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Benchmark Experiments

A comparison of algorithms with respect to certain performance measures

is of special interest in the following problems

e select the best out of a set of candidates,
e identify groups of algorithms with the same performance,
e test whether any useful structure is inherent in the data or

e demonstrate equivalence of two algorithms.
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lllustrating Example

Stabilization of a Linear Discriminant Analysis (LDA) by using low-
dimensional Principal Component (PC-q) scores (Lauter, 1992; Lauter
et al., 1998; Kropf, 2000) for Glaucoma diagnosis (Hothorn et al., 2003;
Mardin et al., 2003).

Laser-scanning images from 98 patients and 98 controls (n = 196),

p = 62 numeric input variables.

A

Data generating process: The empirical distribution function Z,,.

Performance measure: Out-of-bootstrap misclassification error.
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Experiment

Question: Does the performance distribution f’LDA(Zn) of a LDA using

the original p input variables differ from the performance distribution

A

Pypa(Z,,) of a stabilized LDA?

Experiment: Draw B samples £ from the data generating process Z,
and compute pipa p and Pspa b, the misclassification errors evaluated on

the out-of-bootstrap observations.
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Inference

A

Hy : pLDA(Zn) = PsLDA(Zn)

Problem: We do not know anything about the performances, except

that parametric assumptions are surely not appropriate.

Solution: Dispose the performance distributions by conditioning on all

permutations of the labels for each bootstrap sample.
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Inference

B
T = Z;ﬁLDA,b — DsLDA,b = B(PLDA,. — DsLDA,-)
b=1

The conditional distribution of the test statistic I’ under the conditions

described by H( can be used to construct a permutation test.

In our case, the P-value based on the asymptotic conditional distribution

is p < 0.001 and therefore H( can be rejected.
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A Regression Example

Exactly the same methodology can be applied to regression problems
with univariate numeric responses. Example: Can additional randomness

via Random Forests improve Bagging for the Boston Housing data?
House prices for n = 506 houses near Boston, p = 13 input variables.

Data generating process: The empirical distribution function Z,,.

Performance measure: Out-of-bootstrap mean squared error.
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Inference

The null-hypothesis of equal performance distributions can be rejected
(P-value < 0.001).

The estimated difference of the mean square error of Bagging compared

to Random Forests is 0.969 with confidence limits (0.633,1.305).
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Comparison of Multiple Algorithms

When multiple algorithms are under test, we are interested in both a

global test and a multiple test procedure showing where the differences,

if any, come from. Example: Breast Cancer data with tumor classification

from n = 699 observations with p = 9 inputs.

Comparison of sLDA, Support Vector Machine, Random Forests and
Bundling (Hothorn and Lausen, 2003).

A

Data generating process: The empirical distribution function Z,,.

Performance measure: Out-of-bootstrap misclassification error.
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Inference

Again, the global hypothesis
Hy: Pi(Z,) = ... = Px(Z,)

can be rejected (P-value < 0.001).
Problem: Which differences ‘cause’ the rejection of Hy?

Solution: One can avoid complicated closed testing procedures by
computing confidence intervals after mapping the B-block design into

a K-sample problem via alignment (Hajek et al., 1999).
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Alignment

When we look at the performance measure of algorithm £ in the bth

sample drawn from the data generating process, we might want to write

Prb = 1+ By + Vi + Ekb

where 1 corresponds to the performance of the Bayes-rule, 3y is the error
induced by the b sample and ~; is the error of the kth algorithm, the

quantity we are primarily interested in, ¢ indicates an error term.
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Alignment (cont’d)

The aligned performance measures pj, cover the difference of the
performance of the kth algorithm from the average performance of all

K algorithms:

K
1
Pkp = Prb — D-b = (V& + €kb) — Z’YkJrSkb
k:l

For classification problems, p7y ., — o7, is the difference of the
P pklb pkgb

misclassification error.
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Alignment (cont’d)

The aligned random variables are not independent but exchangeable for

each of the b samples and are independent between samples.

Therefore, (asymptotic) permutation test procedures can be used to

assess the deviations from the global null-hypothesis.

For example, asymptotic simultaneous confidence intervals for Tukey-
contrasts can be used for an all-pair comparison of the K algorithms

under test.
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Classical Tests?

We advocate usage of permutation tests, but what about more classical

tests?

Consider a paired comparison of sLDA vs. SVM for the Breast Cancer
data:

e Permutation test: 1" = 1.488, p =0.776
o {test: t =0.284, p=0.777

e Wilcoxon signed rank test: W = 18216, p < 0.001
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Rank Tests: A Warning

Tests like the Wilcoxon signed rank test are constructed for the null-
hypothesis ‘the difference of the performance measures is symmetrically
distributed around zero’. For non-symmetric distributions this leads to a

complete desaster.

Look at n = 500 realizations of a skewed random variable

X —d
V2d

with expectation zero and unit variance with X ~ 2.
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Lifetime Analysis Problems

Appropriate performance measures for censored responses are by no
means obvious and still a matter of debate (Henderson, 1995; Graf et al.,
1999; Molinaro et al., 2003). We use the Brier score for censored data
suggested by Graf et al. (1999).

Example: Predictive performance of the Kaplan-Meier estimator, a
single survival tree and Bagging of survival trees (Hothorn et al., 2004)

measured for n = 686 women enrolled in the German Breast Cancer

Study (Group 2).
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Kaplan-Meier vs. Bagging
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Asymptotic Dunnett Confidence Sets
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Interpretation
Predictions derived from the estimated Kaplan-Meier curve don't take
any information covered by the input variables into account. A test for

the hypothesis

there is no (detectable) relationship between the input variables and

the response

can therefore be performed by comparing the performance of the simple
Kaplan-Meier curve with the performance of the best tools available for

predicting survival times.
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Conclusion

When comparing the performance of K algorithms it is appropriate to

treat the B samples from the data generating process as blocks.

Standard statistical test procedures can be used to compare arbitrary

performance measures for multiple algorithms.

Some classical parametric and non-parametric procedures are only sub-
optimal, we advocate procedures based on the conditional distribution of

test statistics for inference.
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See more at ...

iR/
2004

The 1st R user conference
Vienna, 20.-22. May 2004

http://www.ci.tuwien.ac.at/Conferences/useR-2004/
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