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Introduction

random forests

I have become increasingly popular in, e.g., genetics and

the neurosciences

[imagine a long list of references here]

I can deal with “small n large p”-problems, high-order

interactions, correlated predictor variables

I are used not only for prediction, but also to assess

variable importance and

I on the official random forest website Breiman and

Cutler (2008) even suggest a significance test for the

variable importance...
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Random forests

learn a random forest as a classification/regression model

to predict Y from X1, . . . ,Xp

result: almost a black-box
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to predict Y from X1, . . . ,Xp
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Measuring variable importance

I Gini importance

mean Gini gain produced by Xj over all trees

(can be severely biased due to estimation bias and

mutiple testing; Strobl et al., 2007)

I permutation importance

mean decrease in classification accuracy after

permuting Xj over all trees

I informative variables produce a systematic decrease in

accuracy when permuted

I uninformative variables produce a random decrease or

increase in accuracy when permuted

(unbiased when subsampling is used; Strobl et al., 2007)
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The permutation importance

within each tree t

VI (t)(xj) =

∑
i∈B

(t) I
(
yi = ŷ

(t)
i

)
∣∣∣B(t)

∣∣∣ −

∑
i∈B

(t) I
(
yi = ŷ

(t)
i ,πj

)
∣∣∣B(t)

∣∣∣
ŷ

(t)
i = f (t)(xi ) = predicted class before permuting

ŷ
(t)
i ,πj

= f (t)(xi ,πj
) = predicted class after permuting Xj

xi ,πj
= (xi ,1, . . . , xi ,j−1, xπj (i),j , xi ,j+1, . . . , xi ,p

)
Note: VI (t)(xj) = 0 by definition, if Xj is not in tree t
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The permutation importance

over all trees:

1. raw importance

VI (xj) =

∑ntree
t=1 VI (t)(xj)

ntree
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The permutation importance

over all trees:

2. scaled importance (z-score)

VI (xj)
σ̂√

ntree

= zj
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I individual VI (t)(xj) have standard deviation σ and

I are computed from ntree independent bootstrap

samples (where ntree is large)

I central limit theorem for the mean VI (xj)

⇒ normal with standard error σ/
√

ntree

under the null hypothesis of zero importance:

zj
as.∼ N(0, 1)
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The suggested test

if zj exceeds the α-quantile of N(0,1) ⇒ reject the

null hypothesis of zero importance for variable Xj
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Simulation study

I generate data sets of sample size n = 100, 200 and 500

I five predictor variables of which only X1 is relevant with

I y ∼

{
B(n, 0.5− ρ) for X1 = 0

B(n, 0.5 + ρ) for X1 = 1
with relevance

ρ = 0, 0.05, . . . , 0.5

I fit random forests with ntree = 100, 200 and 500

I for 1000 iterations in each combination:

count how many times the null hypothesis for X1

was rejected
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The power

relevance
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The average raw importance
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The average z-score
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The average z-score and the power
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Findings

z-score and power

I increase in the number of trees

I decrease in the sample size
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What null hypothesis were we testing

in the first place?

obs Y Xj Z

1 y1 xπj (1),j z1

...
...

...
...

i y1 xπj (i),j zi

...
...

...
...

n y1 xπj (n),j zn

H0 : Xj ⊥ Y ,Z or Xj ⊥ Y ∧ Xj ⊥ Z

P(Y ,Xj ,Z )
H0= P(Y ,Z ) · P(Xj)
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What null hypothesis were we testing

in the first place?

the current null hypothesis reflects independence of Xj from

both Y and the remaining predictor variables Z

⇒ a high variable importance can result from violation of

either one
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Conditional permutation scheme

obs Y Xj Z

1 y1 xπj|Z=a(1),j z1 = a

3 y3 xπj|Z=a(3),j z3 = a

27 y27 xπj|Z=a(27),j z27 = a

6 y6 xπj|Z=b(6),j z6 = b

14 y14 xπj|Z=b(14),j z14 = b

33 y33 xπj|Z=b(33),j z33 = b
...

...
...

...

H0 : Xj ⊥ Y |Z

P(Y ,Xj |Z )
H0= P(Y |Z ) · P(Xj |Z )

or P(Y |Xj ,Z )
H0= P(Y |Z )
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to be continued...
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Summary and outlook

the significance test suggested on the random forest website

has strange properties:

I the z-score and power increase in the number of trees

and decrease in the sample size

I the null hypothesis may not reflect what you wanted

⇒ use conditional permutation scheme

⇒ use distribution over > 1 permutations

for now: stick to the unscaled importance
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