

Applied Econometrics with R

Christian Kleiber, Achim Zeileis

http://eeecon.uibk.ac.at/~zeileis/

Overview

- R and econometrics.
- AER: Book and package.
- Illustrations: Demand for economics journals, mobility in educational attainment.
- Excursion: Object orientation.
- Further information.

R and econometrics

- Econometric *theory* always had large impact on statistical research.
- However, econometrics lagged behind in embracing *computational methods* and *software* as an intrinsic part of research.
- Traditionally, rely on software provided by commercial publishers, e.g., Stata, EViews, or programming environments such as GAUSS, Ox, among others.
- Recently, software development/dissemination are increasingly regarded as natural concomitants of econometric research.
- Hence also increasing interest in econometrics with R.

R and econometrics

Question: Why R?

Answers:

- Free and platform independent: Important for teaching.
- Open source: Important for reproducible research.
- Flexible, object-oriented programming environment.
- Superior graphics and extensive methods for (exploratory) data analysis.
- Tools for reproducibility: Packaging of data/code/documentation, Sweave() for "dynamic" documents, ...

R and econometrics

Challenges:

- Differences in language and terminology, e.g.,
 - factor vs. dummy variable(s),
 - generalized linear model (GLM) vs. logit, probit, Poisson regression.
- Different workflow: Command line interface, functional language, object-oriented approach.
- Some basic econometric methods scattered across various CRAN packages. Some of these still relatively new, e.g.,
 - gmm: Generalized method of moments.
 - **np**: Nonparametric kernel methods.
 - plm: Linear models for panel data.
 - **pscl**: Zero-inflated and hurdle models for count data.
 - vars: Vector autoregression and error correction models.

AER: Book and package

Book: Applied Econometrics with R, Springer-Verlag, New York.

Aims:

- Introduction to econometric computing with R.
- Not an econometrics book, rather "second book" for a course in econometrics.
- Emphasize applications/practical issues with challenging data sets.
- Bridge differences in jargon, explain some statistical concepts.
- Provide overview of relevant/useful R packages.

AER: Book and package

Basics: Programming, data management, object orientation, graphics.

Linear regression: OLS, systems of equations, panel models.

Diagnostics and alternative methods of regression: Quantile and resistant regression, sandwich covariances, diagnostic tests.

Models of microeconometrics: Logit, probit, Poisson regression (as GLMs), tobit, further models for count data (ZIP, hurdle), censored, or limited responses.

Time series: (S)ARIMA(X), unit roots and cointegration, structural change, ARCH models, structural time series models.

Programming your own analysis: Simulations, bootstrapping, likelihood optimization, reproducibility.

AER: Book and package

Package: http://CRAN.R-project.org/package=AER.

Contents:

- Demos: Full R code from the book.
- Data: More than 100 data sets from leading applied econometrics journals and popular econometrics books.
- Examples: Replication code for many examples from
 - Baltagi: Econometrics.
 - Cameron & Trivedi: Regression Analysis of Count Data.
 - Greene: Econometric Analysis.
 - Stock & Watson: Introduction to Econometrics.
 - Winkelmann & Boes: Analysis of Microdata.
 - and many others...
- New R functions: Extending/complementing methods previously available in R, e.g., tobit() convenience interface to survreg().

Data: From Stock & Watson (2007), originally collected by T. Bergstrom, on subscriptions to 180 economics journals at US libraries, for the year 2000.

10 variables are provided including:

- subs number of library subscriptions,
- price library subscription price,
- citations total number of citations,

and other information such as number of pages, founding year, characters per page, etc.

Of interest: Relation between demand and price for economics journals. Price is measured as price per citation.

Load data and obtain basic information:

R> library("AER")
R> data("Journals", package = "AER")
R> dim(Journals)
[1] 180 10

R> names(Journals)

[1]	"title"	"publisher"	"society"	"price"
[5]	"pages"	"charpp"	"citations"	"foundingyear"
[9]	"subs"	"field"		

Plot variables of interest:

R> plot(log(subs) ~ log(price/citations), data = Journals)

Fit linear regression model:

```
R> j_lm <- lm(log(subs) ~ log(price/citations), data = Journals)
R> abline(j_lm)
```



```
R> summary(j_lm)
Call:
lm(formula = log(subs) ~ log(price/citations), data = Journals)
Residuals:
   Min 10 Median 30
                                 Max
-2.7248 -0.5361 0.0372 0.4662 1.8481
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 4.7662 0.0559 85.2 <2e-16
log(price/citations) -0.5331 0.0356 -15.0 <2e-16
Residual standard error: 0.75 on 178 degrees of freedom
Multiple R-squared: 0.557, Adjusted R-squared: 0.555
F-statistic: 224 on 1 and 178 DF, p-value: <2e-16
```

In most other econometrics packages: An analysis leads to a large amount of output containing information on estimation, model diagnostics, specification tests, etc.

In R:

- Analysis is broken down into a series of steps.
- Intermediate results are stored in *objects*.
- Minimal output at each step (often none).
- Objects can be manipulated and interrogated to obtain the information required (e.g., print(), summary(), plot()).

Fundamental design principle: "Everything is an object."

Examples: Vectors and matrices are objecs, but also fitted model objects, functions, and even function calls \Rightarrow facilitates programming tasks.

<pre>print()</pre>	simple printed display with coefficients
<pre>summary()</pre>	standard regression summary
plot()	diagnostic plots
coef()	extract coefficients
vcov()	associated covariance matrix
<pre>predict()</pre>	(different types of) predictions for new data
fitted()	fitted values for observed data
residuals()	extract (different types of) residuals
terms()	extract terms
<pre>model.matrix()</pre>	extract model matrix (or matrices)
nobs()	extract number of observations
df.residual()	extract residual degrees of freedom
logLik()	extract fitted log-likelihood

Furthermore: "Smart" generics can rely on suitable methods such as coef(), vcov(), logLik(), nobs(), etc.

confint()	confidence intervals
AIC(), BIC()	information criteria (AIC, BIC,)
coeftest()	partial Wald tests of coefficients (Imtest)
waldtest()	Wald tests of nested models (Imtest)
linearHypothesis()	Wald tests of linear hypotheses (car)
lrtest()	likelihood ratio tests of nested models (Imtest)
<pre>sandwich(),</pre>	sandwich/HC/HAC estimators of covari- ance matrices (sandwich)

```
R> confint(j_lm)
```

2.5 % 97.5 % (Intercept) 4.6559 4.8765 log(price/citations) -0.6033 -0.4628

```
R> linearHypothesis(j_lm, "log(price/citations) = -0.5")
```

Linear hypothesis test

```
Hypothesis:
log(price/citations) = -0.5
Model 1: restricted model
Model 2: log(subs) ~ log(price/citations)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 179 100
```

2 178 100 1 0.484 0.86 0.35

```
R> coeftest(j_lm)
```

```
t test of coefficients:
```

```
      Estimate Std. Error t value Pr(>|t|)

      (Intercept)
      4.7662
      0.0559
      85.2
      <2e-16</td>

      log(price/citations)
      -0.5331
      0.0356
      -15.0
      <2e-16</td>

      R> coeftest(j_lm, vcov = sandwich)
```

```
t test of coefficients:
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.7662	0.0550	86.7	<2e-16
log(price/citations)	-0.5331	0.0338	-15.8	<2e-16

Data: Cross-section of 675 14-year old children taken from the German Socio-Economic Panel (GSOEP), 1994–2002.

Model: Secondary school choice (Hauptschule, Realschule, Gymnasium) explained by mother's education (in years), correcting for mother's employment level, household income and size (in logs).

Comparison: Multinomial logit (MNL) and ordered logit model (OLM).

In R:

- MNL: multinom() from package **nnet** (because neural networks have same fitting algorithm).
- OLM: polr() from package **MASS** (because model is also known as proportional odds logistic regression in the statistics literature).
- Couple with effects package for visualizing predicted probabilities.

```
Exploratory display:
R> data("GSOEP9402", package = "AER")
R> plot(school ~ meducation, data = GSOEP9402,
+ breaks = c(7, 9, 10.5, 11.5, 12.5, 15, 18))
```


meducation

```
Model formula:
R> f <- school ~ meducation + memployment + log(income) + log(size)
Multinomial logit:
R> library("nnet")
R> gsoep_mnl <- multinom(f, data = GSOEP9402)
Ordered logit:
R> library("MASS")
R> gsoep_olm <- polr(f, data = GSOEP9402, Hess = TRUE)
Comparison:
R> AIC(gsoep_mnl, gsoep_olm)
          df AIC
gsoep_mnl 12 1279
gsoep_olm 7 1277
```

Selected model:

```
R> coeftest(gsoep_olm)
```

```
z test of coefficients:
```

	Estimate	Std. Error	z value	Pr(z)
meducation	0.4766	0.0513	9.28	< 2e-16
memploymentparttime	0.6932	0.2452	2.83	0.0047
memploymentnone	0.8124	0.2507	3.24	0.0012
log(income)	1.0392	0.1868	5.56	2.6e-08
log(size)	-1.2550	0.3230	-3.89	0.0001
Hauptschule Realschule	14.6720	1.9332	7.59	3.2e-14
Realschule Gymnasium	16.2233	1.9532	8.31	< 2e-16

Visualization:

```
R> library("effects")
R> plot(effect("meducation", gsoep_mnl), confint = FALSE)
R> plot(effect("meducation", gsoep_olm), confint = FALSE)
```


Further information

CRAN task view:

http://CRAN.R-project.org/view=Econometrics and related views Finance, SocialSciences, TimeSeries.

Mailing lists: R-help, R-SIG-Finance, ...

https://stat.ethz.ch/mailman/listinfo/R-SIG-Finance

Journals:

- The R Journal. http://journal.R-project.org/
- Journal of Statistical Software. http://www.jstatsoft.org/ See Volume 27 (Zeileis & Koenker 2008) for overview.

Summary

- R system is a free open-source environment with tools for reproducible research.
- Wide variety of econometric methods already available.
- Workflow, development process, and terminology may sometimes be unfamiliar to econometricians.
- Many resources available to bridge differences: Examples, demos, textbooks, software papers, ...

References

Kleiber C, Zeileis A (2008). *Applied Econometrics with R*. Springer-Verlag, New York. URL http://CRAN.R-project.org/package=AER

Zeileis A, Koenker R (2008). "Econometrics in R: Past, Present, and Future." *Journal of Statistical Software*, **27**(1), 1–5. URL http://www.jstatsoft.org/v27/i01/

Koenker R, Zeileis A (2009). "On Reproducible Econometric Research." *Journal of Applied Econometrics*, **24**(5), 833–847. doi:10.1002/jae.1083