaces in psychotree and betareg.

Hard to do fine control due to adopted S4 classes: Many
unnecessary computations and copies of data.

Implementation: New mob() in partykit

Parties: S3 class ‘modelparty’ built on ‘party’.

Separates data and tree structure.

Inherits generic infrastructure for printing, predicting, plotting, . . .

Models: Plain functions with input/output convention.

Basic and extended interface for rapid prototyping and for
speeding up computings, respectively.

Only minimial glue code required if models are well-designed.

Mobsters:

mob() completely agnostic regarding models employed.

Separate interfaces lmtree(), glmtree(), . . .

New interfaces typically need to bring their model fitter and adapt
the main methods print(), plot(), predict() etc.

Implementation: New mob() in partykit

New inference options: Not used by default by optionally available.

New parameter instability tests for ordinal partitioning variables.
Alternative to unordered χ2 test but computationally intensive.

Post-pruning based on information criteria (e.g., AIC or BIC),
especially for very large datasets where traditional significance
levels are not useful.

Multiway splits for categorical partitioning variables.

Treat weights as proportionality weights and not as case weights.

Implementation: Models

Input: Basic interface.

fit(y, x = NULL, start = NULL, weights = NULL,

offset = NULL, ...)

y, x, weights, offset are (the subset of) the preprocessed data.
Starting values and further fitting arguments are in start and

Output: Fitted model object of class with suitable methods.

coef(): Estimated parameters θ̂.

logLik(): Maximized log-likelihood function −
∑

i Ψ(yi , x,θ̂).

estfun(): Empirical estimating functions Ψ′(yi , xi , θ̂).

Implementation: Models

Input: Extended interface.

fit(y, x = NULL, start = NULL, weights = NULL,

offset = NULL, ..., estfun = FALSE, object = FALSE)

Output: List.

coefficients: Estimated parameters θ̂.

objfun: Minimized objective function
∑

i Ψ(yi , x,θ̂).

estfun: Empirical estimating functions Ψ′(yi , xi , θ̂). Only needed
if estfun = TRUE, otherwise optionally NULL.

object: A model object for which further methods could be
available (e.g., predict(), or fitted(), etc.). Only needed if
object = TRUE, otherwise optionally NULL.

Internally: Extended interface constructed from basic interface if
supplied. Efficiency can be gained through extended approach.

Illustration: Bradley-Terry trees

Data, packages, and estfun() method:
R> data("Topmodel2007", package = "psychotree")
R> library("partykit")
R> library("psychotools")
R> estfun.btReg <- function(x, ...) x$estfun

Basic model fitting function:

R> btfit1 <- function(y, x = NULL, start = NULL, weights = NULL,
+ offset = NULL, ...) btReg.fit(y, weights = weights, ...)

Fit Bradley-Terry tree:

R> system.time(bt1 <- mob(
+ preference ~ 1 | gender + age + q1 + q2 + q3,
+ data = Topmodel2007, fit = btfit1))

user system elapsed
5.112 0.020 5.263

Illustration: Bradley-Terry trees

Extended model fitting function:

R> btfit2 <- function(y, x = NULL, start = NULL, weights = NULL,
+ offset = NULL, ..., estfun = FALSE, object = FALSE) {
+ rval <- btReg.fit(y, weights = weights, ...,
+ estfun = estfun, vcov = object)
+ list(
+ coefficients = rval$coefficients,
+ objfun = -rval$loglik,
+ estfun = if(estfun) rval$estfun else NULL,
+ object = if(object) rval else NULL
+)
+ }

Fit Bradley-Terry tree again:

R> system.time(bt2 <- mob(
+ preference ~ 1 | gender + age + q1 + q2 + q3,
+ data = Topmodel2007, fit = btfit2))

user system elapsed
4.004 0.012 4.087

Illustration: Bradley-Terry trees

Model-based recursive partitioning (btfit2)

Model formula:
preference ~ 1 | gender + age + q1 + q2 + q3

Fitted party:
[1] root
| [2] age <= 52
| | [3] q2 in yes: n = 35
| | Barbara Anni Hana Fiona Mandy
| | 1.3378 1.2318 2.0499 0.8339 0.6217
| | [4] q2 in no
| | | [5] gender in male: n = 71
| | | Barbara Anni Hana Fiona Mandy
| | | 0.43866 0.08877 0.84629 0.69424 -0.10003
| | | [6] gender in female: n = 56
| | | Barbara Anni Hana Fiona Mandy
| | | 0.9475 0.7246 0.4452 0.6350 -0.4965
| [7] age > 52: n = 30
| Barbara Anni Hana Fiona Mandy
| 0.2178 -1.3166 -0.3059 -0.2591 -0.2357

Illustration: Bradley-Terry trees

Number of inner nodes: 3
Number of terminal nodes: 4
Number of parameters per node: 5
Objective function: 1829

Standard methods readily available:
R> plot(bt2)
R> coef(bt2)

Barbara Anni Hana Fiona Mandy
3 1.3378 1.23183 2.0499 0.8339 0.6217
5 0.4387 0.08877 0.8463 0.6942 -0.1000
6 0.9475 0.72459 0.4452 0.6350 -0.4965
7 0.2178 -1.31663 -0.3059 -0.2591 -0.2357

Customization:
R> worthf <- function(info) paste(info$object$labels,
+ format(round(worth(info$object), digits = 2)), sep = ": ")
R> plot(bt2, FUN = worthf)

Illustration: Bradley-Terry trees

age
p < 0.001

1

≤ 52 > 52

q2
p = 0.017

2

yes no

n = 35
Estimated parameters:

Barbara 1.3378
Anni 1.2318
Hana 2.0499
Fiona 0.8339
Mandy 0.6217

3

gender
p = 0.007

4

male female

n = 71
Estimated parameters:

Barbara 0.43866
Anni 0.08877
Hana 0.84629
Fiona 0.69424

Mandy −0.10003

5
n = 56

Estimated parameters:
Barbara 0.9475

Anni 0.7246
Hana 0.4452
Fiona 0.6350

Mandy −0.4965

6

n = 30
Estimated parameters:

Barbara 0.2178
Anni −1.3166
Hana −0.3059
Fiona −0.2591
Mandy −0.2357

7

Illustration: Bradley-Terry trees

age
p < 0.001

1

≤ 52 > 52

q2
p = 0.017

2

yes no

Barbara: 0.19
Anni: 0.17
Hana: 0.39
Fiona: 0.11
Mandy: 0.09
Anja: 0.05

3

gender
p = 0.007

4

male female

Barbara: 0.17
Anni: 0.12
Hana: 0.26
Fiona: 0.23
Mandy: 0.10
Anja: 0.11

5
Barbara: 0.27

Anni: 0.21
Hana: 0.16
Fiona: 0.19
Mandy: 0.06
Anja: 0.10

6

Barbara: 0.26
Anni: 0.06
Hana: 0.15
Fiona: 0.16
Mandy: 0.16
Anja: 0.21

7

Illustration: Bradley-Terry trees
3

Objects

W
or

th
 p

ar
am

et
er

s

0.
0

0.
1

0.
2

0.
3

0.
4

●
●

●

●
●

●

Barbara Anni Hana Fiona Mandy Anja

5

Objects

W
or

th
 p

ar
am

et
er

s

0.
0

0.
1

0.
2

0.
3

0.
4

●

●

●

●

●
●

Barbara Anni Hana Fiona Mandy Anja

6

Objects

W
or

th
 p

ar
am

et
er

s

0.
0

0.
1

0.
2

0.
3

0.
4

●

●

●

●

●

●

Barbara Anni Hana Fiona Mandy Anja

7

Objects

W
or

th
 p

ar
am

et
er

s

0.
0

0.
1

0.
2

0.
3

0.
4

●

●

● ● ●

●

Barbara Anni Hana Fiona Mandy Anja

Illustration: Bradley-Terry trees

Apply plotting in all terminal nodes:
R> par(mfrow = c(2, 2))
R> nodeapply(bt2, ids = c(3, 5, 6, 7), FUN = function(n)
+ plot(n$info$object, main = n$id, ylim = c(0, 0.4)))

Predicted nodes and ranking:
R> tm

age gender q1 q2 q3
1 60 male no no no
2 25 female no no no
3 35 female no yes no

R> predict(bt2, tm, type = "node")

1 2 3
7 3 5

R> predict(bt2, tm, type = function(object) t(rank(-worth(object))))

Barbara Anni Hana Fiona Mandy Anja
1 1 6 5 4 3 2
2 2 3 1 4 5 6
3 3 4 1 2 6 5

Summary

All new implementation of model-based recursive partitioning in
partykit.

Enables more efficient computations, rapid prototyping, flexible
customization.

Some new inference options.

References

Hothorn T, Zeileis A (2014). partykit: A Toolkit for Recursive Partytioning.
R package version 0.2-0.
URL http://R-Forge.R-project.org/projects/partykit/

Zeileis A, Hothorn T (2014). Parties, Models, Mobsters: A New
Implementation of Model-Based Recursive Partitioning in R.
vignette("mob", package = "partykit").

Strobl C, Wickelmaier F, Zeileis A (2011). “Accounting for Individual
Differences in Bradley-Terry Models by Means of Recursive Partitioning.”
Journal of Educational and Behavioral Statistics, 36(2), 135–153.
doi:10.3102/1076998609359791

Zeileis A, Hothorn T, Hornik K (2008). “Model-Based Recursive Partitioning.”
Journal of Computational and Graphical Statistics, 17(2), 492–514.
doi:10.1198/106186008X319331

http://R-Forge.R-project.org/projects/partykit/
http://dx.doi.org/10.3102/1076998609359791
http://dx.doi.org/10.1198/106186008X319331

	Parties, Models, MobstersA New Implementation of Model-Based Recursive Partitioning in R
	Overview
	Model-based recursive partitioning
	Implementation in R
	Bradley-Terry trees
	Summary
	References

