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Model frame

We assume n independent observations

Yi ∼ F (θi) (i = 1, . . . , n).

from distribution F with k-dimensional parameter θi.

Observations are ordered with respect to “time” and can be

vector-valued.

Extension to regression situation and dependent data: later.



Model frame

Null hypothesis:

H0 : θi = θ0 (i = 1, . . . , n).

Alternative:

H1: θi varies over “time” i.



Philosophy

The generalized fluctuation test framework ...

“... includes formal significance tests but its philosophy is basi-

cally that of data analysis as expounded by Tukey. Essentially,

the techniques are designed to bring out departures from con-

stancy in a graphic way instead of parametrizing particular types

of departure in advance and then developing formal significance

tests intended to have high power against these particular alter-

natives.” (Brown, Durbin, Evans, 1975)



Generalized fluctuation tests

❆ empirical fluctuation processes reflect fluctuation in

❖ residuals
❖ coefficient estimates
❖ M-scores (including OLS or ML scores etc.)

❆ theoretical limiting process is known

❆ choose boundaries which are crossed by the limiting process
(or some functional of it) only with a known probability α.

❆ if the empirical fluctuation process crosses the theoretical
boundaries the fluctuation is improbably large ⇒ reject the
null hypothesis.



Generalized M-fluc. processes

Consider a smooth k-dimensional score function ψ(·) with:

E{ψ(Yi, θi)} = 0

and define the covariance matrix

B(θ) = COVθ0{ψ(Y, θ)}.



Generalized M-fluc. tests

A common choice for ψ is the partial derivative of some objective

function Ψ

ψ(y, θ) =
∂Ψ(y, θ)

∂θ
.

which includes OLS and ML.

In a misspecification context: Quasi-ML, robust M-estimation.

ψ(y, θ) = min(c,max(y − θ,−c)).

Instead of full likelihood use estimating equations, IV, GMM,

GEE.



Theoretical M-fluc. processes

Consider the cumulative score process given by

Wn(t, θ) = n−1/2
bntc∑
i=1

ψ(Yi, θ).



Theoretical M-fluc. processes

Consider the cumulative score process given by

Wn(t, θ) = n−1/2
bntc∑
i=1

ψ(Yi, θ).

Under H0 the following functional central limit theorem (FCLT)

holds

B(θ0)
−1/2Wn(·, θ0)

d−→ W (·).



Empirical M-fluc. processes

A suitable estimate θ̂n of θ0 is defined by

n∑
i=1

ψ(Yi, θ̂n) = 0.



Empirical M-fluc. processes

A suitable estimate θ̂n of θ0 is defined by

n∑
i=1

ψ(Yi, θ̂n) = 0.

Under H0 the following FCLT holds

B̂
−1/2
n Wn(·, θ̂n) d−→ W0(·),

for some consistent covariance matrix estimate B̂n.



Generalized M-fluc. tests

In an empirical sample the empirical M-fluctuation process

efp(t) = B̂
−1/2
n Wn(t, θ̂n).

is a k × n array. Can be aggregated to a scalar test statistic by

a functional λ(·)

λ

(
efpj

(
i

n

))
,

where j = 1, . . . , k and i = 1, . . . n.



Generalized M-fluc. tests

λ can usually be split into two components: λtime and λcomp.

Typical choices for λtime: L∞ (absolute maximum), mean, range.

Typical choice for λcomp: L∞, L2.

⇒ can identify component and/or timing of shift. Requires dif-

ferent visualization techniques.



Generalized M-fluc. tests

In a regression situation:

ψ(Yi, θi) = ψ(yi, xi, θi),

Assumptions:

❆ Zero expectation with respect to f(yi |xi, θi)
❆ Stabilizing variances

1

n

n∑
i=1

COV{ψ(yi, xi, θ0)} = Jn
p−→ J,

⇒ can be applied to (generalized) linear models.



Generalized M-fluc. tests

Special cases:

❆ Nyblom-Hansen test

❆ OLS-based CUSUM tests

❆ Hjort-Koning tests

❆ robust CUSUM test

❆ . . .

For dependent data:

❆ mean function can usually be estimated consistently,

❆ use HAC covariance matrix estimates.



German M1 money demand

Lütkepohl, Teräsvirta, Wolters (1999) investigate the linearity

and stability of German M1 money demand: stable regression

relation for the time before the monetary unification on 1990-

06-01 but a clear structural instability afterwards.

Data: seasonally unadjusted quarterly data, 1961(1) to 1995(4)

Error Correction Model (in logs) with variables:

M1 (real, per capita) mt, price index pt, GNP (real, per capita)

yt and long-run interest rate Rt:

∆mt = −0.30∆yt−2 − 0.67∆Rt − 1.00∆Rt−1 − 0.53∆pt

−0.12mt−1 + 0.13yt−1 − 0.62Rt−1

−0.05− 0.13Q1− 0.016Q2− 0.11Q3 + ût,



German M1 money demand

M-fluctuation test in linear regression estimated by OLS:
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German M1 money demand

M-fluctuation test in linear regression estimated by OLS:
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German M1 money demand

M-fluctuation test in linear regression estimated by OLS:
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Illegitimate births

Fraction of illegitimate births in Großarl, Austria (1700–1800).
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Illegitimate births

M-fluctuation test in binomial GLM estimated by ML:
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Illegitimate births

M-fluctuation test in binomial GLM estimated by ML:
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Illegitimate births

Fitted model with exogenous breakpoints (1736, 1753, 1771).
Fitted model with estimated breakpoints (1734, 1754, 1785).
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Illegitimate births

Fitted model with exogenous breakpoints (1736, 1753, 1771).
Fitted model with estimated breakpoints (1734, 1754, 1785).
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Illegitimate births

Fitted model with exogenous breakpoints (1736, 1753, 1771).
Fitted model with estimated breakpoints (1734, 1754, 1785).
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Software

All methods implemented in the R system for statistical com-

puting and graphics

http://www.R-project.org/

in the contributed package strucchange.

Both are available under the GPL (General Public Licence) from

the Comprehensive R Archive Network (CRAN):

http://CRAN.R-project.org/

http://www.R-project.org/
http://CRAN.R-project.org/


Software

R> M1.model <- dm ~ dy2 + dR + dR1 + dp + ecm.res + season
R> scus <- efp(M1.model, type = "Score-CUSUM", data = GermanM1)
R> plot(scus, functional = "meanL2")



Software

R> M1.model <- dm ~ dy2 + dR + dR1 + dp + ecm.res + season
R> scus <- efp(M1.model, type = "Score-CUSUM", data = GermanM1)
R> plot(scus, functional = "meanL2")

Score−based CUSUM test with mean L2 norm
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Software

R> bp <- breakpoints(M1.model, data = GermanM1)
R> bp.bic <- breakpoints(bp)
R> lines(bp.bic)

Score−based CUSUM test with mean L2 norm
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Software

R> sctest(scus, functional = "meanL2")

Score-based CUSUM test with mean L2 norm

data: scus

f(efp) = 2.796, p-value = 0.02212


