Universität Innshruck

Forecasting sports tournaments by ratings of (prob)abilities

Achim Zeileis, Christoph Leitner, Kurt Hornik
http://eeecon.uibk.ac.at/~zeileis/

UEFA Euro 2016 prediction

UEFA Euro 2016 prediction

- Tournament forecast based on bookmakers odds.
- Main results: France and Germany are the top favorites with winning probabilities of 21.5% and 20.1%, respectively.
- Top favorites are most likely to meet in the semifinal with odds very slightly in favor of France (50.5% winning probability).

UEFA Euro 2016 tournament

- All favorites "survive" the group stage.
- But: Spain and England blow the chance of winning their respective groups.
- Austria is eliminated after disappointing performances.

UEFA Euro 2016 tournament

- England surprisingly loses to Iceland.
- Spain loses the "replay" of the Euro 2012 final against Italy.

UEFA Euro 2016 tournament

- Wales surprisingly beats Belgium.
- After a strong tournament Iceland clearly loses to France.

UEFA Euro 2016 tournament

- For the first and only time Portugal wins a match after 90 minutes.
- In the match of the top favorites France beats Germany despite a strong performance of the world champion.

UEFA Euro 2016 tournament

- Host France fails to seal the victory in normal time and loses to Portugal after extra time.

Bookmakers odds

Bookmakers odds: Motivation

Forecasts of sports events:

- Increasing interest in forecasting of competitive sports events due to growing popularity of online sports betting.
- Forecasts often based on ratings or rankings of competitors' ability/strength.

In football:

- Elo rating.
- Aims to capture relative strength of competitors yielding probabilities for pairwise comparisons.
- Originally developed for chess.
- FIFA rating.
- Official ranking, used for seeding tournaments.
- Often criticized for not capturing current strengths well.

Bookmakers odds: Motivation

Alternatively: Employ bookmakers odds for winning a competition.

- Bookmakers are "experts" with monetary incentives to rate competitors correctly. Setting odds too high/low yields less profits.
- Prospective in nature: Bookmakers factor not only the competitors abilities into their odds but also tournament draws/seedings, home advantages, recent events such as injuries, etc.
- Statistical "post-processing" needed to derive winning probabilities and underlying abilities.

Bookmakers odds: Overround adjustment

Odds: In statistics, the ratio of the probabilities for winning/losing, e.g.

- Even odds are "50:50" (=1).
- Odds of 4 correspond to probabilities $4 / 5=80 \%$ vs. $1 / 5=20 \%$.

Quoted odds: In sports betting, the payout for a stake of 1 .
This is not an honest judgment of winning chances due to inclusion of a profit margin known as "overround".

$$
\text { quoted odds }_{i}=\text { odds }_{i} \cdot \delta+1
$$

- where odds ${ }_{i}$ is the bookmaker's "true" judgment of the odds for competitor i,
- δ is the bookmaker's payout proportion (overround: $1-\delta$),
- and +1 is the stake.

Bookmakers odds: Overround adjustment

Winning probabilities: The adjusted odds j_{i} then corresponding to the odds of competitor i for losing the tournament. They can be easily transformed to the corresponding winning probability

$$
p_{i}=1-\frac{\text { odds }_{i}}{1+\text { odds }}
$$

Determining the overround: Assuming that a bookmaker's overround is constant across competitors, it can be determined by requiring that the winning probabilities of all competitors (here: all 24 teams) sum to $1: \sum_{i} p_{i}=1$.

Bookmakers odds: Overround adjustment

Illustration: UEFA Euro 2016 rating for France by bookmaker bwin.

- Bookmaker bwin pays 4.33 for a stake of 1 set on a victory of France, i.e., a profit of 3.33 .
- The overround implied by bwin's quoted odds for all 24 teams in the tournament is 14.4%.
- Thus, bwin's implied odds for France are:
$3.89=(4.33-1) /(1-0.144)$, i.e., it is about four times more likely that France loses vs. wins.
- The corresponding winning probability for France is 20.4\%.

Bookmakers odds: UEFA Euro 2016

Data processing:

- Quoted odds from 19 online bookmakers.
- Obtained on 2016-05-22 from http://www.bwin.com/ and http://www.oddscomparisons.com/.
- Computed overrounds $1-\delta_{b}$ individually for each bookmaker $b=1, \ldots, 19$ by unity sum restriction across teams $i=1, \ldots, 24$.
- Median overround is 15.1%.
- Yields overround-adjusted and transformed winning probabilities $p_{i, b}$ for each team i and bookmaker b.

Modeling consensus and agreement

Modeling consensus and agreement

Goal: Get consensus probabilities by aggregation across bookmakers.

Strategy:

- Employ statistical model assuming some latent consensus probability p_{i} for team i along deviations $\varepsilon_{i, b}$.
- Additive model is plausible on suitable scale, e.g., logit or probit.
- Logit is more natural here, as it corresponds to log-odds.
- Methodology can also be used for consensus ratings of default probability in credit risk rating of bank b for firm i.

Model: Bookmaker consensus model

$$
\operatorname{logit}\left(p_{i, b}\right)=\operatorname{logit}\left(p_{i}\right)+\varepsilon_{i, b}
$$

where further effects could be included, e.g., group effects in consensus logits or bookmaker-specific bias and variance in $\varepsilon_{i, b}$.

Modeling consensus and agreement

Here:

- Simple fixed-effects model with zero-mean deviations.
- Consensus logits are simply team-specific means across bookmakers:

$$
\left.\widehat{\operatorname{logit}\left(p_{i}\right.}\right)=\frac{1}{19} \sum_{b=1}^{19} \operatorname{logit}\left(p_{i, b}\right)
$$

- Consensus winning probabilities are obtained by transforming back to the probability scale:

$$
\left.\hat{p}_{i}=\operatorname{logit}^{-1}\left(\widehat{\operatorname{logit}\left(p_{i}\right.}\right)\right) .
$$

- Model captures 97.9% of the variance in $\operatorname{logit}\left(p_{i, b}\right)$ and the associated estimated standard error is 0.204 .

Modeling consensus and agreement

Team	FIFA code	Probability	Log-odds	Log-ability	Group
France	FRA	21.5	-1.298	-1.748	A
Germany	GER	20.1	-1.379	-1.766	C
Spain	ESP	13.7	-1.840	-2.001	D
England	ENG	9.2	-2.290	-2.209	B
Belgium	BEL	7.7	-2.489	-2.261	E
Italy	ITA	5.1	-2.932	-2.393	E
Portugal	POR	4.1	-3.146	-2.538	F
Croatia	CRO	2.9	-3.508	-2.633	D
Austria	AUT	2.3	-3.751	-2.771	F
Poland	POL	1.7	-4.038	-2.892	C
		\vdots			

Abilities and tournament simulations

$$
\begin{aligned}
& \operatorname{Pr}(i \text { beats } j)=\pi_{i, j} \\
& =\frac{\text { ability }_{i}}{\text { ability }_{i}+\text { ability }_{j}}
\end{aligned}
$$

```
sim_log_abilities <- function(logodds, groups,
    start = NULL, }\textrm{n}=10\textrm{coge},\mathrm{ rounds =
    loss = function(x, y) mean(abs(x - y), na.rm = PRUE),
    tot =0,1, maxiter = leg, eps = 1, rate =
    cores = N(HLL, trace = TF(IF)
diV Main Input: Wrnming Log-od0's
stopifnot(!is.null(names(logodds)))
nam <- names(logodds)
target <- logodds
if(is.null(start)) start <- logodds
If(is.null(names(start))) names(start) <- nam
## group lis
if[is null(names(groups))) {
    names(groups) <- nam
    else
    groups <- groups[nam]
groups <- tapply(groups, groups, names)
    lin SImulate a foll tournamenl rem
    simulate toumament (n = n, probs = get_probs_abilities(exp(log_abilities)),
        groups = groups, cores = cores, rounds = rounds]
iter <
if(trace) cat("Start:", start, "\n")
x <-list()
y<- list()
loss value <- list()
x[[]]] c- start[names(target)]
repeat
    result <- sim1(x[[iter]])
    winner_i <- factor(sapply(result, "[[ , "winner"), levels = nam)
    prob_1<- pmax(prop.table(table(winner_1)], 1/n)
    y[[iter]] <- qlogis(prob_i)[names(target]]
    y[liter]
    cat("* Iteration:", iter, "\n")
    cat("* Iteration:", iter, "\n")
    loss value[[iter]] <- loss(y[[iter]], target)
    if(tr्race) cat("Value of the loss function:", round(loss_value[[iter]], 4), "\n")
    if((loss_value[[iter]] < tol) || (iter >= maxiter])
    break
    lter <- iter
    x[[iter]] <- x[[iter-1]] - (y[[iter-1]] - target) / abs(y[[iter-1]] - target) * eps /
list(log_abilities = x, result = result, loss_value = loss_value)
```


Abilities and tournament simulations

Further questions:

- What are the likely courses of the tournament that lead to these bookmaker consensus winning probabilities?
- Is the team with the highest probability also the strongest team?
- What are the winning probabilities for all possible matches?

Motivation:

- Tournament draw might favor some teams, e.g., France was drawn in a group with two weak teams (Romania and Albania).
- Tournament schedule was known to bookmakers and hence factored into their quoted odds.
- Can abilities (or strengths) of the teams be obtained, adjusting for such tournament effects?

Abilities and tournament simulations

Answer: Yes, an approximate solution can be found by simulation when

- adopting a standard model for paired comparisons (i.e., matches),
- assuming that the abilities do not change over the tournament.

Model: Bradley-Terry model for winning/losing in a paired comparison of team i and team j.

$$
\operatorname{Pr}(i \text { beats } j)=\pi_{i, j}=\frac{\text { ability }_{i}}{\text { ability }_{i}+\text { ability }_{j}}
$$

Abilities and tournament simulations

"Reverse" simulation:

- If the team-specific ability ${ }_{i}$ were known, pairwise probabilities $\pi_{i, j}$ could be computed.
- Given $\pi_{i, j}$ the whole tournament can be simulated (assuming abilities do not change and ignoring possible draws during the group stage).
- Using "many" simulations (here: 100,000) of the tournament, the empirical relative frequencies \tilde{p}_{i} of each team i winning the tournament can be determined.
- Choose ability $_{i}$ for $i=1, \ldots, 24$ such that the simulated winning probabilities \tilde{p}_{i} approximately match the consensus winning probabilities \hat{p}_{i}.
- Found by simple iterative local search starting from log-odds.

Abilities and paired comparisons

ALB NIR HUN ROU SVK IRL SWE ISL CZE UKR TUR WAL RUS SUI POL AUT CRO POR ITA BEL ENG ESP GER FRA

Tournament simulations: Survival curves

Tournament simulations: Survival curves

Tournament simulations: Survival curves

Outcome verification

Outcome verification

Question: Was the forecast any good?

- Ex post the low predicted winning probability for Portugal (4.1\%) seems wrong.
- However, consider that they indirectly profited from Spain's and England's poor performances in the last group stage games.
- And they only won 1 out of 7 games in normal time.
- Even in the final Gignac might as well have scored a goal instead of hitting the post in minute $92 . .$.

Problems:

- Just a single observation of the tournament and at most one observation of each paired comparison.
- Hard to distinguish between occurrence of an un- (or less) likely outcome and systematic errors in the predicted (prob)abilities.

Outcome verification

Possible approaches:

- Compare forecasts with the observed tournament ranking (1 POR, 2 FRA, 3.5 WAL, 3.5 GER, ...).
- Benchmark against Elo and FIFA ratings.
- Note that the Elo rating also implies ability scores based on which pairwise probabilities and "forward" simulation of tournament can be computed:

$$
\text { ability }_{E l o, i}=10^{E l o_{i} / 400}
$$

- Check whether pairwise probabilities roughly match empirical proportions from clusters of matches.

Outcome verification: Ranking

Spearman rank correlation of observed tournament ranking with bookmaker consensus model (BCM) as well as FIFA and Elo ranking:

BCM (Probabilities)	0.523
BCM (Abilities)	0.436
Elo (Probabilities)	0.344
Elo	0.339
FIFA	0.310

Outcome verification: BCM pairwise probabilities

Winning probability of stronger team (in \%)

Outcome verification: BCM pairwise probabilities

Winning probability of stronger team (in \%)

Outcome verification: Elo pairwise probabilities

Winning probability of stronger team (in \%)

Outcome verification: BCM abilities

Outcome verification: Elo abilities

Discussion

Summary:

- Expert judgments of bookmakers are a useful information source for probabilistic forecasts of sports tournaments.
- Winning probabilities are obtained by adjustment for overround and averaging on log-odds scale.
- Competitor abilities can be inferred by post-processing based on pairwise-comparison model with "reverse" tournament simulations.
- Approach outperformed Elo and FIFA ratings for the last UEFA Euros and correctly predicted the final 2008 and winner 2012.

Limitations:

- Matches are only assessed in terms of winning/losing, i.e., no goals, draws, or even more details.
- Inherent chance component is substantial and hard to verify.

References

Zeileis A, Leitner C, Hornik K (2016). "Predictive Bookmaker Consensus Model for the UEFA Euro 2016." Working Paper 2016-15, Working Papers in Economics and Statistics, Research Platform Empirical and Experimental Economics, Universität Innsbruck. URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-15.

Leitner C, Zeileis A, Hornik K (2011). "Bookmaker Consensus and Agreement for the UEFA Champions League 2008/09." IMA Journal of Management Mathematics, 22(2), 183-194. doi:10.1093/imaman/dpq016.

Leitner C, Zeileis A, Hornik K (2010). "Forecasting Sports Tournaments by Ratings of (Prob)abilities: A Comparison for the EURO 2008." International Journal of Forecasting, 26(3), 471-481. doi:10.1016/j.ijforecast.2009.10.001.

Groups A and B

Rank	Team	Probability (in \%)
$\mathbf{1}$	FRA	97.8
$\mathbf{2}$	SUI	66.9
3	ALB	39.4
4	ROU	52.4
Rank	Team	Probability (in \%)
$\mathbf{1}$	WAL	$\mathbf{6 1 . 2}$
$\mathbf{2}$	ENG	91.2
$\mathbf{3}$	SVK	51.7
4	RUS	64.8

Groups C and D

Rank	Team	Probability (in \%)
$\mathbf{1}$	GER	96.8
$\mathbf{2}$	POL	66.8
$\mathbf{3}$	NIR	37.6
4	UKR	59.9
Rank	Team	Probability (in \%)
$\mathbf{1}$	CRO	$\mathbf{7 1 . 1}$
$\mathbf{2}$	ESP	91.7
3	TUR	55.6
4	CZE	53.5

Groups E and F

Rank	Team	Probability (in \%)
$\mathbf{1}$	ITA	83.0
2	BEL	86.9
3	IRL	47.2
4	SWE	54.4
Rank	Team	Probability (in \%)
$\mathbf{1}$	HUN	47.0
$\mathbf{2}$	ISL	62.7
3	POR	84.5
4	AUT	75.7

Round of 16

Teams		Probability (in \%)	Result
POL	SUI	50.6	$6: 5$ (pen.)
WAL	NIR	61.1	$1: 0$
POR	CRO	52.4	$1: 0$ (a.e.t.)
FRA	IRL	79.6	$2: 1$
GER	SVK	80.2	$3: 0$
BEL	HUN	73.9	$4: 0$
ESP	ITA	59.7	$0: 2$
ENG	ISL	69.1	$1: 2$

Quarterfinal, semifinal, final

Teams	Probability (in \%)	Result
Quarterfinal		
POL POR	41.2	$4: 6$ (pen.)
WAL BEL	33.4	$3: 1$
GER ITA	65.2	$7: 6$ (pen.)
FRA ISL	78.0	$5: 2$
Semifinal		
POR WAL	60.2	$2: 0$
GER FRA	49.5	$0: 2$
Final		
POR FRA	31.2	$1: 0$ (a.e.t.)

