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Abstract. Recursive partitioning techniques are established and frequently applied for exploring un-
known structures in complex and possibly high-dimensional data sets. The methods can be used to
detect interactions and nonlinear structures in a data-driven way by recursively splitting the predictor
space to form homogeneous groups of observations. However, while the resulting trees are easy to inter-
pret, they are also known to be potentially unstable. Altering the data slightly can change either the
variables and/or the cutpoints selected for splitting. Moreover, the methods do not provide measures of
confidence for the selected splits and therefore users cannot assess the uncertainty of a given fitted tree.
We present a toolkit of descriptive measures and graphical illustrations based on resampling, that can be
used to assess the stability of the variable and cutpoint selection in recursive partitioning. The summary
measures and graphics available in the toolkit are illustrated using a real world data set and implemented
in the R package stablelearner.
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1 Introduction

Recursive partitioning approaches, such as classification and regression trees (CART, [2]), conditional
inference trees [5] or model-based recursive partitioning [7], are widely used for modelling complex and
possibly high-dimensional data sets [11]. The methods are able to detect high-degree interactions and
nonlinear structures in a data-driven way. Therefore, these methods have been frequently applied in
many scientific disciplines, as well as in many industries for predictive modeling purposes [8].

Nowadays, more complex and more flexible methods exist for predictive learning, that often achieve
a better prediction accuracy (e.g., random forests, boosting, support vector machines, neural networks).
Recursive partitioning, however, is still a popular method in situations where the aim is to infer and
interpret the structure of the underlying process that has generated the data. For this purpose, recursive
partitioning is often favoured over other methods, since the results can be illustrated in the form of
decision trees, which are relatively easy to interpret. Therefore tree-based methods are widely used as
exploratory modeling techniques in many fields, such as social and behavioral sciences (see e.g., [7]).

Recursive partitioning algorithms recursively split the predictor space X ∈ Rp to form homogenous
groups of observations. The various algorithms, that have been proposed in the literature, mainly differ
with respect to the criteria for selecting the split variable, choosing the cutpoint and stopping the recursion
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(see [5]). CART, for example, selects the variable and the cutpoint that best unmixes the classes in case
of a classification problem, or that most reduces the squared error loss in case of a regression problem.
Conditional inference trees, on the other hand, perform splitting and stopping based on a statistical
inference procedure.

Despite their popularity, a major drawback of recursive partitioning methods is their instability.
By studying the predictive loss of different regularization techniques, Breiman [3] identified recursive
partitioning (among others) as unstable. It is well known that small changes in the training data can
affect the selection of the split variable and the choice of the cutpoint at any stage in the recursive
procedure, such that the resulting tree can take a very different form [8, 11, 12]. Moreover, recursive
partitioning methods do not provide measures of confidence for the results. Therefore, users cannot assess
the degree of certainty for selected variables and cutpoints. Hence, the question remains to what extend
one can rely on the splits in a single tree to draw conclusions.

Previous research has already focussed on assessing the stability of trees from different perspectives
and with different goals (see e.g., [1, 4, 9]). Their methods are commonly based on a measure that is
used to compare the distance (or similarity) between pairs of trees. In [4], for example, a measure of
similarity between trees is proposed to stabilize the selection of the splits in a specific tree algorithm. And
more recently, measures and theory were proposed to detect observations that influence the prediction
or the pruning in CART [1]. While in these approaches the prediction, partitioning and the structure
of the trees are considered separately, they may also be combined in one measure [9]. Thus, while
previous research has focussed on reducing instability, measuring the influence of individual observations
or assessing the distance between trees, we focus on assessing and visualizing two important aspects that
reveal the stability of a tree resulting for a given data set: the variable and the cutpoint selection.

In this paper, we first discuss instability of results from recursive partitioning using a practical
example. In the second part, we present a computational procedure and a number of graphical tools that
support users for assessing the stability of the variable and the cutpoint selection. The proposed methods
are implemented in the software package stablelearner (currently available from https://R-Forge.

R-project.org/projects/stablelearner/) for the free R system for statistical computing [10]. By
using a real world data set, the package will be used throughout the article for illustrating the proposed
methods.

2 Instability of trees

To illustrate the instability of trees we have used recursive partitioning to predict the survival of the
passengers during the sinking of the RMS Titanic in 1912 by several passenger characteristics. A complete
passenger list is available online on http://www.encyclopedia-titanica.org/ (accessed on 2016-04-
05). According to the list, 1317 passengers (excluding crew members) were aboard from which 500
survived the sinking. The passenger information, that was used for training the tree, was gender, age,
fare, class (1st, 2nd or 3rd), place of embarkment (B = Belfast, C = Cherbourg, Q = Queenstown, S =
Southampton), number of siblings/spouses aboard (abbreviated as sibsp) and number of parents/children
aboard (abbreviated as parch). The last two features were obtained from an overlapping data set available
on
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets. The tree was generated using the function
ctree from the partykit package [6] that performs recursive partitioning in a conditional inference
framework in R and is illustrated in the form of a tree in the upper panel of Figure 1. In the following, we
will refer to this result as the original tree, since the partitioning was performed on the original passenger
data (as opposed to random samples drawn from the original data set employed subsequently).

Based on a bootstrap sample taken from the original passenger data, we generated a second tree,
which is illustrated in the lower panel of Figure 1. The structures of the trees look quite different at
first sight, which suggests a large instability of the tree. However, when looking closer one can identify
variables that were selected in both trees and split at the same or a similar cutpoint. For example, the
numerical variable age was split at 4 and 54 in the original tree and at the values 4 and 36 in the boostrap
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Figure 1. Tree representation of results from recursive partitioning for the RMS Titanic passen-
ger data.
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Figure 2. Examples of different tree structures, but equivalent partitions and interpretations.

tree, or the numerical variable fare was split twice in the original tree at 15.02 and 23.05 and at 23.05
in the bootstrap tree. Thus, many splits appeared in both trees, only the order and the cutpoints for
numerical variables were slightly different.

As Turney [12] elaborates in his work, two trees that are structurally different can be logically
equivalent. This means that two trees can lead to very similar or even the same interpretation although
their structures (in particular the order of the splits) look very different. To illustrate this principle, we
consider two hypothetic trees for a simple classification problem with two classes and a two-dimensional
predictor space. Note however, that the statement also holds for any type of response variable and also
for predictor spaces with more dimensions. Figure 2 shows two trees (upper row) and representations of
the corresponding partitioning of the feature space (bottom row). In the illustration the predicted class
in each terminal node is indicated by the colors red and green. According to the figures in panel (a)
and (b), the tree structures differ by the split variable in their root node, their path structure and the
sequence of split variables in the paths between the root node and the leafs. Yet, though the two trees
are structurally different, the predictions are equivalent for any point in the predictor space. By mentally
merging the two partitioning representations, it becomes evident that the two trees have identical splits,
that only appear in a different order in the tree representation.

To assess whether a tree is stable or not, it is therefore principally important to investigate the stability
of the splits, rather than the stability of the entire tree structure. From a single tree representation it
is not possible to identify which splits are stable. It is possible, however from an ensemble of trees, e.g.,
generated by resampling from the original data. From the ensemble, the stability of the splits can be
assessed by investigating the variable selection frequency and the cutpoint variability.

COMPSTAT 2016 Proceedings



Michel Philipp, Achim Zeileis and Carolin Strobl 319

3 Measuring variable selection and cutpoint stability

In the following we will outline what steps are necessary from a conceptual point of view to assess the
stability of variable and cutpoint selection in trees. Subsequently, these steps will be illustrated for a
binary classification tree modeling survival vs. non-survival on the RMS Titanic.

The first step to assess stability is to draw several samples from the original data. The second step is
to compute the descriptive measures and graphics provided in our toolkit over all samples. The options
implemented in the package for generating samples in the first step are bootstrap sampling (sampling
with replacement), subsampling (sampling without replacement), k-fold sample splitting (partitioning
the original data into k equally sized samples), leave-k-out jackknife sampling, or further user-defined
strategies. Since each option has its specific peculiarities, they will likely generate different results. For
the further illustration we will focus on bootstrap sampling, which is most widely used and was chosen as
the default option in the function stabletree() that performs the resampling and extracts the required
information from the ensemble for further analysis:

R> library("stablelearner")

R> data("titanic", package = "stablelearner")

R> m <- ctree(survived ~ gender + age + fare + ordered(class) + embarked +

+ sibsp + parch, data = subset(titanic, class %in% c("1st", "2nd", "3rd")))

R> s <- stabletree(m, B = 500)

The function stabletree() requires a tree-based model object that either inherits from class party

(like, e.g., the result of ctree() or glmtree()) or can be coerced to it (like, e.g., the results of rpart()
or J48()). Additionally, parallelization can easily be utilized with a convenience option for multicore
computation based on parallel (for platforms that support this).

In the remaining part of this section, descriptive measures and graphical illustrations are introduced
for investigating the stability of the splits, specifically for the variable and the cutpoint selection. First,
the measures will be briefly discussed and then illustrated for the Titanic example.

Variable selection analysis

The aim of the variable selection analysis is to investigate whether variables that are selected for splitting
in the original tree are also consistently selected for splitting in the resampled data sets. Furthermore, it
can be compared how often (on average) a variable is selected within the original tree and the repetitions,
respectively.

The first descriptive measure is simply the relative frequency of selecting variable xj for splitting,
computed over all repetitions in the procedure. Let b = 1, . . . , B denote the index for the repetitions and
j = 1, . . . , p the index of the variables considered for partitioning. Further, let S = {sbj} be a binary
matrix, where sbj = 1 if variable xj was selected for splitting in repetition b and 0 otherwise. Then, the

relative variable selection frequency is computed by 100 · 1
B

∑B
b=1 sbj and is expected to be large (i.e., close

to 100%) for those variables selected in the original tree, if the result is stable. The variable selection
frequency can be illustrated graphically using a barplot() method that generates the barplot depicted
in the left panel of Figure 3. The variables depicted on the x-axis are sorted in decreasing order with
respect to their variable selection frequencies (here and in all the following graphical tools). The bars of
variables selected in the original tree are colored in dark gray and the corresponding labels are underlined.
Thus, from the plot we can infer that the variables gender, class, age, fare and sibsp were selected
for splitting in the original tree. The height of the bars corresponds to the variable selection frequency
depicted on the y-axis. The first two bars reach the upper limit of 100%, which means that the variables
gender and class were selected for splitting in each repetition. The variable age, represented by the
third bar, was selected slightly less than 100% (but still very often) over the repetitions. The variables
fare and sibsp, represented by the fourth and the fifth bar, were selected in the original tree, but not as
frequently over all repetitions. This indicates that the splits in those variables in the original tree must
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Figure 3. Graphical variable selection analysis.

be considered less reliable compared to the splits of the variable gender, class and age. The last two
bars represent the variables embarked and parch, which were not selected in the original tree. They were
selected for splitting in less than 50% of the repetitions. This indicates that although those variables
seem to carry some information that is useful for predicting survival, they are not predominant. From a
content perspective one may assume for this example that, over the repetitions, the variables embarked

and parch occasionally acted as a proxy for the other variables in the data set.
The summary() method prints the corresponding table with the variable selection frequency (termed

freq) in the first column for each variable. The second column (headed by an asterisk) indicates whether
the variable was selected for splitting in the original tree:

freq * mean *

gender 1.000 1 1.644 2

ordered(class) 1.000 1 2.578 3

age 0.988 1 2.316 2

fare 0.922 1 1.676 2

sibsp 0.810 1 1.132 1

embarked 0.510 0 0.638 0

parch 0.348 0 0.444 0

(* = original tree)

The third column in the table (termed mean) contains the values of another descriptive measure and
denotes the average count splitting in variable xj per tree. Let C = {cbj} be an integer matrix, where cbj
equals the number of times xj was used for splitting in the tree for repetition b. Note that this number
can be greater than one, because the same variable may be used for splitting in different parts of the tree.
The average variable split count is computed by 1

B

∑B
b=1 cbj and is expected to be close to the count of

splitting in variable xj in the original tree. The last column in the table (also headed by an asterisk)
indicates how many times the variable was selected for splitting in the original tree. For example, the
variable gender, was used on average 1.644 times over all repetitions and twice in the original tree. It is
possible, that the variable gender was often split on a higher level (and thus less often used for splitting)
in the repetitions, as compared to the original tree. The reverse may be assumed for the variable age,
which was on average more often used for splitting over the repetitions than it was used for splitting in
the original tree. Similar interpretations follow from the information for the other variables.

Furthermore, we can investigate the combinations of variables selected in the various trees over the
repetitions. This can be illustrated using the function image(). The resulting plot, that is illustrated in
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the right panel of Figure 3, is a graphical illustration of the binary matrix S that contains the variable
selections over the repetitions. A fine grid of rectangles is drawn for each element in S, which are colored
dark gray if sbj = 1 and light gray if sbj = 0. The repetitions (illustrated in the y direction) are ordered
such that similar combinations of selected variables are grouped together. The combination of variables
used for splitting in the original tree is marked on the right side of the plot using a thin solid red line.
The area representing the combination is additionally enclosed by two dashed red lines. Notice that this
is also the most frequent combination of variables selected over all repetitions. Repetitions that included
additional variables beyond the combination in the original tree are illustrated below the marked area.
Hence, we can deduce from the illustration that the variables embarked and parch were sometimes
additionally used for splitting. In the replications above the marked area some splitting variables from
the original tree were substituted with other variables.

Cutpoint analysis

The variable selection analysis showed that there are some variables which are consistently used for
splitting, indicating that those variables are more relevant in predicting survival than others. However,
even when the same variables are selected, the splits may still vary with respect to the cutpoints chosen
for splitting. Therefore a further important step in assessing the stability of the splits is the analysis of
the cutpoints, which provides more detailed information about the variability of the splits.

We suggest different graphical illustrations for analyzing the variability of the cutpoints for numerical,
unordered categorical and ordered categorical variables. Using the function plot() these illustrations
can be generated for all variables specified in the model. According to the type of variable the correct
illustration is chosen automatically and the variable names are underlined if the variable was selected for
splitting in the original tree. Figure 4 illustrates these plots for the variables in the Titanic passenger
data set.

To analyze the cutpoints for ordered categorical variables, we suggest to use a barplot that shows
the frequency of all possible cutpoints. Those are sorted on the x-axis by their natural order that arises
from the ordering of the categories of the variables. Examples are given for the variables class, sibsp
and parch in Figure 4. Additionally, the cutpoints chosen in the original tree are marked using a vertical
dashed red line. The number above each line indicates at which level the split occured in the original tree.
For example, the cutpoint between the first and the second class is selected more than 500 times (the
number of repetitions in this example). This means that for some repetitions the split appeared several
times in different positions in the same tree (for example in parallel branches). However, the passengers
were split even more often between the second and the third class. The illustration indicates that the
observations were consistently split by their class affiliation over the repetitions to predict survival of the
passengers. The cutpoint in the variable sibsp, on the other hand, was less stable. Although the variable
was quite frequently selected for splitting, the variable was often split between lower categories over the
repetitions as compared to the original tree. The variable parch, which was not used in the original tree,
was split only few times between the lower categories and can thus be considered as not very relevant.

To analyze the partition for unordered categorical variables (avoiding ambiguities by using the term
“partition” rather than “cutpoint” here), we suggest to use image plots, as illustrated for the variables
gender and embarked in Figure 4. When using binary splits, observations with the same categories are
partitioned into the left or the right daughter node. Thus, the categories are assigned to the left or to the
right branch of the split, respectively. For visualizing the partitions over the repetitions, categories that
are directed to the same daughter node are illustrated by the same color. For the variable gender, there
is only one possible split between the two categories Female and Male. The plot illustrates, however,
that this split occurs many times (more than 500) over all repetitions, which underscores the relevance
of the split. The combination of categories that represent a partition as it occurred in the original tree,
is marked on the right side of the plot using a thin solid red line. The area representing the partition is
additionally enclosed by two dashed lines (this is a little hard to see here, because the binary variable
gender only offers one possible partition). Furthermore, the number(s) on the right side of the marking
also represent(s) the level(s) of the corresponding split(s) in the structure of the original tree. The two
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Figure 4. Graphical cutpoint analysis.

numbers on the right side of the illustration for the variable gender in Figure 4 indicate that gender was
split twice on the second level in the original tree.

The plot becomes more detailed for variables with more than two categories such as the variable
embarked. This variable, however, was not used for splitting in the original tree. Nevertheless it was
used relatively often for splitting over all repetitions. In this illustration the additional color light gray is
used when a category was no more represented by the observations left for partitioning in the particular
node. The partitions over all repetitions are ordered such that equal partitions are grouped together. The
most frequent partitions are [C,Q] versus [S] and [C] versus [B,Q, S]. Since passengers from the different
classes tended to embark in different cities (e.g., most third class passengers embarked in Southampton),
the variable embarked may in some repetitions (but not in the original tree) have been used as a proxy
for the variable class in parts of the tree.

To analyze the cutpoints for numerical variables, we suggest to use a histogram, as illustrated for
the variables age and fare. According to the distribution illustrated for the variable age, the cutpoints
selected over the repetitions spread over the complete range of possible cutpoints. Although some cut-
points were selected more frequently than others, there were no unique cutpoints that were selected over
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Figure 5. Cutpoint analysis for artificial regression problem.

most repetitions. The selected cutpoints of the variable fare are illustrated on a logarithmic scale in
Figure 4, as it makes the picture easier to read. Again, the cutpoints selected over the repetitions spread
over the complete range of possible cutpoints. However, the cutpoints selected in the original tree match
two of three distinct peaks in the histogram and can be considered slightly more stable as compared to
the cutpoints within the variable age.

From a conceptual point of view, the cutpoint pattern reflects the underlying functional shape. Due to
the recursive nature of trees, smooth functions need to be approximated by several splits while piecewise
constant step functions can be described straightforwardly by individual splits (see also [11]). This
is illustrated in Figure 5. The upper left panel illustrates a linear relationship. To approximate this
functional form, a tree algorithm will split the variable several times at different cutpoints. Altering the
data would thus very likely lead to a different cutpoint. For a piecewise constant function like the one
illustrated in the upper right panel of Figure 5, on the other hand, the functional form is captured by a
single split, that is relatively easy to detect and will not change much if the data are altered.

To further demonstrate how the cutpoint stability plots can reflect the underlying functional form,
we have simulated 500 observations from the model y = f(x) + ε for each of the two functions displayed
in the top row of Figure 5. The variable x was sampled from a uniform distribution ∈ [0, 1] and ε was
sampled from a standard normal distribution. In the bottom row of Figure 5 the stability of the cutpoints
for the variable x is illustrated for the two artificial examples. As expected, the identification of a stable
cutpoint failed for the example with the linear relationship (see lower-left panel). In the example with the
piecewise constant relationship, however, the cutpoint at 0.5 was correctly recovered over most repetitions
(see lower-right panel). For the Titanic example illustrated in Figure 4 this means that the cutpoints
selected in the original tree for the variable age are rather unstable and should not be overinterpreted
because the underlying functions seems to be smooth rather than piecewise constant. The cutpoints
selected for the variable fare are slightly more stable.

To sum up, the stability analysis of the binary classification tree fitted for the Titanic data revealed
that many splits in the original tree illustrated in Figure 1 were rather stable, but some parts were
quite variable. First, the splits of the variables gender and class can be considered as important and
stable. Second, the splits of the variable age are ambiguous, although the variable is definitely relevant
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for predicting survival of the passengers. Furthermore, the splits of the variable fare are fairly stable,
but the variable was a few times not selected for splitting over the repetitions. Thus, if the data were
altered slightly, the variable might also had been omitted for splitting in the original tree. And finally,
the split of the variable sibsp is least stable and should not be overinterpreted.

4 Discussion

In this paper we have presented a toolkit of descriptive measures and graphical illustrations that can be
used to investigate the stability of the variable and cutpoint selection in models resulting from recursive
partitioning. It was demonstrated how the tools are used and illustrated how intuitive they are by a
real world data set. The analysis revealed that many aspects of the fitted tree were rather stable, but
some parts were quite variable. Notice that the toolkit is not limited to classification trees, but can also
be used to investigate the stability of regression trees or model-based trees. It was further illustrated
that clear cutpoints from piecewise constant functions in the underlying data generating process, can be
identified using the proposed graphics for the cutpoint analysis.

To acknowledge some limitations associated with the tools it should be mentioned, that they produce
less meaningful results for very large trees with many splits. If the structure of the underlying data
generating process is complex, the sample size or the number of predictors is large, it can become tedious
to interpret a tree. Assessing the variable selection and cutpoint stability of such trees is computationally
very intensive and the result might be unclear. However, the complexity of a tree can be reduced
by modifying the settings (i.e., the pruning rule or the stopping criteria) of the recursive partitioning
algorithm. Furthermore one should always be aware that any resampling scheme can only mimic what
would happen if a new sample could be drawn from the population. And finally, the proposed tools do
not assess the predictive stability of trees, which is another important aspect for their interpretation, as
we briefly saw in Section 2. This aspect will be addressed in future research.
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