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Motivation: Trees

Breiman (2001, Statistical Science) distinguishes two cultures of
statistical modeling.

Data models: Stochastic models, typically parametric.

Algorithmic models: Flexible models, data-generating process
unknown.

Example: Recursive partitioning models dependent variable Y by
“learning” a partition w.r.t explanatory variables Z1, . . . ,Zl .

Key features:

Predictive power in nonlinear regression relationships with
“automatic interaction detection”.

Interpretability (enhanced by visualization), i.e., no “black box”
methods.



Motivation: Leaves

Typically: Simple models for univariate Y , e.g., mean or proportion.

Examples: CART and C4.5 in statistical and machine learning,
respectively.

Problems: For classical tree algorithms.

No concept of “significance”, possibly biased variable selection.

No complex (parametric) models in leaves.

Many different tree algorithms for different types of data.

Here: Synthesis of parametric data models and algorithmic tree
models.

Fitting local models by partitioning of the sample space.

Based on statistical hypothesis tests for parameter instability.



Motivation: Branches

Base algorithm: Growth of branches from the roots to the leaves of the
tree follows a generic recursive partitioning algorithm.

1 Fit a (possibly very simple) model for the response Y .
2 Assess association of Y and each Zj .
3 Split sample along the Zj∗ with strongest association: Choose

breakpoint with highest improvement of the model fit.
4 Repeat steps 1–3 recursively in the subsamples until some

stopping criterion is met.

Here: Segmentation (3) of parametric models (1) with additive objective
function using parameter instability tests (2) and associated statistical
significance (4).



Model-based recursive partitioning: Estimation

Models: M(Y , θ) with (potentially) multivariate observations Y ∈ Y
and k -dimensional parameter vector θ ∈ Θ.

Parameter estimation: θ̂ by optimization of objective function Ψ(Y , θ)
for n observations Yi (i = 1, . . . , n):

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(Yi , θ).

Special cases: Maximum likelihood (ML), weighted and ordinary least
squares (OLS and WLS), quasi-ML, and other M-estimators.

Central limit theorem: If there is a true parameter θ0 and given certain
weak regularity conditions, θ̂ is asymptotically normal with mean θ0 and
sandwich-type covariance.



Model-based recursive partitioning: Estimation

Estimating function: θ̂ can also be defined in terms of

n∑
i=1

ψ(Yi , θ̂) = 0,

where ψ(Y , θ) = ∂Ψ(Y , θ)/∂θ.

Idea: In many situations, a single global modelM(Y , θ) that fits all
n observations cannot be found. But it might be possible to find a
partition w.r.t. the variables Z = (Z1, . . . ,Zl) so that a well-fitting model
can be found locally in each cell of the partition.

Tool: Assess parameter instability w.r.t to partitioning variables
Zj ∈ Zj (j = 1, . . . , l).



Model-based recursive partitioning: Tests

Generalized M-fluctuation tests capture instabilities in θ̂ for an ordering
w.r.t Zj .

Basis: Empirical fluctuation process of cumulative deviations w.r.t. to
an ordering σ(Zij).

Wj(t, θ̂) = V̂−1/2n−1/2
bntc∑
i=1

ψ(Yσ(Zij ), θ̂) (0 ≤ t ≤ 1)

Functional central limit theorem: Under parameter stability
Wj(·, θ̂)

d−→ W 0(·), where W 0 is a k -dimensional Brownian bridge.



Model-based recursive partitioning: Tests

Test statistics: Scalar functional λ(Wj) that captures deviations from
zero.

Null distribution: Asymptotic distribution of λ(W 0).

Special cases: Class of test encompasses many well-known tests for
different classes of models. Certain functionals λ are particularly
intuitive for numeric and categorical Zj , respectively.

Advantage: ModelM(Y , θ̂) just has to be estimated once. Empirical
estimating functions ψ(Yi , θ̂) just have to be re-ordered and aggregated
for each Zj .



Model-based recursive partitioning: Tests

Splitting numeric variables: Assess instability using supLM statistics.
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Interpretation: Maximization of single shift LM statistics for all
conceivable breakpoints in [i, ı].

Limiting distribution: Supremum of a squared, k -dimensional
tied-down Bessel process.



Model-based recursive partitioning: Tests

Splitting categorical variables: Assess instability using χ2 statistics.

λχ2(Wj) =
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Feature: Invariant for re-ordering of the C categories and the
observations within each category.

Interpretation: Captures instability for split-up into C categories.

Limiting distribution: χ2 with k · (C − 1) degrees of freedom.



Model-based recursive partitioning: Segmentation

Goal: Split model into b = 1, . . . ,B segments along the partitioning
variable Zj associated with the highest parameter instability. Local
optimization of ∑

b

∑
i∈Ib

Ψ(Yi , θb).

B = 2: Exhaustive search of order O(n).

B > 2: Exhaustive search is of order O(nB−1), but can be replaced by
dynamic programming of order O(n2). Different methods (e.g.,
information criteria) can choose B adaptively.

Here: Binary partitioning.



Model-based recursive partitioning: Pruning

Pruning: Avoid overfitting.

Pre-pruning: Internal stopping criterion. Stop splitting when there is no
significant parameter instability.

Post-pruning: Grow large tree and prune splits that do not improve the
model fit (e.g., via cross-validation or information criteria).

Here: Pre-pruning based on Bonferroni-corrected p values of the
fluctuation tests.



Application: Treatment effect for chronic disease

Task: Identify groups of chronic disease patients with different
treatment effects.

Source: Anonymized data from consulting project.

Model: Logistic regression estimated by maximum likelihood.

Response: Improvement (yes/no) of chronic disease for
1354 patients after treatment over several weeks.

Regressor: Treatment (active drug/placebo).

Partitioning variables: 11 variables that describe disease status of
patients. Lower values indicate more severe forms of the disease.

Result: Treatment most effective for certain intermediate forms.



Application: Treatment effect for chronic disease
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Application: Treatment effect for chronic disease

Model-based recursive partitioning:

Coefficient estimates for regressors.

Parameter instability tests for partitioning variables (bold =
significant at adjusted 5% level, underlined = smallest p value).

Regressors Partitioning variables

(const.) treatment risk4 risk5 risk7 risk9 risk10 . . .

1 −0.99 0.77 13.05 16.01 22.02 1.48 13.03

2 −1.15 0.62 12.57 9.64 3.85 0.06 8.94

3 −0.82 0.90 6.96 17.01 2.53 2.14 13.84 . . .

4 −0.72 1.00 2.84 6.46 2.51 0.50 12.78

5 −1.13 0.21 3.96 0.98 3.54 6.10 3.14



Summary

Synthesis of parametric data models and algorithmic tree models.

Based on modern class of parameter instability tests.

Aims to minimize clearly defined objective function by greedy
forward search.

Can be applied to general class of parametric models: generalized
linear models, psychometric models (e.g., Rasch, Bradley-Terry),
models for location and scale, etc.

Automatic interaction detection of effects in subgroups.

Alternative to traditional means of model specification, especially
for variables with unknown association.

Object-oriented implementation freely available: Extension for new
models requires some coding, though.
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