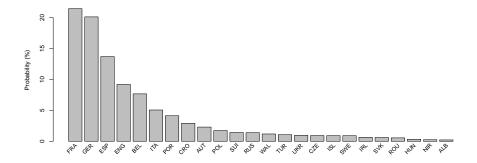
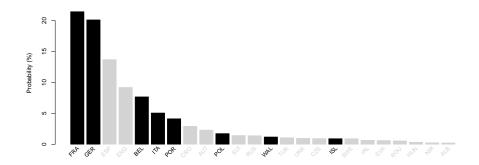


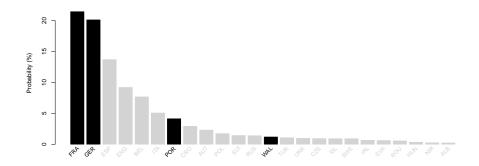
Forecasting sports tournaments by ratings of (prob)abilities

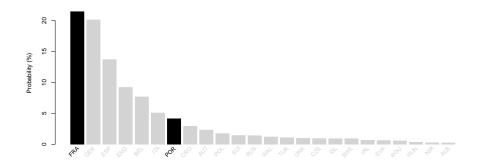

Achim Zeileis, Christoph Leitner, Kurt Hornik

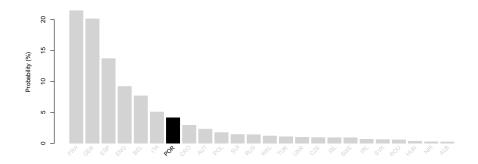
http://eeecon.uibk.ac.at/~zeileis/


UEFA Euro 2016 prediction

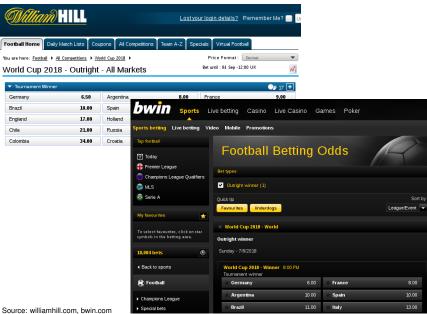

UEFA Euro 2016 prediction


- Tournament forecast based on bookmakers odds.
- Main results: France and Germany are the top favorites with winning probabilities of 21.5% and 20.1%, respectively.
- Top favorites are most likely to meet in the semifinal with odds very slightly in favor of France (50.5% winning probability).


- All favorites "survive" the group stage.
- But: Spain and England blow the chance of winning their respective groups.
- Austria is eliminated after disappointing performances.


- England surprisingly loses to Iceland.
- Spain loses the "replay" of the Euro 2012 final against Italy.

- Wales surprisingly beats Belgium.
- After a strong tournament Iceland clearly loses to France.



- For the first and only time Portugal wins a match after 90 minutes.
- In the match of the top favorites France beats Germany despite a strong performance of the world champion.

• Host France fails to seal the victory in normal time and loses to Portugal after extra time.

Bookmakers odds

Bookmakers odds: Motivation

Forecasts of sports events:

- Increasing interest in forecasting of competitive sports events due to growing popularity of online sports betting.
- Forecasts often based on ratings or rankings of competitors' ability/strength.

In football:

- Elo rating.
 - Aims to capture relative strength of competitors yielding probabilities for pairwise comparisons.
 - Originally developed for chess.
- FIFA rating.
 - Official ranking, used for seeding tournaments.
 - Often criticized for not capturing *current* strengths well.

Bookmakers odds: Motivation

Alternatively: Employ bookmakers odds for winning a competition.

- Bookmakers are "experts" with monetary incentives to rate competitors correctly. Setting odds too high/low yields less profits.
- Prospective in nature: Bookmakers factor not only the competitors abilities into their odds but also tournament draws/seedings, home advantages, recent events such as injuries, etc.
- Statistical "post-processing" needed to derive winning probabilities and underlying abilities.

Bookmakers odds: Overround adjustment

Odds: In statistics, the ratio of the probabilities for winning/losing, e.g.

- Even odds are "50:50" (= 1).
- Odds of 4 correspond to probabilities 4/5 = 80% vs. 1/5 = 20%.

Quoted odds: In sports betting, the payout for a stake of 1.

This is not an honest judgment of winning chances due to inclusion of a profit margin known as "overround".

quoted odds_i = odds_i
$$\cdot \delta$$
 + 1,

- where *odds_i* is the bookmaker's "true" judgment of the odds for competitor *i*,
- δ is the bookmaker's payout proportion (overround: 1 δ),
- and +1 is the stake.

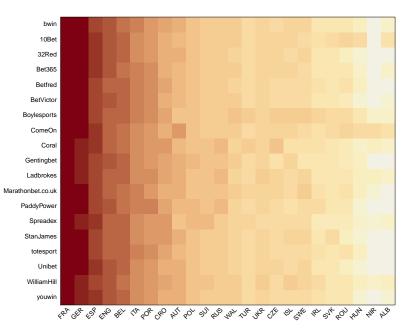
Bookmakers odds: Overround adjustment

Winning probabilities: The adjusted $odds_i$ then corresponding to the odds of competitor *i* for losing the tournament. They can be easily transformed to the corresponding winning probability

$$p_i = 1 - rac{odds_i}{1 + odds_i}.$$

Determining the overround: Assuming that a bookmaker's overround is constant across competitors, it can be determined by requiring that the winning probabilities of all competitors (here: all 24 teams) sum to 1: $\sum_{i} p_i = 1$.

Bookmakers odds: Overround adjustment


Illustration: UEFA Euro 2016 rating for France by bookmaker bwin.

- Bookmaker bwin pays 4.33 for a stake of 1 set on a victory of France, i.e., a profit of 3.33.
- The overround implied by bwin's quoted odds for all 24 teams in the tournament is 14.4%.
- Thus, bwin's implied odds for France are:
 3.89 = (4.33 1)/(1 0.144), i.e., it is about four times more likely that France loses vs. wins.
- The corresponding winning probability for France is 20.4%.

Bookmakers odds: UEFA Euro 2016

Data processing:

- Quoted odds from 19 online bookmakers.
- Obtained on 2016-05-22 from http://www.bwin.com/ and http://www.oddscomparisons.com/.
- Computed overrounds $1 \delta_b$ individually for each bookmaker b = 1, ..., 19 by unity sum restriction across teams i = 1, ..., 24.
- Median overround is 15.1%.
- Yields overround-adjusted and transformed winning probabilities $p_{i,b}$ for each team *i* and bookmaker *b*.

Goal: Get consensus probabilities by aggregation across bookmakers.

Strategy:

- Employ statistical model assuming some latent consensus probability *p_i* for team *i* along deviations ε_{i,b}.
- Additive model is plausible on suitable scale, e.g., logit or probit.
- Logit is more natural here, as it corresponds to log-odds.
- Methodology can also be used for consensus ratings of default probability in credit risk rating of bank *b* for firm *i*.

Model: Bookmaker consensus model

$$logit(p_{i,b}) = logit(p_i) + \varepsilon_{i,b},$$

where further effects could be included, e.g., group effects in consensus logits or bookmaker-specific bias and variance in $\varepsilon_{i,b}$.

Here:

- Simple fixed-effects model with zero-mean deviations.
- Consensus logits are simply team-specific means across bookmakers:

$$\widehat{\operatorname{logit}(p_i)} = \frac{1}{19} \sum_{b=1}^{19} \operatorname{logit}(p_{i,b}).$$

• Consensus winning probabilities are obtained by transforming back to the probability scale:

$$\hat{p}_i = \text{logit}^{-1}\left(\widehat{\text{logit}(p_i)}\right).$$

 Model captures 97.9% of the variance in logit(*p_{i,b}*) and the associated estimated standard error is 0.204.

Team	FIFA code	Probability	Log-odds	Log-ability	Group
France	FRA	21.5	-1.298	-1.748	А
Germany	GER	20.1	-1.379	-1.766	С
Spain	ESP	13.7	-1.840	-2.001	D
England	ENG	9.2	-2.290	-2.209	В
Belgium	BEL	7.7	-2.489	-2.261	Е
Italy	ITA	5.1	-2.932	-2.393	Е
Portugal	POR	4.1	-3.146	-2.538	F
Croatia	CRO	2.9	-3.508	-2.633	D
Austria	AUT	2.3	-3.751	-2.771	F
Poland	POL	1.7	-4.038	-2.892	С
		:			

tournament.R

$$Pr(i \text{ beats } j) = \pi_{i,j}$$

$$= \frac{ability_i}{ability_i + ability_j}$$

$$i = \frac{ability_i}{ability_i + ability_j}$$

$$= \frac{ability$$

Source: Wikipedia

maxiter))

Save = ×

Further questions:

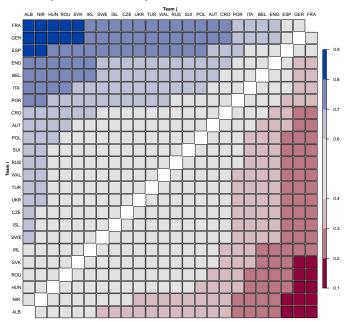
- What are the likely courses of the tournament that lead to these bookmaker consensus winning probabilities?
- Is the team with the highest probability also the strongest team?
- What are the winning probabilities for all possible matches?

Motivation:

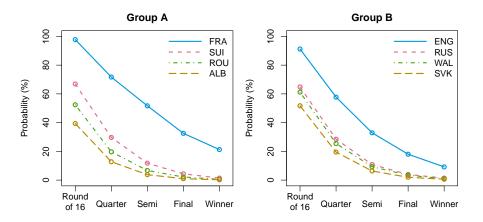
- Tournament draw might favor some teams, e.g., France was drawn in a group with two weak teams (Romania and Albania).
- Tournament schedule was known to bookmakers and hence factored into their quoted odds.
- Can abilities (or strengths) of the teams be obtained, adjusting for such tournament effects?

Answer: Yes, an approximate solution can be found by simulation when

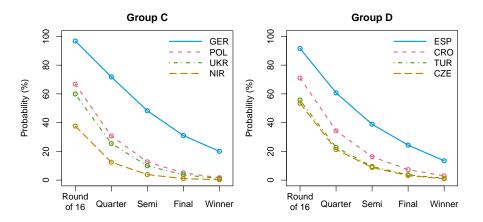
- adopting a standard model for paired comparisons (i.e., matches),
- assuming that the abilities do not change over the tournament.

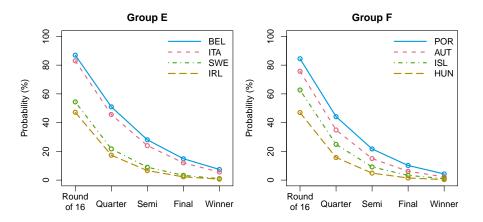

Model: Bradley-Terry model for winning/losing in a paired comparison of team *i* and team *j*.

$$\Pr(i \text{ beats } j) = \pi_{i,j} = \frac{ability_i}{ability_i + ability_j}.$$


"Reverse" simulation:

- If the team-specific *ability*_i were known, pairwise probabilities $\pi_{i,j}$ could be computed.
- Given $\pi_{i,j}$ the whole tournament can be simulated (assuming abilities do not change and ignoring possible draws during the group stage).
- Using "many" simulations (here: 100,000) of the tournament, the empirical relative frequencies *p̃_i* of each team *i* winning the tournament can be determined.
- Choose *ability*_{*i*} for *i* = 1,...,24 such that the simulated winning probabilities \tilde{p}_i approximately match the consensus winning probabilities \hat{p}_i .
- Found by simple iterative local search starting from log-odds.


Abilities and paired comparisons


Tournament simulations: Survival curves

Tournament simulations: Survival curves

Tournament simulations: Survival curves

Outcome verification

Source: Spiegel.de

Outcome verification

Question: Was the forecast any good?

- Ex post the low predicted winning probability for Portugal (4.1%) seems wrong.
- However, consider that they indirectly profited from Spain's and England's poor performances in the last group stage games.
- And they only won 1 out of 7 games in normal time.
- Even in the final Gignac might as well have scored a goal instead of hitting the post in minute 92...

Problems:

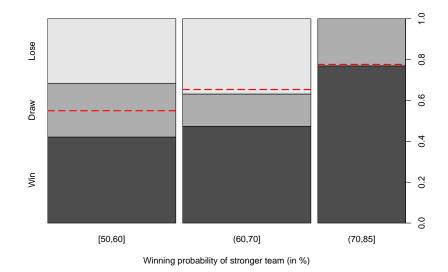
- Just a single observation of the tournament and at most one observation of each paired comparison.
- Hard to distinguish between occurrence of an un- (or less) likely outcome and systematic errors in the predicted (prob)abilities.

Outcome verification

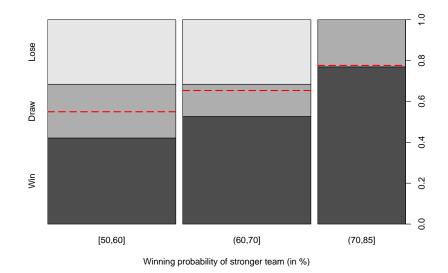
Possible approaches:

- Compare forecasts with the observed tournament ranking (1 POR, 2 FRA, 3.5 WAL, 3.5 GER, ...).
- Benchmark against Elo and FIFA ratings.
- Note that the Elo rating also implies ability scores based on which pairwise probabilities and "forward" simulation of tournament can be computed:

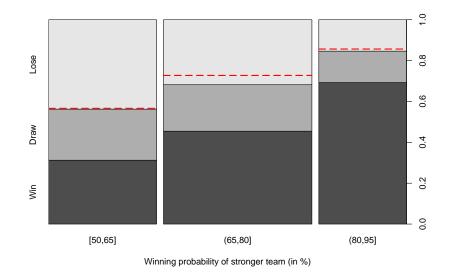
$$ability_{Elo,i} = 10^{Elo_i/400}.$$

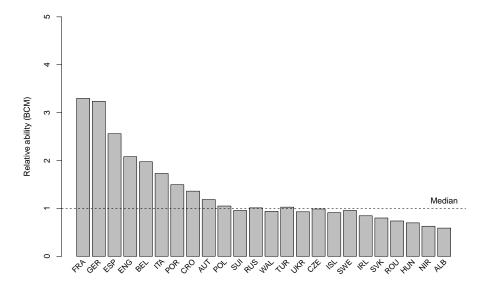

• Check whether pairwise probabilities roughly match empirical proportions from clusters of matches.

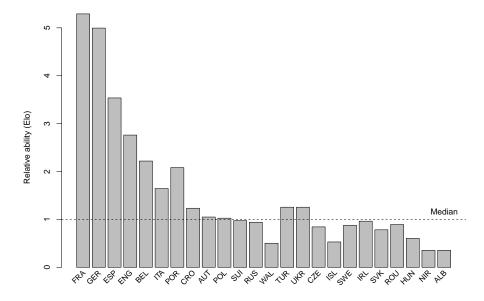
Outcome verification: Ranking


Spearman rank correlation of observed tournament ranking with bookmaker consensus model (BCM) as well as FIFA and Elo ranking:

BCM (Probabilities)	0.523
BCM (Abilities)	0.436
Elo (Probabilities)	0.344
Elo	0.339
FIFA	0.310


Outcome verification: BCM pairwise probabilities


Outcome verification: BCM pairwise probabilities


Outcome verification: Elo pairwise probabilities

Outcome verification: BCM abilities

Outcome verification: Elo abilities

Discussion

Summary:

- Expert judgments of bookmakers are a useful information source for probabilistic forecasts of sports tournaments.
- Winning probabilities are obtained by adjustment for overround and averaging on log-odds scale.
- Competitor abilities can be inferred by post-processing based on pairwise-comparison model with "reverse" tournament simulations.
- Approach outperformed Elo and FIFA ratings for the last UEFA Euros and correctly predicted the final 2008 and winner 2012.

Limitations:

- Matches are only assessed in terms of winning/losing, i.e., no goals, draws, or even more details.
- Inherent chance component is substantial and hard to verify.

References

Zeileis A, Leitner C, Hornik K (2016). "Predictive Bookmaker Consensus Model for the UEFA Euro 2016." *Working Paper 2016-15*, Working Papers in Economics and Statistics, Research Platform Empirical and Experimental Economics, Universität Innsbruck. URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-15.

Leitner C, Zeileis A, Hornik K (2011). "Bookmaker Consensus and Agreement for the UEFA Champions League 2008/09." *IMA Journal of Management Mathematics*, **22**(2), 183–194. doi:10.1093/imaman/dpq016.

Leitner C, Zeileis A, Hornik K (2010). "Forecasting Sports Tournaments by Ratings of (Prob)abilities: A Comparison for the EURO 2008." *International Journal of Forecasting*, **26**(3), 471–481. doi:10.1016/j.ijforecast.2009.10.001.

Groups A and B

Rank	Team	Probability (in %)
1	FRA	97.8
2	SUI	66.9
3	ALB	39.4
4	ROU	52.4

Rank	Team	Probability (in %)
1	WAL	61.2
2	ENG	91.2
3	SVK	51.7
4	RUS	64.8

Groups C and D

Rank	Team	Probability (in %)
1	GER	96.8
2	POL	66.8
3	NIR	37.6
4	UKR	59.9

Rank	Team	Probability (in %)
1	CRO	71.1
2	ESP	91.7
3	TUR	55.6
4	CZE	53.5

Groups E and F

Rank	Team	Probability (in %)
1	ITA	83.0
2	BEL	86.9
3	IRL	47.2
4	SWE	54.4

Rank	Team	Probability (in %)
1	HUN	47.0
2	ISL	62.7
3	POR	84.5
4	AUT	75.7

Round of 16

Teams	6	Probability (in %)	Result
POL	SUI	50.6	6:5 (pen.)
WAL	NIR	61.1	1:0
POR	CRO	52.4	1:0 (a.e.t.)
FRA	IRL	79.6	2:1
GER	SVK	80.2	3:0
BEL	HUN	73.9	4:0
ESP	ITA	59.7	0:2
ENG	ISL	69.1	1:2

Quarterfinal, semifinal, final

Teams		Probability (in %)	Result
Quart	erfinal		
POL	POR	41.2	4:6 (pen.)
WAL	BEL	33.4	3:1
GER	ITA	65.2	7:6 (pen.)
FRA	ISL	78.0	5:2
Semif	inal		
POR	WAL	60.2	2:0
GER	FRA	49.5	0:2
Final			
POR	FRA	31.2	1:0 (a.e.t.)