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Abstract

Reproducibility of economic research has attracted considerable attention in recent
years. So far, the discussion has focused mainly on reproducibility of empirical analyses.
This paper addresses a further aspect of reproducibility, the reproducibility of compu-
tational experiments. More specifically, we contribute to the emerging literature on re-
producibility in economics along three lines: (i) we document how simulations of various
types are an integral part of publications in modern econometrics, (ii) we provide some
general guidelines about how to set up reproducible simulation experiments, and, finally,
(iii) we provide a case study from time series econometrics that illustrates the main issues
arising in connection with reproducibility, emphasizing the use of modular tools.
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1. Introduction

The issue of reproducibility of research in economics has attracted considerable attention in
recent years. Publications such as McCullough and Vinod (2003) demonstrate that in the
absence of archives reproducibility is more an exception than the rule. Consequently, many
leading economics journals recently introduced mandatory data archives, sometimes even
mandatory code archives, coupled with corresponding editorial policies in order to provide
sufficient information to facilitate replication. More recently, it has been found that even with
archives there is no guarantee for reproducibility (e.g., McCullough, McGeary, and Harrison
2008). One reason appears to be the lack of broadly accepted guidelines for what authors
have to provide to ensure replicability.

Apart from a few exceptions, among them an early unpublished working paper by Koenker
(1996), the discussion has focused mainly on reproducibility of empirical work, i.e., of esti-
mates and tests, or more broadly of tables and figures, in studies analyzing real-world data,
often tacitly assuming that computations do not involve random elements. However, nowa-
days many papers in econometrics—methodological as well as applied—and computational
economics make use of simulations. For these, replication is usually even harder than for em-
pirical analyses because there is typically neither code nor data but only a textual description
of the simulation setup in the paper.

Making readable code available for such simulations is therefore crucial because it happens
rather easily that not all tiny details of either the data-generating process (DGP) or the
analysis methods are spelled out. Computer code is typically much more concise and less
clumsy for specifying such details, e.g., the exact distribution of artificial data, the precise
specification of a model or test employed, tuning parameters, etc.
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2 Reproducible Econometric Simulations

This immediately raises the question of why we should want to be able to reproduce the
results of econometric simulations. There would seem to be different reasons for different
groups of people: In the publication process, the availability of replication materials can
help to resolve questions regarding technical details and convince reviewers that the results
are correct. (Of course, we can and do not expect that simulations are fully checked and
replicated on a regular basis in the publication process.) On the production side, there are
also direct incentives and tangible benefits for the authors themselves: replication files for
simulations should improve chances for acceptance of manuscripts in the publication process
and, ultimately, reception of the work. Specifically, providing replication details will enhance
communication of the underlying ideas and concepts to interested readers and hence improve
understanding of the associated results. Hence the availability of code should also facilitate
follow-up work by other authors, such as applying different methods on the same DGPs, or
evaluating the same methods on different DGPs.

In addition to the code, publication of the simulation results themselves (in the form of data)
is often desirable. Regrettably, this is still not very common in economics and econometrics.
Two notable exceptions from econometrics with impact on applied work involve nonstan-
dard distributions in time series econometrics: Hansen (1997) and MacKinnon, Haug, and
Michelis (1999) obtain approximate asymptotic p values for certain structural change and
cointegration tests, respectively, employing simulation techniques combined with response
surface regressions. The simulation results are (or were: the archive of the Journal of Busi-
ness and Economic Statistics no longer exists) available from the archives of the respective
journals.

Below we first, in Sections 2 and 3, examine recent volumes of two leading econometrics
journals and document the types of computational experiments conducted in the field, their
relative frequencies, the amount of detail available regarding the computational aspects, and
the way of reporting the results. We find that current practice is quite uneven and that
relevant details are often unavailable. Very few papers are demonstrably replicable, in the
sense that, in addition to any data, code for all simulation experiments is available. Since no
set of generally accepted rules for computational experiments appears to be available in the
econometrics literature, Section 4 next suggests some guidelines that might help to improve
upon the current situation. These complement guidelines for empirical work that were recently
proposed by McCullough et al. (2008).

Perhaps the costs of better reporting are still seen as rather high, at least by some authors.
However, given that authors typically have replication materials of their own simulations for
themselves, the additional costs of preparing these for publication should be relatively small
compared to the potential benefits, such as those outlined above. Thus, in order to show that
these costs are often lower than currently perceived, at least for some more standard tasks, we
finally illustrate in Section 5 how modular tools for carrying out simulation studies could be
made available. We employ such tools for replicating parts of Ploberger and Krämer (1992),
specifically a simulation of power comparisons for certain structural change tests.

2. Simulations in Econometrics

The importance of simulations in econometrics has increased considerably during the last
10–15 years. Hoaglin and Andrews (1975), in an early paper exploring then current practice
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in reporting computation-based results in the statistical literature, found that the ratio of
papers with simulation results to total papers was about one to five when examining then
recent volumes of two statistics journals. More than 30 years later, the situation has reversed:
the ratio of papers without simulation results to total papers is now less than one to five,
as we shall see below. Also, 20–30 years ago simulations were mainly used for performance
comparisons of estimators and tests and also for evaluating nonstandard distributions, whereas
several recent techniques of statistical inference themselves contain stochastic elements.

2.1. Types of Simulations

In modern econometrics, simulations typically arise in one of the following forms:

� Monte Carlo studies.

These are usually employed for assessing the finite-sample power of tests or the perfor-
mance of competing estimators.

� Evaluation of nonstandard distributions.

As noted above, examples are found in time series econometrics, where many limiting
distributions associated with unit root, cointegration or structural change methodology
involve functionals of Brownian motion, for which tractable analytical forms are often
unavailable.

� Resampling.

This typically means bootstrapping or subsampling, often in order to obtain improved
standard errors, confidence intervals or tests. A less common technique, at least in
econometrics, is cross validation.

� Simulation-based estimation.

This mainly refers to Bayesian and frequentist computations employing Markov Chain
Monte Carlo (MCMC) machinery, further methods include simulation-based extensions
of the method of moments or of maximum likelihood.

There are further but currently less common variants such as heuristic optimization, often
confined to specialized journals in operational research or statistics. Also, there is the rapidly
expanding field of computational economics (as opposed to econometrics), notably agent-
based modelling. Here we restrict ourselves to techniques typically found in econometrics.

2.2. Some Technical Aspects

Simulation methods require numbers that are or appear to be realizations of random vari-
ables, in the sense that they pass certain tests for randomness. ‘Pseudorandom’ numbers
are obtained using a random number generator (RNG), typically a deterministic algorithm
that recursively updates a sequence of numbers starting from a set of initial values called the
‘(random) seed.’ (There also exist ‘quasirandom’ numbers generated from a physical device,
but for reproducibility full understanding of the generation process is crucial, hence we shall
confine ourselves to pseudorandom numbers.)
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4 Reproducible Econometric Simulations

Random number generation typically proceeds in two steps: (i) generation of pseudoran-
dom numbers resembling an independent and identically distributed (i.i.d.) stream from a
uniform distribution on the interval (0, 1), and (ii) transformation of this sequence to the
required objects. If the latter are random numbers from a specific univariate distribution,
the transformation being used is often the associated quantile function; the entire procedure
is then referred to as the ‘inversion method’. However, some specialized methods also exist
for other distributions, notably the standard normal. It should further be noted that econo-
metric computing environments often provide functions that directly deliver random numbers
for many standard statistical distributions, hence the above steps may not be visible to the
user. For step (i), a currently popular uniform RNG—used below for our own simulations—is
the Mersenne twister (Matsumoto and Nishimura 1998). Gentle (2003) provides useful gen-
eral information on random number generation including algorithms, while Chambers (2008,
Chapter 6.10) is geared towards R, the computing environment used in this paper.

One source for differences in simulation studies is differences in RNGs. Ideally, these differ-
ences should be small. However, this issue is likely to be relevant if truly large simulation
studies are required as some older but still widely available RNGs might not be up to the task.
Simulation studies should therefore always report the RNGs employed. A casual exploration
of the econometrics literature suggests that very few papers do so. We will come back to this
issue below. In the supplements to this paper, we provide an example comparing simulation
results obtained from two different RNGs.

Even if identical RNGs are used in the same computing environment, small differences will
result from different initializations of the pseudo RNG, the random seeds. Hence papers
reporting on simulations should also provide random seeds, at least in the code accompanying
the paper. We shall see that this is highly uncommon in the journals we examined.

On a more technical level, some (typically tiny) differences can occur even when the same
seed and RNG are used on different hardware architectures. The usual caveats concerning
floating point arithmetic apply (see Goldberg 1991).

As a straightforward robustness check, users could run the same experiment using (some
combination of) different seeds, RNGs, operating systems and/or even different machines.

3. Current Practice

For concreteness, we conducted a small survey in the fall of 2009 using the then most recent
complete volumes of two econometrics journals. Specifically, we examined volume 23 (2008)
of the Journal of Applied Econometrics (hereafter JAE) and volume 153 (2009) of the Jour-
nal of Econometrics (hereafter JoE). The JAE is a journal with a fairly comprehensive data
archive. Since 1995, it requires authors to provide their data prior to publication (unless they
are proprietary). The JoE is a journal with a more methodological bent. In contrast to the
JAE, it currently does not have archives of any form. In our survey, we were interested in
the variety of applications involving simulations and also in the amount of detail provided.
The JAE volume 23 comprises 7 issues containing 44 papers, including three software reviews
and one editorial (pertaining to a special issue on the econometrics of auctions). Among the
40 remaining papers presenting empirical analyses, only 7 do not contain any simulations, on
average one paper per issue. Thus, a large majority of papers in the JAE makes use of simu-
lations, with varying levels of complexity. In the JoE volume in question, comprising 2 issues
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Table 1: Summary of simulation survey for Journal of Applied Econometrics (JAE), vol-
ume 23, and Journal of Econometrics (JoE), volume 153. Note that the “data availability”
categories are mutually exclusive while all other categories are not. Proportions are given in
percent.

JAE JoE

Frequencies of manuscripts in total 40 15
with simulation 33 14

Frequencies of data availability in archive 31 0
proprietary 6 0
not available 0 12
none used 3 3

Frequencies of simulation types Monte Carlo 17 11
Resampling 15 3
Simulation-based estimation 13 3
Nonstandard distributions 2 0

Proportion of all manuscripts with simulation 82.5 93.3
indicating software used 65.0 26.7
providing code 45.0 6.7
with code available upon request 17.5 0.0

Proportion of simulation manuscripts with replication files 30.3 7.1
with random seed 15.2 7.1

containing 15 papers in total, there is only a single paper not making use of simulations.

Table 1 details the frequencies of the various types of simulation studies listed in the pre-
ceding section, and also the amount of information provided. We see that the majority of
papers in both journals makes use of simulation techniques, in one form or other. In Table 1,
simulation-based estimation often means some variant of MCMC, but there are also examples
of the methods of simulated moments (MSM) or simulated scores (MSS). Resampling usually
means some form of bootstrapping; one paper employs cross validation. With respect to the
types listed above there are furthermore some clear differences between the journals: in the
JoE, the typical computer experiment is a Monte Carlo study, while in the JAE there is much
greater variety. This presumably reflects the fact that new methodology, the dominant type
of contribution in the JoE, by convention requires, apart from theoretical justification, some
limited support employing artificial data. It should also be noted that in the JAE the extent
of computational experimentation is moreover quite heterogeneous: Some simulation experi-
ments amount to ‘routine’ applications of, e.g., bootstrap standard errors (this is the case for
7 out of 15 JAE papers with resampling, but for none of the 3 papers from the JoE), others
require a substantial amount of programming for novel algorithms or new implementations of
(variants of) existing ones. We found that papers employing resampling techniques typically
provide very little detail, although there are many variations of the bootstrap. These papers
are thus among the least reproducible papers that are included in our study.

Evidence of lack of attention to computational detail is provided by the fact that only for
65.0% and 26.7% of the manuscripts, respectively, the computing environment/programming
language for all codes could be determined. In the manuscripts that indicated the software
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6 Reproducible Econometric Simulations

environment(s), a variety of different tools was employed in both journals (numbers of occur-
rences in parentheses): GAUSS (12), Stata (7), MATLAB (6), Fortran (3), R (3), EViews (2),
while Frontier, GLLAMM-STATA, Mathematica, PcGive, SAS, STABLE, SUBBOTOOLS,
TRAMO/SEATS, WinBUGS were each mentioned once. This already includes software that
was not necessarily used for the simulations themselves but for some other computational
task and also involves educated guessing by the authors based on implicit information.

Availability of the software was rarely mentioned. In the case of the JAE, code sometimes
was nonetheless available from the archive, although this was not obvious from the paper; in
some of these cases it even was contained in zipped files named ‘data’, so it was necessary
to inspect the entire contents of the archives. It is also worth noting that papers using
proprietary data often do not supply code, presumably because full replication is impossible
under these circumstances. Among the papers that provide code, only 6 (combined for both
journals) provide code with random seeds, for one further paper the corresponding README
file explicitly states“random draws are not seeded”(!). (Note that we were liberal in recording a
paper as specifying the seeds; any partial specification was counted.) Only one code explicitly
contains the RNG.

To summarize, the amount of available information required for replication is very heteroge-
neous: there are papers with very little information in the paper itself and no supplements of
any kind, papers with fairly detailed descriptions of algorithms (but not necessarily of their
implementation) but no code, papers with brief outlines but code available elsewhere (upon
request, from a web page, in the archive of the journal [not always mentioned in the paper]).
Sometimes there is a reference to an earlier working paper with further details. Some authors
also acknowledge reusing other people’s code in a footnote or the acknowledgements.

Finally, a striking difference between the JAE and the JoE is that although neither journal re-
quires the authors to supply code, the journal with an archive (the JAE) nonetheless succeeds
in obtaining codes for some of its papers, because authors voluntarily deliver such files along
with their data. In the case of the JoE, there is only a single paper (Moon and Schorfheide
2009) for which codes are available from the web page of one of its authors.

Some preliminary conclusions from our survey would thus seem to be that (1) without archives
there is little chance that relevant materials will become available, (2) voluntary or partial
archives already represent a substantial improvement, and, in view of the amount of hetero-
geneity observed here, (3) some standardized rules for the precise form of the supplementary
materials are needed. We shall expand on these issues in Sections 4 and 6 below.

4. Guidelines

Reproducibility of simulations, or more generally of computational experiments, has been a
recurring theme in various branches of computational science. Examples of papers providing
guidelines for statistics, engineering and applied mathematics (notably optimization) include
Hoaglin and Andrews (1975); Crowder, Dembo, and Mulvey (1979); Jackson, Boggs, Nash,
and Powell (1991), Lee, Bard, Pinedo, and Wilhelm (1993) and Barr, Golden, Kelly, Resende,
and Stewart, Jr. (1995). It should be noted that some of these works, namely those from
the operational research literature, are mainly concerned with performance comparisons of
algorithms, but many aspects are relevant here as well.

Similar guidelines in the context of econometric simulations are less common. A notable
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exception is the unpublished working paper of Koenker (1996) with its accompanying web
page that provides a protocol for reproducible simulations in R, the computing environment
also used below. Drawing on the aforementioned works, we provide a checklist slightly adapted
to the needs of econometrics.

In view of the diversity of tasks encountered in Section 3 it is not easy to provide detailed
recommendations that address all needs. However, we feel that the list below might give a
good idea of what is required, especially for more standardized tasks such as Monte Carlo
studies.

We suggest that any paper presenting results from computational experiments should contain
the following elements (or provide them as a supplement):

(1) Description of the (statistical/econometric) model.

(2) Technical information (software environment including version numbers).

(3) Code.

(4) Replication files.

(5) (Intermediate) results.

Some comments on the various elements are in order (further general comments follow below):

(1) The paper should explain the methodology employed in reasonable detail. For spe-
cialized techniques requiring particularly lengthy descriptions, electronic supplements
might be appropriate. Many journals now accept such supplements and publish them
along with the papers.

(2) As a vehicle for providing technical information such as software and version numbers
we suggest to include, in the body of the paper, a section named ‘computational details’
such as the one appearing below. Currently, this information is often only implicitly and
approximately available; for example, because the computing environment is mentioned
so that readers with access to the relevant software can find out more about RNGs etc.

(3) Code typically means a collection of functions or macros, either provided by the authors
themselves or by third parties. In our own replication study appearing in the following
section it consists of Tables 2–4 and the strucchange package. If third-party code is
used, it should be properly referenced.

(4) The replication files themselves should contain the exact function calls providing all
tables and figures of the paper. Hence, they must always contain the random seed(s).
If the software package offers several RNGs, the code should also be explicit regarding
the chosen RNG. Compare the RNGkind() and set.seed() calls in our example. In our
case, Table 5 would serve as the replication file.

(5) It is often useful to also provide the simulation results themselves in a file. As a rule, such
data should be treated like any other data set, they supplement the paper and should
thus be archived just like the data sets now required prior to publication of empirical
work by many of the leading economics journals. In our case, a Monte Carlo study,
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8 Reproducible Econometric Simulations

the results are tables of simulation results, at a reasonable precision. In other types of
simulation studies, other forms of (intermediate) results might be more relevant. For
bootstrap exercises, this could mean saving sets of observation numbers. For MCMC
jobs, saving a thinned version of the chain (say every 50th iteration, minus the burn-in
phase) could be appropriate.

The paper should explicitly state if supplements are available, and if so where from. The
preferred place for all supplements (code, results, further documentation, etc.) is the archive
of the journal. For journals with only mandatory data archives we suggest that authors
nonetheless also deposit code there (as we observed in several cases at the JAE). For journals
still not possessing archives of any form, authors could provide materials on their personal
web pages, or upon request. Clearly, a personal web page provides a much less permanent
solution, and material ‘available upon request’ typically even less so.

If simulation results are provided as data in supplementary files or data archives (such as
our file sc_sim.csv), it would also remove the need to print all simulation results within
the manuscript—the current practice in econometrics. Instead, graphical displays (such as
Figure 1) could be employed which are often more compact and thus more easily grasped
than tables (such as Table 6). In this case, replication code for producing the figures from
the tables should be included in the supplements (see our Table 5).

In addition to the simulation results themselves, papers should also give information on their
accuracy, e.g., in the form of standard errors. For many simulated probabilities (such as the
power curves in Section 5) these are evident from the point estimates, however, more generally
they are not. Specifically, for many MCMC applications, Flegal, Haran, and Jones (2008)
suggest that there is room for improvement.

Regarding code it must also be taken into account that modern techniques are often highly
nonlinear and thus inherently difficult to apply even outside the context of simulation studies.
It is therefore mandatory to report tuning parameters, if any, along with the specification of
the numerical algorithms themselves. For example, if a simulation involves use of iterative
algorithms in an optimization problem, then the stopping criterion must be provided in some
form, typically code.

Some aspects of the guidelines suggested above might prove difficult to meet if proprietary
software is used for the simulations. As already noted by Jackson et al. (1991, p. 417)
some 20 years ago, “proprietary software presents special problems”, in that it intentionally
withholds certain details of the implementation from the user (or reader). In fact, as early
as 1975 Hoaglin and Andrews (1975, p. 125) recommend using software in the public domain
for precisely this reason. We remark that the current definition of ‘public domain’, at least
in the US, is perhaps more restrictive than needed for the purpose of reproducibility. The
authors feel that open source software might be sufficient.

5. Example: The Power of Structural Change Tests

To illustrate the main issues in reproducibility of simulations we now replicate a Monte Carlo
study from the methodological literature on tests for structural change. We have deliber-
ately chosen a fairly simple (and successful) replication exercise in order to provide detailed
information about all steps involved which in turn are helpful illustrations for the guidelines
suggested in Section 4.
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Ploberger and Krämer (1992) compared their CUSUM test based on OLS residuals with the
standard CUSUM test based on recursive residuals, showing that neither has power against
orthogonal shifts. Here, we follow their simulation setup, but to make it a little more satisfying
methodologically (and cheaper to compute) we also compare the OLS-based CUSUM test to
the Nyblom-Hansen test (Nyblom 1989; Hansen 1992) which in contrast to the residual-based
CUSUM tests is consistent for orthogonal changes.

The simulation setup considered by Ploberger and Krämer (1992) is quite simple, and very
clearly described. They consider a linear regression model with a constant and an alternating
regressor xt = (1, (−1)t) (t = 1, . . . , T ), independent standard normal errors, and a single
shift in the regressor coefficients from β to β + ∆ at time T ∗ = z∗T , z∗ ∈ (0, 1). In the
simulation, they vary the intensity b, the timing z∗ and the angle ψ of the shift as given by
∆ = b/

√
T (cosψ, sinψ), corresponding to their Equation 35. They give sequences of values

for all three parameters and simulate power for a sample size of T = 120 from N = 1, 000 runs
at the 5% significance level. This is a rather good description of the DGP, only two very small
pieces of information are missing: β was left unspecified (presumably because the tests are
invariant to it) and it is not completely clear whether the observation T ∗ (if it is an integer)
belongs to the first or second regime. Given the design of their previous simulation in their
Equations 33 and 34, one could speculate that it belongs to the second regime. However, we
will place it in the first regime so that z∗ = 0.5 corresponds to two segments of equal size (for
T even).

To turn their simulation design into modular and easily reusable code, we split it into three
functions that capture the most important conceptual steps:

(1) dgp() – the DGP that simulates a data set for a given scenario,

(2) testpower() – a function that evaluates the tests on this DGP by power simulations,

(3) simulation() – a wrapper function that runs a loop over all scenarios of interest using
the previous two functions.

We implement these functions in the R system for statistical computing (R Development Core
Team 2012), the source code is provided in Tables 2, 3, and 4, respectively.

For step (1), function dgp() is a concise and easily accessible code description of the DGP
described verbally above which can now be employed to apply the test procedures of interest
to artificial data resulting from dgp().

Based on this, we can define the function testpower() for step (2) that takes the number
of replications and the size of the test as its main parameters. We provide functionality for
evaluating the tests of interest, the OLS-based CUSUM test and the Nyblom-Hansen test,
as well as the recursive CUSUM test considered by Ploberger and Krämer (1992). All tests
are available in the strucchange package (Zeileis, Leisch, Hornik, and Kleiber 2002).1 The
function simply runs a loop of length nrep, computes p values for the tests specified and
finally computes the empirical power at level size. Furthermore, by using the ... notation
in R all arguments used previously for dgp() can simply be passed on.

1The interface for the Nyblom-Hansen test is somewhat different to avoid assessment of the stability of the
error variance. Following Hansen (1992) this would be included by default, however, it is excluded here for
comparability with the residual-based CUSUM tests that do not encompass a test of the error variance.
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Table 2: Step (1) – Function dgp() for generating a data set from the specified DGP.

dgp <- function(nobs = 100, angle = 0, intensity = 10, timing = 0.5,

coef = c(0, 0), sd = 1)

{

angle <- angle * pi/180

delta <- intensity/sqrt(nobs) * c(cos(angle), sin(angle))

err <- rnorm(nobs, sd = sd)

x <- rep(c(-1, 1), length.out = nobs)

y <- ifelse((1:nobs)/nobs <= timing,

coef[1] + coef[2] * x + err,

(coef[1] + delta[1]) + (coef[2] + delta[2]) * x + err)

return(data.frame(y = y, x = x))

}

Table 3: Step (2) – Function testpower() for evaluating power simulations of the tests on
a single DGP scenario generated by dgp() (see Table 2).

testpower <- function(nrep = 100, size = 0.05,

test = c("Rec-CUSUM", "OLS-CUSUM", "Nyblom-Hansen"), ...)

{

pval <- matrix(rep(NA, length(test) * nrep), ncol = length(test))

colnames(pval) <- test

for(i in 1:nrep) {

dat <- dgp(...)

compute_pval <- function(test) {

test <- match.arg(test, c("Rec-CUSUM", "OLS-CUSUM", "Nyblom-Hansen"))

switch(test,

"Rec-CUSUM" = sctest(y ~ x, data = dat, type = "Rec-CUSUM")$p.value,

"OLS-CUSUM" = sctest(y ~ x, data = dat, type = "OLS-CUSUM")$p.value,

"Nyblom-Hansen" = sctest(gefp(y ~ x, data = dat, fit = lm),

functional = meanL2BB)$p.value)

}

pval[i,] <- sapply(test, compute_pval)

}

return(colMeans(pval < size))

}
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In step (3), a wrapper function simulation() is defined that evaluates testpower() for all
combinations of the simulation parameters, by default setting them to b = 0, 2.5, 5, 7.5, 10,
z∗ = 0.25, 0.5, ψ = 0, 45, 90 for T = 100 and N = 100 using only the OLS-based CUSUM
test and the Nyblom-Hansen test. This is a coarser grid as compared to Ploberger and
Krämer (1992) with fewer replications which are sufficient for illustration here. The function
simulation() first expands the grid of all parameter combinations, then calls testpower()

for each of them (which in turn calls dgp()) and then rearranges the data in a data frame.

Modular tools are extremely valuable when setting out to reproduce portions of a simulation
study. They convey clearly what steps were carried out, the DGP could be reused for evalu-
ating other structural change tests, or the tests could be reused on new DGPs. With these
tools available, the main simulation amounts to loading the strucchange package, specifying
the RNG2, setting a random seed and executing simulation(), see Table 5.3

With a small simulation study as this one, we would generally only store the code and the
outcome contained in sc_sim. For more complex simulations, it might make sense to store
some intermediate results as well, e.g., the simulated data sets. Given the simulated results,
it is easy for readers to replicate Table 6. This compares the power curves (over columns
corresponding to intensity) for the two tests (nested last in the rows) given angle and timing.
Instead of inspecting this table, the differences between the two tests can be brought out even
more clearly graphically in a trellis (or lattice) type layout such as Figure 1, using the same
nesting structure as above. The replication code for tabular and graphical summary is also
included in Table 5, employing the lattice package (Sarkar 2008) for visualization.

This shows rather clearly that only for shifts in the intercept (i.e., angle 0), the OLS-based
CUSUM test performs very slightly better than the Nyblom-Hansen test, but dramatically
loses power with increasing angle, being completely insensitive to orthogonal changes in slope
only (i.e., angle 90). The Nyblom-Hansen test, however, performs similarly for all angles.
Breaks in the middle of the sampling period are easier to detect for both tests.4 All results
are roughly consistent with Table II(b) in Ploberger and Krämer (1992) although we have
reduced many of the parameter values for the sake of obtaining an almost interactive example.

In the supplementary material to this article, we explore several variations of this simulation
setup. In particular, we investigate the following:

(1) Running the simulation with the same parameters as Ploberger and Krämer (1992), i.e.,
simulation(nobs = 120, nrep = 1000, intensity = seq(4.8, 12, by = 2.4),

timing = seq(0.1, 0.9, by = 0.2), angle = seq(0, 90, by = 18), test =

c("Rec-CUSUM", "OLS-CUSUM")).

(2) Increasing the number of replications to nrep = 100000 to obtain more precise power
estimates.

(3) Changing the random number generator for normal random numbers. The default used
above is to employ the Mersenne Twister for generating uniform random numbers and

2Our call to the default RNG is identifiable as long as the version number of the software is given. The
version number appears in the “Computational Details” section at the end of this paper.

3The parameters have been chosen such that the code can be run interactively, possibly while grabbing a
coffee (or another preferred beverage).

4These findings are not simply artefacts of using N = 100 replications. The results from a larger, N =
10, 000, experiment that we conducted reveal them even more clearly and additionally show that the OLS-based
CUSUM test is somewhat conservative while the Nyblom-Hansen test is not.
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Table 4: Step (3) – Function simulation() for looping over a range of scenarios generated
by dgp() (see Table 2) and evaluated by testpower() (see Table 3).

simulation <- function(intensity = seq(from = 0, to = 10, by = 2.5),

timing = c(0.25, 0.5), angle = c(0, 45, 90),

test = c("OLS-CUSUM", "Nyblom-Hansen"), ...)

{

prs <- expand.grid(intensity = intensity, timing = timing, angle = angle)

nprs <- nrow(prs)

ntest <- length(test)

pow <- matrix(rep(NA, ntest * nprs), ncol = ntest)

for(i in 1:nprs) pow[i,] <- testpower(test = test, intensity =

prs$intensity[i], timing = prs$timing[i], angle = prs$angle[i], ...)

rval <- data.frame()

for(i in 1:ntest) rval <- rbind(rval, prs)

rval$test <- gl(ntest, nprs, labels = test)

rval$power <- as.vector(pow)

rval$timing <- factor(rval$timing)

rval$angle <- factor(rval$angle)

return(rval)

}

Table 5: Replication code for simulation results presented in Table 6 and Figure 1, respec-
tively. It assumes that the functions from Tables 2–4 are loaded, then first produces the
simulation results, followed by the replication of tabular and graphical output.

library("strucchange")

RNGkind(kind = "default", normal.kind = "default")

set.seed(1090)

sc_sim <- simulation()

tab <- xtabs(power ~ intensity + test + angle + timing, data = sc_sim)

ftable(tab, row.vars = c("angle", "timing", "test"), col.vars = "intensity")

library("lattice")

xyplot(power ~ intensity | angle + timing, groups = ~ test,

data = sc_sim, type = "b")
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Table 6: Simulated size and power for OLS-based CUSUM test and Nyblom-Hansen test.
Angle Timing Test Intensity

0 2.5 5 7.5 10

0 0.25 OLS-CUSUM 0.02 0.09 0.43 0.66 0.91
Nyblom-Hansen 0.02 0.07 0.34 0.61 0.82

0.5 OLS-CUSUM 0.01 0.20 0.58 0.86 0.98
Nyblom-Hansen 0.05 0.18 0.58 0.84 0.96

45 0.25 OLS-CUSUM 0.03 0.02 0.17 0.37 0.47
Nyblom-Hansen 0.05 0.13 0.31 0.57 0.72

0.5 OLS-CUSUM 0.04 0.11 0.18 0.51 0.83
Nyblom-Hansen 0.04 0.18 0.47 0.82 0.99

90 0.25 OLS-CUSUM 0.01 0.02 0.01 0.05 0.01
Nyblom-Hansen 0.01 0.10 0.27 0.57 0.84

0.5 OLS-CUSUM 0.02 0.08 0.05 0.03 0.00
Nyblom-Hansen 0.06 0.20 0.53 0.84 0.99
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Figure 1: Simulated size and power for OLS-based CUSUM test (solid) and Nyblom-Hansen
test (dashed)
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then applying the inversion method. An alternative would be one of the many generators
specifically designed for providing standard normal data such as the Kinderman-Ramage
generator. In R this is used by setting RNGkind(normal.kind = "Kinderman-Ramage").

Unsurprisingly, the results are never exactly identical, but fortunately all very similar. More
precisely, we compute point-wise asymptotic 95% confidence intervals for the difference of
simulated powers. The empirical coverage proportions for zero are: 95.0% for the pairwise
differences of (1) and (2), 93.6% for the pairwise differences of (2) and (3), and 90.8% for
the pairwise differences of (1) and the original table in Ploberger and Krämer (1992). Hence,
the agreement between the results is always fairly large. Only the original study deviates
somewhat, but it still leads to qualitatively equivalent conclusions. In the supplements to this
paper, the exact simulation results are provided along with replication files.

6. Conclusions

Scientific progress depends on the possibility to verify or falsify results. In the case of com-
puter experiments in econometrics, verification or falsification of results is currently virtually
impossible because the available information on computational detail in such experiments is
often insufficient. To improve this unfortunate situation, a combination of measures is likely
necessary: As a first step, authors need to be informed about requirements for reproducibility,
i.e., availability of replication code along with results of the experiments. As a second step,
journals need to support this by providing archives for code in addition to data. Ideally, these
archives are integrated into the editorial process so that their content is checked and well
arranged. We hope that the guidelines presented above will be useful in implementing such
measures.

It should also be borne in mind that users are responsible for their tools. Thus, in addition to
the documentation issues, some attention to the quality of the computational tools is advis-
able. It is worth noting that there are still many inferior RNGs around, or poor implementa-
tions, even in widely used software packages. Ripley (1990) and Hellekalek (1998) are (still)
useful starting points for the main issues. A more recent source is L’Ecuyer (2006). Users
of simulation software should therefore consult the relevant software reviews. In economet-
rics, the JAE publishes such reviews, in statistics, Computational Statistics & Data Analysis
(CSDA) is one of the journals that do.

Traditionally, the branch of statistics known as experimental design has received limited at-
tention in econometrics, presumably because in the social sciences true experiments are more
an exception than the rule. However, computer experiments can, and should, be treated just
like experiments typically associated with the hard sciences, hence the principles of experi-
mental design apply. Not surprisingly, the statistical literature offers a number of suggestions
regarding the design of computational experiments, see for example Santner, Williams, and
Notz (2003).

Quite apart from the main topic of this paper, a further important lesson appears to emerge
from a comparison of the two journals we examined: some 30% of the JAE papers have sup-
plements including (some) codes, although the JAE archive currently only requires submission
of data. This is rather encouraging and suggests that even partial (in the sense of data-only)
archives sometimes succeed in collecting crucial supplementary materials. Nonetheless, given
that only one paper out of an entire volume of the JoE provides complete details on simula-
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tions a much higher compliance rate is needed, and hence our findings would seem to reiterate
the need for code archives in addition to the recently adopted data archives. For further elab-
oration on the benefits of data and code archives we refer to Anderson, Greene, McCullough,
and Vinod (2008) and the references therein.

Computational Details

Our results were obtained using R 3.0.0—with the packages strucchange 1.4-7, and lattice 0.20-
15—and were identical on various platforms including PCs running Debian GNU/Linux (with
a 3.2.0-1-amd64 kernel) and Mac OS X, version 10.6.8. Normal random variables were gener-
ated from uniform random numbers obtained by the Mersenne Twister—currently R’s default
generator—by means of the inversion method. The random seed and further technical details
are available in the code supplementing this paper.
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