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Benchmark Experiments

A comparison of algorithms with respect to certain performance measures

is of special interest in the following problems

• select the best out of a set of candidates,

• identify groups of algorithms with the same performance,

• test whether any useful structure is inherent in the data or

• demonstrate equivalence of two algorithms.
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Illustrating Example

Stabilization of a Linear Discriminant Analysis (LDA) by using low-

dimensional Principal Component (PC-q) scores (Läuter, 1992; Läuter

et al., 1998; Kropf, 2000) for Glaucoma diagnosis (Hothorn et al., 2003;

Mardin et al., 2003).

Laser-scanning images from 98 patients and 98 controls (n = 196),

p = 62 numeric input variables.

Data generating process: The empirical distribution function Ẑn.

Performance measure: Out-of-bootstrap misclassification error.
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Experiment

Question: Does the performance distribution P̂LDA(Ẑn) of a LDA using

the original p input variables differ from the performance distribution

P̂sLDA(Ẑn) of a stabilized LDA?

Experiment: Draw B samples Lb from the data generating process Ẑn

and compute p̂LDA,b and p̂sLDA,b, the misclassification errors evaluated on

the out-of-bootstrap observations.
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Inference

H0 : P̂LDA(Ẑn) = P̂sLDA(Ẑn)

Problem: We do not know anything about the performances, except

that parametric assumptions are surely not appropriate.

Solution: Dispose the performance distributions by conditioning on all

permutations of the labels for each bootstrap sample.
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Inference

T =
B∑

b=1

p̂LDA,b − p̂sLDA,b = B(p̄LDA,· − p̄sLDA,·)

The conditional distribution of the test statistic T under the conditions

described by H0 can be used to construct a permutation test.

In our case, the P -value based on the asymptotic conditional distribution

is p < 0.001 and therefore H0 can be rejected.
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A Regression Example

Exactly the same methodology can be applied to regression problems

with univariate numeric responses. Example: Can additional randomness

via Random Forests improve Bagging for the Boston Housing data?

House prices for n = 506 houses near Boston, p = 13 input variables.

Data generating process: The empirical distribution function Ẑn.

Performance measure: Out-of-bootstrap mean squared error.
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Performance
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Inference

The null-hypothesis of equal performance distributions can be rejected

(P -value < 0.001).

The estimated difference of the mean square error of Bagging compared

to Random Forests is 0.969 with confidence limits (0.633, 1.305).
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Comparison of Multiple Algorithms

When multiple algorithms are under test, we are interested in both a

global test and a multiple test procedure showing where the differences,

if any, come from. Example: Breast Cancer data with tumor classification

from n = 699 observations with p = 9 inputs.

Comparison of sLDA, Support Vector Machine, Random Forests and

Bundling (Hothorn and Lausen, 2003).

Data generating process: The empirical distribution function Ẑn.

Performance measure: Out-of-bootstrap misclassification error.
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Inference

Again, the global hypothesis

H0 : P̂1(Ẑn) = . . . = P̂K(Ẑn)

can be rejected (P -value < 0.001).

Problem: Which differences ‘cause’ the rejection of H0?

Solution: One can avoid complicated closed testing procedures by

computing confidence intervals after mapping the B-block design into

a K-sample problem via alignment (Hájek et al., 1999).
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Alignment

When we look at the performance measure of algorithm k in the bth

sample drawn from the data generating process, we might want to write

pkb = µ + βb + γk + εkb

where µ corresponds to the performance of the Bayes-rule, βb is the error

induced by the b sample and γk is the error of the kth algorithm, the

quantity we are primarily interested in, ε indicates an error term.
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Alignment (cont’d)

The aligned performance measures p?
kb cover the difference of the

performance of the kth algorithm from the average performance of all

K algorithms:

p?
kb = pkb − p̄·b = (γk + εkb)−

1
K

K∑
k=1

(γk + εkb)

For classification problems, p?
k1b − p?

k2b is the difference of the

misclassification error.
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Alignment (cont’d)

The aligned random variables are not independent but exchangeable for

each of the b samples and are independent between samples.

Therefore, (asymptotic) permutation test procedures can be used to

assess the deviations from the global null-hypothesis.

For example, asymptotic simultaneous confidence intervals for Tukey-

contrasts can be used for an all-pair comparison of the K algorithms

under test.
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Classical Tests?

We advocate usage of permutation tests, but what about more classical

tests?

Consider a paired comparison of sLDA vs. SVM for the Breast Cancer

data:

• Permutation test: T = 1.488, p = 0.776

• t test: t = 0.284, p = 0.777

• Wilcoxon signed rank test: W = 18216, p < 0.001
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Rank Tests: A Warning

Tests like the Wilcoxon signed rank test are constructed for the null-

hypothesis ‘the difference of the performance measures is symmetrically

distributed around zero’. For non-symmetric distributions this leads to a

complete desaster.

Look at n = 500 realizations of a skewed random variable

X − d√
2d

with expectation zero and unit variance with X ∼ χ2
d.
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Lifetime Analysis Problems

Appropriate performance measures for censored responses are by no

means obvious and still a matter of debate (Henderson, 1995; Graf et al.,

1999; Molinaro et al., 2003). We use the Brier score for censored data

suggested by Graf et al. (1999).

Example: Predictive performance of the Kaplan-Meier estimator, a

single survival tree and Bagging of survival trees (Hothorn et al., 2004)

measured for n = 686 women enrolled in the German Breast Cancer

Study (Group 2).
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Kaplan-Meier vs. Single Tree
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Kaplan-Meier vs. Bagging
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Asymptotic Dunnett Confidence Sets

95 % two−sided confidence intervals

−0.025 −0.015 −0.005 0.005

Tree vs. KaplanMeier

Bagging vs. KaplanMeier

( )●

( )●



Benchmark Experiments 2004/03/11

Interpretation

Predictions derived from the estimated Kaplan-Meier curve don’t take

any information covered by the input variables into account. A test for

the hypothesis

there is no (detectable) relationship between the input variables and

the response

can therefore be performed by comparing the performance of the simple

Kaplan-Meier curve with the performance of the best tools available for

predicting survival times.
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Conclusion

When comparing the performance of K algorithms it is appropriate to

treat the B samples from the data generating process as blocks.

Standard statistical test procedures can be used to compare arbitrary

performance measures for multiple algorithms.

Some classical parametric and non-parametric procedures are only sub-

optimal, we advocate procedures based on the conditional distribution of

test statistics for inference.
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See more at ...

The 1st R user conference

Vienna, 20.–22. May 2004

http://www.ci.tuwien.ac.at/Conferences/useR-2004/

http://www.ci.tuwien.ac.at/Conferences/useR-2004/
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